Spacecraft Modeling, Attitude Determination, and Control Quaternion-Based Approach **YAGUANG YANG** ## Spacecraft Modeling, Attitude Determination, and Control Quaternion-Based Approach #### **Yaguang Yang** Aerospace Engineer, Goddard Space Flight Center National Aeronautical Space Administration (NASA) Greenbelt, Maryland, USA Second edition published 2025 by CRC Press 2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431 and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN © 2025 Yaguang Yang CRC Press is an imprint of Taylor & Francis Group, LLC Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk *Trademark notice*: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data (applied for) ISBN: 978-1-032-95252-9 (hbk) ISBN: 978-1-032-95414-1 (pbk) ISBN: 978-1-003-58476-6 (ebk) DOI: 10.1201/9781003584766 Typeset in Times New Roman by Prime Publishing Services To my parents, my wife, my son and daughter. # Preface of the Second Edition My educational background was in Electrical Engineering with a specialty in controls. When I joined Orbital Science Corporation as a GNC engineer, I knew I needed to fill my skill void in astrodynamics, spacecraft, rotational sequences, etc. This experience taught me what is necessary for a control engineer to work on spacecraft control system design. On the other side, I realized that control engineers may have deeper knowledge on controls than aerospace engineers. When I first decided to write a spacecraft modeling and attitude control book, my goal was to give a necessary background for a control engineer who wants to work on spacecraft control design, which then resulted in the materials of Chapters 2, 3, 4, 5, 6, 7, 9. On the other hand, I would like aerospace engineers to know a little more about modern control techniques without going too deep in control theory so that they can apply advanced techniques to aerospace engineering problems. I decided to have these materials in Appendices A, B, and C. Having these backgrounds in aerospace and control engineering, I will discuss some advanced control strategies that were not considered before. These are the materials of Chapters 8, 9, 10, 11, 12, 13, 14, and 15. Problems in these chapters have been discussed in various places, some in textbooks, but I believe that the methods discussed in these chapters are different and probably better than the ones discussed in similar books. Therefore, the book should be useful for both aerospace students/engineers who want to know a little more about controls, and control students/engineers who want to apply their knowledge to aerospace engineering problems. It should also be valuable for researchers working in either controls or aerospace or both who are interested in developing better methods than the ones presented in this book. It has been a few years since the first edition of the book was published. I moved from the US Nuclear Regulatory Commission to the Goddard Space Flight Center at NASA. My work is now directly related to aerospace applications. Therefore, I have a chance to rethink what should have been included in the first edition. First, orbit-raising is discussed in Chapter 12, which is related to the Hohmann transfer. Therefore, the Hohmann transfer should be discussed in Chapter 2. Second, Chapter 8 discusses spacecraft attitude estimation, and it was assumed that readers have the background of the Kalman filter and extended Kalman filter. To make the book accessible to more readers, I think that the Kalman filter and extended Kalman filter should be included in Chapter 8. More importantly, I think that some of the recent work on multi-body spacecraft modeling and control should be included. James Webb telescope and the proposed Large UV Optical Infrared Surveyor (LUVOIR) are typical multibody spacecraft. The modeling and control of multi-body spacecraft use more complicated techniques and need special attention. Therefore, a separate chapter should be added to discuss this important topic. Besides the aforementioned major additions, the second edition should make corrections for a few known typos. Fortunately, with the effort of Mr. Vijay Primlani, the idea of publishing the second edition is supported by CRC Press. Thanks, Vijay! Some of my colleagues at Goddard Space Flight Center of NASA directly or indirectly made the project possible. First, I would like to thank my branch head, David Everett, who brought me to Goddard Space Flight Center, where I had the chance to work on the multi-body modeling and control project. Second, I would like to thank Gary Mosier who is the lead of the project and his IRAD fund supported my work on the multi-body modeling problem. Eric Stoneking was very helpful in providing useful background materials related to Kane's method, I have been really impressed by his excellent work. Finally, I would like to thank William Bentz and Lia Lewis who are my coauthors of a journal paper, which is essentially the materials of Chapter 16. ### **Preface** My interest in spacecraft modeling, attitude determination, and control started at Orbital Science Corporation. At the end of the summer of 2005, I was looking for a job that would best use my background in controls and optimization. There was an open house for job applicants at the company's Dulles campus. That was the first time I visited Orbital Science Corporation. I was very fortunate to have a chance to talk to Dr. Brian Keller, the deputy director of GNC (guidance, navigation, and controls) at the time. I showed him my publications in controls and explained my work at previous companies, he listened and immediately promised to set up an interview for me. A few weeks later, my future manager at Orbital Science Corporation, Mr. James Bobbett, called me and an interview was scheduled. Both Brian and James knew that I did not have a background in spacecraft and launch vehicles, however, they trusted my background in controls and believed my prior experience to be beneficial in this work. They offered me the job! I joined Orbital Science Corporation in November 2005. My time at Orbital Science Corporation was delightful. I was deeply involved in the control system designs for two spacecraft and one launch vehicle. My first assignment was to review and learn the design of ROCSAT III in preparation for designing the next spacecraft. In a few weeks, I realized that the design could be improved and proposed an alternative method. I was surprised that my manager, Mr. Bobbett, quickly replied to my email with his strong support for my proposal. The proposed changes were implemented and six satellites were launched in April 2006, all achieving their design requirements. During my time at Orbital Science Corporation, several textbooks on spacecraft controls, such as M.J. Sidi's book "Spacecraft Dynamics and Control: A Practical Engineering Approach", B. Wie's book "Space Vehicle Dynamics and Control", and J.R. Wertz's book "Spacecraft Attitude Determination and Control", were great source to me in understanding this topic. Although all these books are excellent, I believed that some materials could be improved, especially, the control system design methods. However, my work assignments at Orbital Science Corporation were very challenging and I did not have time to think about the specifics of these improvements. I left Orbital Science Corporation to join the US NRC in 2008. At NRC, I have had more free time, after eight hours in the office, to think about these problems. I started to publish papers in 2010 on new methods for spacecraft control and algorithms to design spacecraft control systems, trying to address control related problems in different stages of different missions using different sensors and actuators to cover as many design problems as possible. After a few years, my publications covered a few important areas in spacecraft modeling, attitude determination, and control. On May 1, 2015, I received an email from Vijay Primlani from CRC Press, asking if I was interested in publishing a book with this established publisher. My immediate thought was: that is a cool idea. I said "yes, but it might take some time because I want to consider a few more design problems that I have not done yet, besides I had been working and would continue to work only in my spare time for this project." I did not know that the delay would be a few years but the promise has been the motivation for me to work continuously on this interesting project. When this project approaches the finish line, I would like to thank a few people, who helped me along the way. First, I would like to thank Dr. Keller and Mr. Bobbett at
Orbital Science Corporation for giving me the chance to work in this amazing area. Second, I would like to thank Mr. Primlani at CRC Press for his invitation to write a book with my choice of topic and for his patience with my slow progress. I am also indebted to my former colleague, Dr. Z. Zhou at NASA, who co-authored two papers that are included in this book. Last but not least, I am grateful to my manager, Mr. Ronaldo Jenkins at the US NRC for his support and approval of writing this book in my spare time. ## Contents | Pre | reface of the Second Edition | | | |----------------|------------------------------|---|-------| | Pre | face | | vi | | Lis | t of F | Figures | XV | | List of Tables | | | xviii | | 1. | Intr | oduction | 1 | | | 1.1 | Organization of the book | 3 | | | 1.2 | Some basic notations and identities | 6 | | 2. | Orb | oit Dynamics and Properties | 8 | | | 2.1 | Orbit dynamics | 8 | | | 2.2 | Conic section and different orbits | 12 | | | | 2.2.1 Circular orbits | 13 | | | | 2.2.2 Elliptic orbits | 13 | | | | 2.2.3 Hyperbolic orbits | 15 | | | 2.3 | Property of Keplerian orbits | 15 | | | 2.4 | Hohmann transfer | 18 | | | 2.5 | Keplerian orbits in three dimensional space | 23 | | | | 2.5.1 Celestial inertial coordinate system | 23 | | | | 2.5.2 Orbital parameters | 24 | | 3. | Rota | ational Sequences and Quaternion | 26 | | | 3.1 | Some frequently used frames | 27 | | | | 3.1.1 Body-fixed frame | 27 | | | | 3.1.2 The Earth centered inertial (ECI) frame | 27 | | | | 3 1 3 Local vertical local horizontal frame | 28 | | ■ ix | |------| | | | | | 3.1.4 South east zenith (SEZ) frame | 28 | |----|------|--|----| | | | 3.1.5 North east nadir (NED) frame | 28 | | | | 3.1.6 The Earth-centered Earth-fixed (ECEF) frame | 28 | | | | 3.1.7 The Orbit (Perifocal PQW) frame | 29 | | | | 3.1.8 The spacecraft coordinate (RSW) frame | 29 | | | 3.2 | Rotation sequences and mathematical representations | 29 | | | | 3.2.1 Representing a fixed point in a rotational frame | 29 | | | | 3.2.2 Representing a rotational point in a fixed frame | 31 | | | | 3.2.3 Rotations in three dimensional space | 32 | | | | 3.2.4 Rotation from one frame to another frame | 34 | | | | 3.2.5 Rate of change of the direction cosine matrix | 34 | | | | 3.2.6 Rate of change of vectors in rotational frame | 36 | | | 3.3 | , | 36 | | | | 3.3.1 Transformation from ECI (XYZ) to PQW coordinate | 36 | | | | 3.3.2 Transformation from ECI (XYZ) to RSW coordinate | 37 | | | | 3.3.3 Transformation from six classical parameters to (v, r) | 37 | | | | 3.3.4 Transformation from (v, r) to six classical parameters | 39 | | | 3.4 | | 41 | | | | 3.4.1 Equality and addition | 41 | | | | 3.4.2 Multiplication and the identity | 42 | | | | 3.4.3 Complex conjugate, norm, and inverse | 42 | | | | 3.4.4 Rotation by quaternion operator | 43 | | | | 3.4.5 Matrix form of quaternion production | 46 | | | | 3.4.6 Derivative of the quaternion | 47 | | 4. | Spa | cecraft Dynamics and Modeling | 48 | | | 4.1 | The general spacecraft system equations | 50 | | | | 4.1.1 The dynamics equation | 50 | | | | 4.1.2 The kinematics equation | 50 | | | 4.2 | The inertial pointing spacecraft model | 52 | | | | 4.2.1 The nonlinear inertial pointing spacecraft model | 52 | | | | 4.2.2 The linearized inertial pointing spacecraft models | 52 | | | 4.3 | Nadir pointing momentum biased spacecraft model | 53 | | | | 4.3.1 The nonlinear nadir pointing spacecraft model | 53 | | | | 4.3.2 The linearized nadir pointing spacecraft model | 54 | | 5. | Spac | ce Environment and Disturbance Torques | 58 | | | 5.1 | Gravitational torques | 59 | | | 5.2 | Atmosphere-induced torques | 61 | | | 5.3 | Magnetic field-induced torques | 66 | | | 5.4 | Solar radiation torques | 72 | | | 5.5 | Internal torques | 72 | | | | | | | 6. | Spac | ecraft A | Attitude Determination | 74 | |----|------|----------|---|-----| | | 6.1 | Wahba | 's problem | 75 | | | 6.2 | Daven | port's formula | 76 | | | 6.3 | Attitud | le determination using QUEST and FOMA | 77 | | | 6.4 | | ic solution of two vector measurements | 78 | | | | 6.4.1 | The minimum-angle rotation quaternion | 78 | | | | 6.4.2 | The general rotation quaternion | 79 | | | | 6.4.3 | Attitude determination using two vector measurements | 81 | | | 6.5 | | ic formula for general case | 83 | | | | 6.5.1 | Analytic formula | 83 | | | | 6.5.2 | Numerical test | 86 | | | 6.6 | Rieman | nn-Newton method | 87 | | | 6.7 | SVD n | nethod | 89 | | | | 6.7.1 | The SVD-based attitude determination algorithm | 90 | | | | 6.7.2 | Uniqueness of the SVD solution | 92 | | | 6.8 | Rotatio | on rate determination using vector measurements | 93 | | 7. | Astr | onomic | al Vector Measurements | 95 | | | 7.1 | Stars' v | vectors and star trackers | 95 | | | 7.2 | Earth's | s magnetic field vectors and magnetometer | 96 | | | | 7.2.1 | _ | 96 | | | | 7.2.2 | | 97 | | | 7.3 | Sun ve | ectors and sun sensor | 97 | | | | 7.3.1 | Ephemeris sun vector | 97 | | | | | Sun vector measurement | 99 | | 8. | Spac | ecraft A | Attitude Estimation | 100 | | | 8.1 | A brief | f background review | 101 | | | | 8.1.1 | Probability and conditional probability | 101 | | | | 8.1.2 | One dimensional random variable | 102 | | | | 8.1.3 | Higher dimensional random variables | 102 | | | | 8.1.4 | | 103 | | | | 8.1.5 | Independent random variables | 104 | | | | 8.1.6 | Mean, variance, and covariance | 104 | | | | 8.1.7 | Conditional expectation and conditional variance matrix | 105 | | | | 8.1.8 | Discrete time stochastic processes | 105 | | | | 8.1.9 | Markov processes | 107 | | | | | Gaussian-Markov processes | 107 | | | 8.2 | | te time linear Kalman filter | 108 | | | | 8.2.1 | Assumptions on the stochastic linear system | 109 | | | | 8.2.2 | • | 109 | | | | Contents | ■ xi | |-----|------|--|------| | | | 8.2.3 Minimal linear covariance estimation | 110 | | | | 8.2.4 Three lemmas | 111 | | | | 8.2.5 Discrete-time linear Kalman filter | 113 | | | 8.3 | Discrete-time extended Kalman filter | 116 | | | 8.4 | | 117 | | | 8.5 | • | 122 | | | 8.6 | • | 123 | | 9. | Spac | cecraft Attitude Control | 124 | | | 9.1 | LQR design for nadir pointing spacecraft | 125 | | | 9.2 | The LQR design for inertial pointing spacecraft | 126 | | | | 9.2.1 The analytic solution | 126 | | | | 9.2.2 The global stability of the design | 127 | | | | 9.2.3 The closed-loop poles | 129 | | | | 9.2.4 The simulation result | 133 | | | 9.3 | LQR and robust pole assignment for inertial point spacecraft | 134 | | | | 9.3.1 Robustness of the closed-loop poles | 134 | | | | 9.3.2 The robust pole assignment | 135 | | | | 9.3.3 Disturbance rejection of robust pole assignment | 140 | | | | 9.3.4 A design example | 141 | | 10. | Spac | cecraft Actuators | 146 | | | 10.1 | Reaction wheel and momentum wheel | 146 | | | 10.2 | Control moment gyros | 147 | | | 10.3 | Magnetic torque rods | 149 | | | 10.4 | Thrusters | 150 | | 11. | Spac | cecraft Control Using Magnetic Torques | 152 | | | 11.1 | The linear time-varying model | 154 | | | 11.2 | Spacecraft controllability using magnetic torques | 157 | | | 11.3 | LQR design based on periodic Riccati equation | 164 | | | | 11.3.1 Preliminary results | 165 | | | | 11.3.2 Solution of the Algebraic Riccati equation | 167 | | | | 11.3.3 Solution of the Periodic Riccati Algebraic equation | 168 | | | | 11.3.4 Simulation test | 173 | | | 11.4 | Attitude and desaturation combined control | 176 | | | | 11.4.1 Spacecraft model for attitude and reaction wheel desaturation control | 178 | | | | 11.4.2 Linearized model for attitude and reaction wheel desaturation control | 182 | | | | 11.4.3 | The LQR | design | 186 | |-----|-------|---------|-------------------------|---|-----| | | | | 11.4.3.1 | Case 1: $\mathbf{i}_m = 0$ | 186 | | | | | 11.4.3.2 | Case 2: $\mathbf{i}_{m}^{m} \neq 0$ | 187 | | | | 11.4.4 | Simulation | on test and implementation consideration | 188 | | | | | 11.4.4.1 | Comparison with the design without reaction wheels | 188 | | | | | 11.4.4.2 | Control of the nonlinear system | 190 | | | | | 11.4.4.3 | Implementation to real system | 191 | | | 11.5 | LQR d | esign base | ed on a novel lifting method | 193 | | | | 11.5.1 | Periodic | LQR design based on linear periodic system | 193 | | | | 11.5.2 | Periodic | LQR design based on linear time-invariant | 195 | | | | | system | | | | | | 11.5.3 | Impleme | ntation and numerical simulation | 202 | | | | | 11.5.3.1 | Implementation consideration | 202 | | | | | 11.5.3.2 | Simulation test for the problem in | 204 | | | | | | Section 11.3 | | | | | | 11.5.3.3 | Simulation test for the problem in | 204 | | | | | | Section 11.4 | | | 12. | Attit | ude Ma | neuver a | nd Orbit-Raising | 206 | | | 12.1 | Attitud | le maneuv | er | 206 | | | 12.2 | Orbit-r | aising | | 209 | | | 12.3 | Compa | ring quate | ernion and Euler angle designs | 213 | | 13. | Attit | ude MI | PC Contro | bl | 219 | | | 13.1 | Some t | echnical le | emmas | 221 | | | | | | C and convex QP with box constraints | 223 | | | | | | onvex QP with box constraints | 226 | | | | | | convex QP with box constraints | 227 | | | | | rgence ana | | 237 | | | 13.6 | Implen | nentation i | ssues | 242 | | | | 13.6.1 | Terminat | ion criterion | 242 | | | | 13.6.2 | Initial (x ⁰ | $(\mathbf{y}^0, \mathbf{y}^0, \mathbf{z}^0, \lambda^0, \gamma^0) \in \mathcal{N}_2(\theta)$ | 242 | | | | 13.6.3 | Step size | - | 243 | | | | 13.6.4 | The pract | tical implementation | 246 | | | 13.7 | A desig | gn exampl | e | 247 | | | 13.8 | Proofs | of technic | al lemmas | 248 | | 14. | Spac | ecraft Control Using CMG | 265 | |-----|-------
---|-----| | | - | Spacecraft model using variable-speed CMG | 267 | | | | Spacecraft attitude control using VSCMG | 271 | | | 17.2 | 14.2.1 Gain scheduling control | 271 | | | | 14.2.2 Model predictive control | 273 | | | | 14.2.3 Robust pole assignment | 273 | | | 14.3 | Simulation test | 275 | | 15. | Spac | ecraft Rendezvous and Docking | 280 | | | 15.1 | Introduction | 280 | | | 15.2 | Spacecraft model for rendezvous | 282 | | | | 15.2.1 The model for translation dynamics | 282 | | | | 15.2.2 The model for attitude dynamics | 288 | | | | 15.2.3 A complete model for rendezvous and docking | 291 | | | 15.3 | Model predictive control system design | 293 | | | 15.4 | Simulation test | 294 | | 16. | Mod | eling and Attitude Control of Multi-Body Space Systems | 300 | | | 16.1 | Introduction | 300 | | | 16.2 | Preliminary | 302 | | | | 16.2.1 Basic concepts and important formulas | 303 | | | | 16.2.2 Kane's method | 304 | | | | Three-body rigid model for LUVOIR telescope | 304 | | | 16.4 | Linearization and controller design | 315 | | | | 16.4.1 Linearization | 315 | | | | 16.4.2 Symbolic inverse for linearization | 316 | | | | 16.4.3 Representation of vectors in inertial frame | 316 | | | | 16.4.4 LQR and robust pole assignment designs | 318 | | | | 16.4.5 Simulation testing on rigid model | 320 | | | | 16.4.5.1 Oscillation comparison of the two designs | 320 | | | | 16.4.5.2 Energy consumption comparison of the two designs | 323 | | | | 16.4.6 Simulation testing on the flexible model | 323 | | | 16.5 | A brief summary | 326 | | Apj | pendi | x A. First Order Optimality Conditions | 328 | | | A.1 | Problem introduction | 328 | | | | Karush-Kuhn-Tucker conditions | 320 | | Append | 331 | | |---------|---|-----| | B.1 | General discrete-time optimal control problem | 331 | | B.2 | Solution of discrete-time LQR control problem | 332 | | B.3 | LQR control for discrete-time LTI system | 334 | | Append | ix C. Robust Pole Assignment | 339 | | C.1 | Eigenvalue sensitivity to the perturbation | 339 | | C.2 | Robust pole assignment algorithms | 344 | | C.3 | Misrikhanov and Ryabchenko Algorithm | 356 | | Referen | ces | 360 | | Index | | | # List of Figures | 2.1 | Radial and transverse components of motion in a plane. | 9 | |------|--|-----| | 2.2 | The orbits defined by the conic section. | 13 | | 2.3 | The ellipse orbit defined on a plane. | 14 | | 2.4 | Geometry for deriving the law of area. | 16 | | 2.5 | The two dimensional Hohmann transfer. | 18 | | 2.6 | Vernal equinox description. | 23 | | 2.7 | Parameters in orbit. | 24 | | 3.1 | A fixed point in a rotational frame. | 30 | | 3.2 | A rotational point in a fixed frame. | 31 | | 3.3 | An axis rotation in three dimensional space. | 32 | | 3.4 | All possible rotations for one axis. | 34 | | 3.5 | Rotation from one frame to another frame. | 35 | | 3.6 | Transformation between orbit parameters and ECI frame. | 38 | | 7.1 | Sun vector represented in ECI frame. | 98 | | 9.1 | Monte Carlo simulation for the nonlinear spacecraft model | 134 | | | with perturbation. | | | 9.2 | Designed controller applied to the linear spacecraft model. | 143 | | 9.3 | Designed controller applied to the nonlinear spacecraft model. | 143 | | 9.4 | Designed controller applied to the linear spacecraft model. | 144 | | 0.1 | Orthonormal vectors of a CMG unit. | 148 | | 1.1 | Attitude response q_1 . | 174 | | 1.2 | Attitude response q_2 . | 174 | | 1.3 | Attitude response q_3 . | 175 | | 1.4 | Body rate response ω_1 . | 175 | | 1.5 | Body rate response ω_2 . | 176 | | 1.6 | Body rate response ω_3 . | 176 | | 1.7 | Body rate response ω_1 , ω_2 , and ω_3 . | 189 | | 1.8 | Reaction wheel response Ω_1 , Ω_2 , and Ω_3 . | 189 | | 1.9 | Attitude response q_1 , q_2 , and q_3 . | 190 | | 1.10 | Body rate response ω_1 , ω_2 , and ω_3 . | 191 | | 1.11 | Reaction wheel response Ω_1 , Ω_2 , and Ω_3 . | 192 | | 11.12 | Attitude response q_1 , q_2 , and q_3 . | 192 | |-------|--|-----| | 12.1 | Spacecraft orientation before the maneuver. | 207 | | 12.2 | Spacecraft orientation after the maneuver. | 207 | | 12.3 | Thrusters coordinate definition. | 209 | | 12.4 | Design comparison for quaternion rate ω_x . | 215 | | 12.5 | Design comparison for quaternion rate ω_{ν} . | 216 | | 12.6 | Design comparison for quaternion rate ω_z . | 216 | | 12.7 | Design comparison for quaternion q_1 . | 217 | | 12.8 | Design comparison for quaternion q_2 . | 217 | | 12.9 | Design comparison for quaternion q_3 . | 218 | | 13.1 | Optimal control with saturation constraint. | 249 | | 13.2 | Spacecraft body rate response. | 249 | | 13.3 | Spacecraft quaternion response. | 250 | | 14.1 | Spacecraft body with a single VSCMG. | 267 | | 14.2 | VSCMG system with pyramid configuration concept. | 275 | | 14.3 | VSCMG system with pyramid configuration. | 276 | | 14.4 | Gimbal wheel ω_g response. | 277 | | 14.5 | Spin wheel ω_s response. | 277 | | 14.6 | Spacecraft body rate ω response. | 278 | | 14.7 | Attitude q_0 , q_1 , q_2 , and q_3 response. | 278 | | 15.1 | Spacecraft coordinate frame. | 283 | | 15.2 | Spacecraft coordinate in orbital plan. | 284 | | 15.3 | Thrusters' locations and orientations. | 292 | | 15.4 | Position response for the circular orbit. | 296 | | 15.5 | Attitude response for the circular orbit. | 296 | | 15.6 | Required forces for the circular orbit. | 297 | | 15.7 | Position response for the elliptical orbit. | 297 | | 15.8 | Attitude response for the elliptical orbit. | 298 | | 15.9 | Required forces for the elliptical orbit. | 298 | | 16.1 | The concept of LUVOIR telescope. | 301 | | 16.2 | The description of the three bodies of the LUVOIR telescope. | 305 | | 16.3 | LQR and robust pole assignment design comparison for rigid | 321 | | | model: (a) x_1 initial state response (b) x_2 initial state response. | | | 16.4 | LQR and robust pole assignment design comparison for rigid | 321 | | | model: (a) x_3 initial state response (b) x_4 initial state response. | | | 16.5 | LQR and robust pole assignment design comparison for rigid | 321 | | | model: (a) x_5 initial state response (b) x_6 initial state response. | | | 16.6 | LQR and robust pole assignment design comparison for rigid | 322 | | | model: (a) x_7 initial state response (b) x_8 initial state response. | | | 16.7 | LQR and robust pole assignment design comparison for rigid | 322 | | | model: (a) x_0 initial state response (b) x_{10} initial state response. | | | 16.8 | LQR and robust pole assignment design comparison for rigid model: (a) x_0 initial state response (b) x_{10} initial state response. | 322 | |-------|---|-----| | 16.9 | LQR and robust pole assignment design comparison for flexible model: (a) Roll angle initial state response (b) Pitch angle initial state response. | 324 | | 16.10 | LQR and robust pole assignment design comparison for flexible model: (a) Yaw angle initial state response (b) Roll angular rate initial state response. | 324 | | 16.11 | LQR and robust pole assignment design comparison for flexible model: (a) Pitch angular rate initial state response (b) Yaw angular rate initial state response. | 325 | | 16.12 | LQR and robust pole assignment design comparison for flexible model: (a) Pitch augular rate initial state response (b) Yaw angular rate initial state response. | 325 | | 16.13 | LQR and robust pole assignment design comparison for flexible model: (a) Gimbal 1 torque initial state response (b) Gimbal 2 torque initial state response. | 325 | ### List of Tables | 5.1 | Best-fit parameters for the Harris-Priester minimum atmospheric | 63 | |-----|---|-----| | | density, ρ_{min} . | | | 5.2 | Best-fit parameters for the Harris-Priester maximum atmospheric | 65 | | | density, ρ_{max} . | | | 6.1 | Comparison of analytic method and QUEST method. | 87 | | 9.1 | Required closed-loop poles. | 133 | | 9.2 | Performance of the nominal linearized system. | 144 | | 9.3 | Performance of the perturbed nonlinear system. | 145 | | 0.1 | Summary of propulsion technologies. | 150 | | 1.1 | CPU time comparison for problem in [318]. | 204 | | 1.2 | CPU time comparison for problem in [316]. | 205 | | 3.1 | Comparison of reduced QP sizes of the proposed method and | 225 | | | ath or math a da | | ### Chapter 1 ### Introduction Spacecraft attitude determination and control are an important part of a spacecraft to achieve its designed mission. As of today, many spacecrafts have been successfully launched, and most of them have performed well as they were designed. Many research papers have been published to address attitude determination and control design problems. Several text books are available for students to learn the technology and for engineers to use as references. The most popular spacecraft models for attitude determination algorithms and control design methods are the Euler angle models and the quaternion models. The Euler angle models have been proven very efficient as the linearized models are controllable, and all standard linear control system design methods are directly applicable. The drawbacks related to the Euler angle methods are (a) the designs based on linearized models may not globally stabilize the original nonlinear spacecraft, i.e., the design may not work when the attitude of the spacecraft is far away from the point where the linearization is performed;
(b) the models depend on the rotational sequences, this can be error prone if several teams work on the same project and they use different rotational sequences; (c) for any rotational sequence, there is a singular point where the model is not applicable; and (d) since most attitude determination methods use quaternion to represent the spacecraft attitude, there is a need to transform quaternion into Euler angles. On the other hand, for quaternion models, people have found controllers that can globally stabilize nonlinear spacecraft systems; the models do not depend on rotational sequences and they have no singular point; and the quaternion is provided by attitude determination system and is ready to use. The main problem with the quaternion model based control system design is that the linearized quaternion model is not controllable. Therefore, most published design methods heavily rely on Lyapunov functions for the nonlinear spacecraft system. However, there is no systematic way to obtain a desired Lyapunov functions. Moreover, the Lyapunov function based designs focus on the closed-loop system stability but pay little attention to its performance. In a series of papers, the author proposed some *reduced quaternion* models which led to some controllable linearized spacecraft models. Therefore, all standard linear system theories can be directly applied to analyze and design spacecraft control systems. We showed that, in some cases, the designed control system is not only optimal for the linearized system but also globally stabilizes the original *nonlinear system*. Clearly, the reduced quaternion models do not depend on rotational sequences. Due to the special structure of the linearized spacecraft model, some most important design methods, such as LQR design and robust pole assignment design are very simple, enjoy the analytical solutions for some problems, have a direct connection to the performance measures, such as *settling time*, *rising time*, and *percentage of overshoot*. All these features are attractive for high quality control system designs. The idea mentioned above is then extended to more spacecraft control problems using specific actuators such as magnetic torque bars and control momentum gyroscopes. These types of actuators may not provide exactly the desired torques. Most existing methods use different conversions to get approximate solutions, meaning that these actuators may generate a torque close to but not equal to the desired one. Using the reduced quaternion models that incorporate the actuators into the system model, the control inputs are not torques but the operational parameters. The main benefit of this idea is that the control actions are not approximate but accurate. As all actuators have their operational limit, design with input constraints is also considered in this book using recently developed interior-point optimization techniques. This book is the result of more than a decade of research into spacecraft attitude determination and control design methods, with a focus on the use of reduced quaternion models due to the benefits mentioned above. The book provides all necessary background materials on orbital dynamics, rotations and quaternion, frequently used reference frames, transformations between reference frames, space environment and disturbance torques, ephemeris astronomical vector calculations and measurement instruments, spacecraft control actuators and their models, so that the readers will get a global picture and can apply all these information into the spacecraft system modeling, attitude determination, and spacecraft control system designs, which is the main purpose of this book. This book is different from existing books in that we focus on quaternion based spacecraft control system designs and we consider only attitude control system design related problems, from spacecraft modeling, to attitude determination and estimation, to control system design method selection, to control algorithm development, and the simulation of the control system designs. Moreover, this book addresses different attitude control tasks in the spacecraft life cycle, including spacecraft maneuver, orbit raising, attitude control, and rendezvous. Finally, this book emphasizes the state space design methods rather then the classical frequency design methods. #### 1.1 **Organization of the book** This book is organized as follows: Chapter 2 is a brief description of orbit dynamics and properties. The treatment focuses on two body systems, which provides necessary background for use in other chapters, for example, Chapters 3, 11, and 15. Chapter 3 discusses the frequently used coordinate system, the rotational sequences, and the quaternion mathematics. Similar to Chapter 2, this chapter provides readers the tools and background that will be repeatedly used in the rest chapters. Chapter 4 introduces two spacecraft dynamical systems based on the spacecraft missions, and their representations using the reduced quaternion models. The merit of using reduced quaternion models is that their linearized spacecraft models are controllable while the spacecraft models using full quaternion are not. It is well-known that all modern linear control system design methods require that the systems are controllable. This makes the reduced quaternion spacecraft model very attractive. The ultimate goal of this chapter is to establish some linearized controllable spacecraft models for some mostly desired attitudes for spacecraft, i.e., the inertial pointing attitude and the nadir pointing attitude. Chapter 5 explains the space environment and the major disturbance torques introduced in the space environment. Most of these torques are difficult to be included in the spacecraft models used in spacecraft attitude control system designs. This means that the designed controllers do not consider the effects of these disturbance torques. As a result, the designed controllers may not work in the real space environment because the control torques may not compensate for these unmodeled torques. Because of this reason, there is a need to have some simulation tests for the designed spacecraft feedback control system to make sure that the designed controller works in the space environment that includes these disturbance torques. Chapter 5 will provide the necessary information so that control engineers can build the simulated space environment to test the designed controller. Chapter 6 discusses the quaternion based attitude determination methods using vector measurements, including some recently proposed methods. In principle, spacecraft attitude can be determined by a set of observed (measured) astronomical vectors and corresponding ephemeris astronomical vectors at the given time. An important problem is to find some fast, accurate, and robust algorithms to calculate the spacecraft attitude. Although there are other attitude determination methods based on a rotational matrix or Euler angle representation, it should be pointed out that quaternion based attitude determination methods are the most efficient ones. Chapter 7 explains how to measure the astronomical vectors and how to calculate the corresponding ephemeris astronomical vectors at any given time. The most widely used astronomical vectors are considered. Given the ephemeris information of the astronomical objects represented in the reference frame and measured astronomical vectors represented in the body frame, the spacecraft attitude can be obtained using the methods described in Chapter 6. Because random measurement noises are unavoidable, filtering techniques must be used to lessen the measurement noise effect. The Kalman filter was developed in the 1960s just for this purpose and this technique was widely used in spacecraft attitude determination. Chapter 8 discusses the attitude estimation problem using extended and traditional Kalman filters. Chapter 9 is about attitude control system designs with the desired torques as control variables. We focus on the state-space Linear Quadratic Regulator (LQR) design method. For nadir pointing spacecraft, the solution described in Appendix B can be applied directly. However, for inertial pointing spacecraft with a very simple linearized model, an analytic solution exists. For this case, the relation between the LQR design and the closed-loop pole positions is established. The analytical solution provides insight for engineers to trade off many conflict requirements. It is shown that the design globally stabilizes the nonlinear spacecraft system even though the design is based on the linearized system. As a matter of fact, the LQR design discussed for the inertial pointing spacecraft is actually a robust pole assignment design. Therefore, the design is insensitive to the modeling error and is good for disturbance rejection. All designs in Chapter 9 calculate the desired torques used to control the spacecraft's attitude. These desired torques are supplied by using several different actuators or their combinations. Chapter 10 reviews some widely used spacecraft actuators, including reaction wheels and momentum wheels, control moment gyros, magnetic torque rods, and thrusters. This chapter reveals the fact that several types of actuators are not able to provide desired torques in all directions. Therefore, the methods discussed in Chapter 9 (when these actuators are used) have a torque realization problem. A better design practice should include the actuators' models in the control system design. This consideration will be the topic of the rest chapters. Chapter 11 discusses system designs for spacecraft using magnetic torque rods. Although magnetic torque bars can provide torques only in a plane instead of three dimensional space at any time, it is shown that the controllability of spacecraft using only magnetic torques is achievable under some mild conditions. Using the fact that the magnetic field is approximately a
periodic function of the spacecraft orbit, periodic LQR design is considered in the controller design. Some efficient solutions for the algebraic periodic Riccati equation are proposed. Chapter 12 discusses spacecraft control system design using thrusters. A typical operation using thrusters, orbit-raising, is considered in this chapter. The control system models and controller designs depend on the thruster configurations. This chapter describes how to design the controller using the standard linear system theory. Although a particular thruster configuration is considered in this chapter, the idea can easily be used for any other thruster configuration. Chapter 13 addresses Model Predictive Control (MPC) and its application to the spacecraft attitude control problems. Since MPC needs extensive on-board computation, it was not widely used in spacecraft control. As more powerful computers are installed on spacecraft. MPC is expected to find more applications in aerospace in the future. This chapter establishes the relationship between constrained MPC and convex quadratic programming (QP) with box constraints. This formulation directly applies to the controller design problem when actuator saturation exists. An efficient interior-point algorithm specifically for this problem is proposed and its convergence is proved. The thruster control problem discussed in Chapter 12 is revisited and it is shows that the problem can be solved by the MPC control method proposed in this chapter. Chapter 14 is dedicated to the spacecraft attitude control system design using control moment gyros. As we already knew in Chapter 10, for given desired torques obtained in Chapter 9, there are singular points where one cannot find gimbal speeds of the CMGs to achieve the desired torques. This chapter presents a new operational concept for control moment gyros and propose an MPC design method for this problem. A simulation test is used to demonstrate the feasibility of the proposed method. Chapter 15 considers coupled orbit and attitude control which is the key technology for spacecraft rendezvous and soft docking. Coupled orbit and attitude control is an extensively studied problem with renewed interest because of the installations of powerful on-board computers, availability of advanced theoretical results, and requirements for better performance in future missions. The method considered in this chapter addresses fundamental requirements for soft docking, i.e., there is no oscillation crossing the horizontal line for relative position and relative attitude between the chaser and target spacecraft to avoid collision during the docking process. Chapter 16 deals with the multi-body spacecraft. Some of the most advanced telescopes, such as the James Webb Space Telescope and LUVOIR telescope, are multi-body systems. We present a systematic methodology for modeling and attitude control of multi-body space systems. The modeling technique is based on Kane's method using Stoneking's implementation. The nonlinear model has a nice analytic structure that can easily be extended to some general rigid multibody systems, connected via rotary joints having arbitrary degrees of freedom, arranged in tree topologies. Then, we explain how to linearize this nonlinear symbolic model into a linear symbolic model. The controller design is based on two popular linear controller design approaches: the LQR and the robust pole assignment, with the former as an effective first design step that informs the latter to select real eigenvalue places. LUVOIR telescope is used as an example to show step-by-step how this method works. Three appendices are included for quick reference for the background used in the control system design methods discussed in this book. Appendix A is about the first order optimality conditions, which is used in several chapters and Appendix B. Appendix B provides LQR problem formulation and numerical solutions. Appendix C summarizes background and solutions for robust pole assignment design which has been used in several chapters. For readers who need to know more background information on optimization and control theory, they are referred to some standard text books [9, 56, 119, 137, 188, 219, 297, 325] listed in the References. #### 1.2 Some basic notations and identities In this book, vectors are denoted by small case letters with bold font, for example, \mathbf{a} is a vector. Vector magnitude is denoted by normal font, for example, a is the magnitude of \mathbf{a} . A n-dimensional linear space is denoted by \mathbf{R}^n . A collection of all real points is denoted by \mathbf{R} . Matrices are denoted by capital letters with bold font, for example, \mathbf{A} is a matrix, its magnitude is denoted by 2-norm $\|\mathbf{A}\|$ unless it is explicitly indicated that other matrix norm is used. A $n \times m$ matrix space, or the collection of all $n \times m$ linear transformation, is denoted by $\mathbf{R}^{n \times m}$. Throughout this book, we will use some common notations. For a column vector $\mathbf{x} = [x_1, x_2, \dots, x_n]^T$, we sometimes write it as $\mathbf{x} = (x_1, x_2, \dots, x_n)$ to save space. For any two vectors \mathbf{x} and \mathbf{y} , we will denote by $\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y}$ the dot product of \mathbf{x} and \mathbf{y} , by $\mathbf{x} \times \mathbf{y}$ the cross product of \mathbf{x} and \mathbf{y} , by $\mathbf{x} \circ \mathbf{y}$ the element-wise or Hadamard product of \mathbf{x} and \mathbf{y} , by $\frac{\mathbf{x}}{\mathbf{y}}$ the element-wise division of \mathbf{x} and \mathbf{y} if all elements of \mathbf{y} are not zero, by $\|\mathbf{x}\|$ the 2-norm of the vector of \mathbf{x} . For a vector \mathbf{x} , we use \mathbf{X} to denote a matrix whose diagonal elements are the vector \mathbf{x} . Let \mathbf{a} , \mathbf{b} , and \mathbf{c} be any three dimensional vectors, we will repeatedly use the following identities. $$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a},\tag{1.1}$$ $$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{b} \cdot \mathbf{c})\mathbf{a}, \tag{1.2}$$ and $$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}, \tag{1.3}$$ and $$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = 0. \tag{1.4}$$ We denote $$\mathbf{i} = (1,0,0), \quad \mathbf{j} = (0,1,0), \quad \mathbf{k} = (0,0,1)$$ (1.5) for the standard basis for \mathbf{R}^3 , and $\mathbf{S}(\mathbf{x})$ a skew-symmetric matrix function of $\mathbf{x} = [x_1, x_2, x_3]^T$ defined by $$\mathbf{S}(\mathbf{x}) = \begin{bmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{bmatrix} = \mathbf{x}^{\times}.$$ (1.6) The *cross product* of $\mathbf{x} \times \mathbf{y}$ can then be represented by a matrix multiplication $\mathbf{S}(\mathbf{x})\mathbf{y}$, i.e., $\mathbf{x} \times \mathbf{y} = \mathbf{S}(\mathbf{x})\mathbf{y} = \mathbf{x}^{\times}\mathbf{y}$. We will use $\bar{\mathbf{p}}$, $\bar{\mathbf{q}}$, and $\bar{\mathbf{r}}$ to denote quaternions which will be defined later on. ### Chapter 2 # Orbit Dynamics and Properties This chapter introduces the necessary background about orbit dynamics and properties, which will be used in the remaining chapters. The presentation of this chapter follows closely the style of [50, 235, 268]. #### 2.1 Orbit dynamics Let **f** denote the *force* applied to a particle in space, m be the *mass* of the particle, \mathbf{v} be the *velocity* of the particle in space, $\mathbf{p} = m\mathbf{v}$ be the *linear momentum*, and $\mathbf{a} = \frac{d\mathbf{v}}{dt}$ be *linear acceleration*. The most important Newton's law is $$\mathbf{f} = \frac{d\mathbf{p}}{dt} = \frac{dm\mathbf{v}}{dt} = m\mathbf{a}.$$ (2.1) For any two particles in space with masses m_1 and m_2 respectively, their *distance in space* is expressed by a vector \mathbf{r} , and they attract to each other with a force given by the expression $$\mathbf{f} = \frac{Gm_1m_2\mathbf{r}}{r^3},\tag{2.2}$$ where $G = 6.669 * 10^{-11} m^3 / kg - s^2$ is the *universal constant of gravitation*. The magnitude of the force is $f = \frac{Gm_1m_2}{r^2}$. Note that for any force \mathbf{f}_{12} exerted by particle 1 on particle 2, there must exist a force \mathbf{f}_{21} exerted by particle 2 on particle 1 with the same magnitude but in opposite direction, i.e., $$\mathbf{f}_{21} = -\mathbf{f}_{12}.\tag{2.3}$$ For a selected coordinate, let O be the coordinate origin. For a particle with mass m, its position can be defined by a vector \mathbf{r} from origin O pointing to its location. Then, the *moment of the force* \mathbf{f} about the origin (also known as the *torque*) is given by $$\mathbf{t} = \mathbf{r} \times \mathbf{f}.\tag{2.4}$$ The angular momentum about O is defined as $$\mathbf{h} = m(\mathbf{r} \times \mathbf{v}). \tag{2.5}$$ Taking derivative on both side of the equation gives: $$\frac{d\mathbf{h}}{dt} = \frac{d}{dt}(\mathbf{r} \times m\mathbf{v}) = \mathbf{v} \times (m\mathbf{v}) + \mathbf{r} \times \frac{d}{dt}(m\mathbf{v}) = \mathbf{0} + \mathbf{r} \times \mathbf{f} = \mathbf{t}.$$ (2.6) Equation (2.6) is very important, and will be used throughout the book. For two body system, if the mass of one particle is much larger than the other particle, since the attracting force \mathbf{f} is collinear with \mathbf{r} , therefore, $\mathbf{r} \times \mathbf{f} = \mathbf{0} = \mathbf{t} = \frac{d\mathbf{h}}{dt}$, i.e., \mathbf{h} is a constant, the *orbit* of the smaller particle is a plane. Now, let's consider the motion of a small particle with mass of unit around a much large particle with mass M in the coordinate system as described in Figure 2.1. In view of (2.5), $\mathbf{h} = \mathbf{r} \times \mathbf{v}$, one has $$h =
rv\sin(\alpha) = rv\cos(\beta) = r\left(r\frac{d\theta}{dt}\right) = r^2\frac{d\theta}{dt}.$$ (2.7) In Figure 2.1, **i** and **j** are unit length vectors. Therefore, $\mathbf{r} = r\mathbf{i}$, and we have $$\frac{d\mathbf{i}}{dt} = \frac{d\mathbf{i}}{d\theta} \frac{d\theta}{dt} = \mathbf{j} \frac{d\theta}{dt}, \quad \frac{d\mathbf{j}}{dt} = \frac{d\mathbf{j}}{d\theta} \frac{d\theta}{dt} = -\mathbf{i} \frac{d\theta}{dt}.$$ (2.8) Figure 2.1: Radial and transverse components of motion in a plane. Hence $$\frac{d\mathbf{r}}{dt} = r\frac{d\mathbf{i}}{dt} + \mathbf{i}\frac{dr}{dt} = \mathbf{j}r\frac{d\theta}{dt} + \mathbf{i}\frac{dr}{dt}.$$ (2.9) Since the particle has the mass of unit, from (2.1), it follows $$\mathbf{f} = \mathbf{a} = \frac{d^{2}\mathbf{r}}{dt^{2}} = \frac{d}{dt} \left(\mathbf{j} r \frac{d\theta}{dt} + \mathbf{i} \frac{dr}{dt} \right)$$ $$= \frac{d\mathbf{j}}{dt} r \frac{d\theta}{dt} + \mathbf{j} \frac{dr}{dt} \frac{d\theta}{dt} + \mathbf{j} r \frac{d^{2}\theta}{dt^{2}} + \frac{d\mathbf{i}}{dt} \frac{dr}{dt} + \mathbf{i} \frac{d^{2}r}{dt^{2}}$$ $$= -\mathbf{i} \frac{d\theta}{dt} r \frac{d\theta}{dt} + \mathbf{j} \frac{dr}{dt} \frac{d\theta}{dt} + \mathbf{j} r \frac{d^{2}\theta}{dt^{2}} + \mathbf{j} \frac{d\theta}{dt} \frac{dr}{dt} + \mathbf{i} \frac{d^{2}r}{dt^{2}}$$ $$= \mathbf{i} \left(\frac{d^{2}r}{dt^{2}} - r \left(\frac{d\theta}{dt} \right)^{2} \right) + \mathbf{j} \left(r \frac{d^{2}\theta}{dt^{2}} + 2 \frac{d\theta}{dt} \frac{dr}{dt} \right)$$ (2.10) Using (2.2) with $m_1 = 1$ unit and $m_2 = M$, we find $$\mathbf{f} = \mathbf{a} = -\frac{GM}{r^3}\mathbf{i}r. \tag{2.11}$$ Combining these two equations gives: $$\frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2 = -\frac{GM}{r^2}, \quad r\frac{d^2\theta}{dt^2} + 2\frac{d\theta}{dt}\frac{dr}{dt} = 0. \tag{2.12}$$ The second equation implies $$\frac{1}{r}\frac{d}{dt}\left(r^2\frac{d\theta}{dt}\right) = 0, (2.13)$$ in view of (2.7), this implies $$h = r^2 \frac{d\theta}{dt} = constant. (2.14)$$ The first equation of (2.12) is a nonlinear differential equation and cannot be solved directly. Let $r = \frac{1}{u}$. Taking derivative on both sides yields $$\frac{dr}{dt} = -\frac{1}{u^2} \frac{du}{dt} = -\frac{1}{u^2} \frac{du}{d\theta} \frac{d\theta}{dt}.$$ (2.15) Substituting $r = \frac{1}{u}$ into (2.14) yields $$\frac{d\theta}{dt} = hu^2. ag{2.16}$$ Substituting this equation into (2.15) gives $$\frac{dr}{dt} = -\frac{1}{u^2} \frac{du}{d\theta} h u^2 = -h \frac{du}{d\theta}.$$ (2.17) Note that $\frac{dh}{dt} = 0$, taking the second derivative on both sides yields $$\frac{d^2r}{dt^2} = -h\frac{d}{dt}\frac{du}{d\theta} = -h\frac{d}{d\theta}\frac{du}{d\theta}\frac{d\theta}{dt} = -h\frac{d^2u}{d\theta^2}\frac{d\theta}{dt} = -h^2u^2\frac{d^2u}{d\theta^2}.$$ (2.18) Denote the *standard gravitational parameter GM* = μ (μ is also known as the geocentric gravitational constant). Combining the first equations of (2.12), (2.14), and (2.18) yields $$\frac{d^2r}{dt^2} = r\left(\frac{d\theta}{dt}\right)^2 - \frac{\mu}{r^2}$$ $$\iff \frac{d^2r}{dt^2} = \frac{1}{u}\left(\frac{d\theta}{dt}\right)^2 - \mu u^2$$ $$\iff -h^2u^2\frac{d^2u}{d\theta^2} = \frac{1}{u}h^2u^4 - \mu u^2$$ $$\iff \frac{d^2u}{d\theta^2} = -u + \mu/h^2$$ (2.19) The last equation is a second order linear differential equation of u which has the solution of the following form: $$u = \frac{\mu}{h^2} + c\cos(\theta - \theta_0), \tag{2.20}$$ where c is a constant to be determined. Taking derivative of (2.20) yields $$\frac{du}{d\theta} = -c\sin(\theta - \theta_0). \tag{2.21}$$ Let $$E = v^2/2 - \mu/r \tag{2.22}$$ be the *total energy per unit mass*. The term of $v^2/2$ is the *kinetic energy* and μ/r is *potential energy* of the unit mass. Invoking (2.17), (2.9), and (2.16), one can write $$v^{2} = \left(\frac{dr}{dt}\right)^{2} + \left(r\frac{d\theta}{dt}\right)^{2} = \left(-h\frac{du}{d\theta}\right)^{2} + \left(\frac{1}{u}hu^{2}\right)^{2} = h^{2}\left[\left(\frac{du}{d\theta}\right)^{2} + u^{2}\right]. \tag{2.23}$$ Substituting (2.21) and (2.20) into this equation gives $$v^{2} = h^{2} \left[c^{2} + \frac{2c\mu}{h^{2}} \cos(\theta - \theta_{0}) + \left(\frac{\mu}{h^{2}}\right)^{2} \right] = c^{2}h^{2} + 2c\mu \cos(\theta - \theta_{0}) + (\mu/h)^{2}.$$ (2.24) Using the principle of conservation of energy implies that $E = v^2/2 - \mu/r$ is a constant for any θ . Taking $\theta - \theta_0 = \frac{\pi}{2}$ and using (2.20) yield $$E = v^{2}/2 - \mu/r$$ $$= (ch)^{2}/2 + (\mu/h)^{2}/2 - u\mu$$ $$= (ch)^{2}/2 + (\mu/h)^{2}/2 - \frac{\mu}{h^{2}}\mu$$ $$= \frac{(ch)^{2}}{2} - \frac{\mu^{2}}{2h^{2}}.$$ (2.25) This gives $$c = \frac{\mu}{h^2} \sqrt{1 + 2E \frac{h^2}{\mu^2}}. (2.26)$$ Denote $$e = \sqrt{1 + 2E\frac{h^2}{\mu^2}},\tag{2.27}$$ it can be seen later that *e* is the *eccentricity of the orbit*. Therefore, an important relationship between the eccentricity and the total energy of the orbit is given by $$E = (e^2 - 1)\frac{\mu^2}{2h^2}. (2.28)$$ Since h is a constant, E is a constant. Substituting $c = \frac{\mu}{h^2}e$ and r = 1/u into (2.20) yields one of the most important result so for. $$r = \frac{h^2/\mu}{1 + e\cos(\theta - \theta_0)} = \frac{p}{1 + e\cos(\theta - \theta_0)}$$ (2.29) where $$p = h^2/\mu \tag{2.30}$$ is called the semi-latus rectum. #### 2.2 Conic section and different orbits Spacecraft orbits are closely related to *conic sections*. A conic section is the intersection of a plane and a right circular cone. Different intersections result in different orbital shapes: *circle*, *ellipse*, *parabola*, and *hyperbola* (see Figure 2.2). Since the parabolic orbit is of no importance in the context of spacecraft, we discuss only the circle, ellipse, and hyperbola orbits. Figure 2.2: The orbits defined by the conic section. #### 2.2.1 Circular orbits For *circular orbits*, the eccentricity meets the condition of e = 0 and r, the magnitude of the radius vector \mathbf{r} of the orbit from the only *focus*, is a constant that meets the condition: $$r = p = h^2/\mu = [rvcos(\beta)]^2/\mu.$$ (2.31) In view of Figure 2.1, for circular orbit, it has $\beta = 0$ (the velocity of the body is perpendicular to the radius vector \mathbf{r}), therefore, it follows that $$v^2 = \mu/r. \tag{2.32}$$ This shows that the velocity v is a constant. Moreover, the energy is given by $$E = -\mu^2/(2h^2). (2.33)$$ #### 2.2.2 Elliptic orbits For *elliptic orbit*, the eccentricity meets the condition of 0 < e < 1, and from (2.28), its energy is given by E < 0. Representing the ellipse in a two dimensional space, it is shown in Figure 2.3. The point on the ellipse at $\theta = 0^{\circ}$ is called *perigee*, which corresponds to point A. The point on the ellipse at $\theta = 180^{\circ}$ is called *apogee*, which corresponds to point B. The foci are the points F = (c,0) and F' = (-c,0). The *prime focus* of the ellipse is F. For **r** at point A (the perigee, $\theta - \theta_0 = 0^{\circ}$), it follows from (2.29) that $$r_p = \frac{p}{1+e}. (2.34)$$ For **r** at point B (the apogee, $\theta - \theta_0 = 180^{\circ}$), it follows from (2.29) that $$r_a = \frac{p}{1 - e}.\tag{2.35}$$ Figure 2.3: The ellipse orbit defined on a plane. Combining (2.34) and (2.35) gives; $$\frac{r_a}{r_p} = \frac{1+e}{1-e},\tag{2.36}$$ from which it follows that $$e = \frac{r_a - r_p}{r_a + r_p}. (2.37)$$ In view of the Figure 2.3, the *major axis* of the ellipse is $$2a = r_a + r_p = \frac{2p}{1 - e^2},\tag{2.38}$$ this yields $$p = a(1 - e^2) = h^2/\mu, \tag{2.39}$$ where a is called the *semi-major axis*. From (2.26) and (2.28), it follows that the total energy of a body with unit mass in the orbit is $$E = \frac{v^2}{2} - \frac{\mu}{r} = \frac{(e^2 - 1)\mu^2}{2h^2} = \frac{(e^2 - 1)\mu}{2p} = \frac{(e^2 - 1)\mu}{2a(1 - e^2)} = -\frac{\mu}{2a}.$$ (2.40) This yields $$\frac{v^2}{2} = \frac{\mu}{r} - \frac{\mu}{2a}.\tag{2.41}$$ Clearly, the velocity of orbiting body is a maximum at perigee and a minimum at apogee. Therefore, for an orbit to be elliptic, it must have $$\frac{v^2}{2} < \frac{\mu}{r}.\tag{2.42}$$ For an ellipse, it is known that c = ae. In view of (2.39), it follows that $$b = \sqrt{a^2 - c^2} = a\sqrt{1 - e^2} = \frac{p\sqrt{1 - e^2}}{1 - e^2} \frac{p}{\sqrt{1 - e^2}},$$ (2.43) where b is called *semi-minor axis* of the elliptic orbit. Combining (2.39) and c = ae yields $$c = \frac{pe}{1 - e^2}. (2.44)$$ #### 2.2.3 Hyperbolic orbits In this orbit, e > 0, in view of (2.28), it follows that E > 0. This means that the kinetic energy of the spacecraft is larger than its potential energy. Therefore, the spacecraft is about to leave the gravitational attraction field of the central body. #### 2.3 Property of Keplerian orbits This section discusses elliptic orbit. The location of the spacecraft in an orbit can be presented either by its angular deviation from the major axis or by the time elapsed from its passage at the perigee. In Figure 2.3, the *true anomaly* θ is defined as an angle between the major axis pointing to the perigee and the radius vector from the prime focus F to the spacecraft. To define the *eccentric anomaly*, an *auxiliary circle* with radius a centered at the middle of the major axis. The eccentric anomaly ψ is the angle between OA and OC defined in Figure 2.3. The relation between true anomaly and eccentric anomaly is derived as follows. Note $$x + y = ae = c, \tag{2.45a}$$ $$x = a\cos(\psi), \tag{2.45b}$$ $$y = r\cos(180 - \theta) = -r\cos(\theta), \tag{2.45c}$$ it follows $$x + y = a\cos(\psi) - r\cos(\theta) = ae. \tag{2.46}$$ From equations (2.29) and (2.39), it follows $$x = a\cos(\psi) = ae + r\cos(\theta) = ae + \frac{p\cos(\theta)}{1 + e\cos(\theta)}$$ $$= ae + \frac{a(1 - e^2)\cos(\theta)}{1 + e\cos(\theta)} = \frac{ae + a\cos(\theta)}{1 + e\cos(\theta)}.$$ (2.47) Therefore, $$\cos(\psi) = \frac{e + \cos(\theta)}{1 + e\cos(\theta)}, \quad \sin(\psi) = \sqrt{1 - \cos^2(\psi)} = \frac{\sin(\theta)\sqrt{1 - e^2}}{1 + e\cos(\theta)}.
\quad (2.48)$$ This gives $$\cos(\theta) = \frac{\cos(\psi) - e}{1 - e\cos(\psi)}, \quad \sin(\theta) = \frac{\sin(\psi)\sqrt{1 - e^2}}{1 - e\cos(\psi)}.$$ (2.49) Applying standard trigonometry yields $$\tan\left(\frac{\theta}{2}\right) = \frac{\sin(\theta)}{1 + \cos(\theta)} = \sqrt{\frac{1+e}{1-e}} \tan\left(\frac{\psi}{2}\right). \tag{2.50}$$ Substituting (2.39) and (2.49) into (2.29) yields $$r = \frac{p}{1 + e\cos(\theta)} = \frac{a(1 - e^2)}{1 + e\cos(\theta)} = \frac{a(1 - e^2)}{1 + e\frac{\cos(\psi) - e}{1 - e\cos(\psi)}} = a(1 - e\cos(\psi)). \quad (2.51)$$ Now, it is ready to derive *Kepler's second* and *third law*. In Figure 2.4, the spacecraft position vector **r** is swept in a differential period of time, the differential area $\Delta A = (\Delta \theta r^2)/2$. Therefore, it follows from (2.7) and (2.14) that $$\frac{dA}{dt} = \frac{1}{2} \left(r^2 \frac{d\theta}{dt} \right) = \frac{1}{2} h = constant. \tag{2.52}$$ This proves Kepler's second law: the time rate of change in area is a constant. Integration of the above equation, the area swept in time *t* is given by $$A = \frac{1}{2}ht. \tag{2.53}$$ Because the area of a ellipse is $A = \pi ab$, if the time period of the orbit is t = T, from (2.53), (2.39), and (2.43) it follows that the *orbit period* of the spacecraft is given by $$T = \frac{2A}{h} = \frac{2\pi ab}{\sqrt{p\mu}} = \frac{2\pi ab}{\sqrt{a(1-e^2)\mu}} = \frac{2\pi a^2\sqrt{1-e^2}}{\sqrt{a(1-e^2)\mu}}$$ Figure 2.4: Geometry for deriving the law of area. $$= 2\pi \sqrt{\frac{a^3}{\mu}} = \frac{2\pi}{\omega_0},\tag{2.54}$$ where $$\omega_0 = \sqrt{\frac{\mu}{a^3}} = \frac{2\pi}{T} \tag{2.55}$$ is named the *mean motion*, and $$M = \omega_0(t - t_p) = \frac{2\pi}{T}(t - t_p)$$ (2.56) is named the *mean anomaly*, where t_p is the passing time from perigee. Equation (2.54) is the so-called Kepler's third law. The last formula to be derived in this section is the *Kepler's time equation*. Let the area (AFC') be denoted by S(AFC') and the area (AFC) be denoted by S(AFC) in Figure 2.3. Let $t_m = t - t_p$. Then, it follows from the law of the area that $$\frac{t_m}{S(AFC')} = \frac{T}{\pi ab}. (2.57)$$ Since $$S(AFC') = -\frac{b}{a}S(AFC), \qquad (2.58)$$ and $$S(AFC) = \frac{\psi}{2\pi}(\pi a^2) - S(OCF)$$ $$= \frac{\psi a^2}{2} - \frac{1}{2}ac\sin(\psi)$$ $$= \frac{\psi a^2}{2} - \frac{1}{2}a^2e\sin(\psi), \qquad (2.59)$$ it follows from (2.57) and (2.58) that $$t_{m} = \frac{b}{a} \frac{T}{\pi a b} \left(\frac{\psi a^{2}}{2} - \frac{1}{2} a^{2} e \sin(\psi) \right) = \frac{T}{2\pi} [\psi - e \sin(\psi)]. \tag{2.60}$$ In view of (2.56), this is equivalent to $$t_m \frac{2\pi}{T} = (t - t_p)\omega_0 = M = \psi - e\sin(\psi).$$ (2.61) The last equation is named as Kepler's equation and its solution is fundamental to the problem of finding the orbital position at a given time. It is also important for the optimal trajectory design problem. #### 2.4 Hohmann transfer Hohmann transfer is an orbital maneuver which uses the least fuel to transfer a spacecraft between two orbits of different altitudes around a central body. This subsection considers the simplest two dimensional Hohmann transfer [182, 195]. We denote by $\mathbf{x} \cdot \mathbf{y}$ the inner product of a pair of vectors \mathbf{x} and \mathbf{y} . In view of Figure 2.5, the smallest circle is the initial orbit of the spacecraft. At point A, a thrust is applied in the tangent direction shown in the figure. The transfer orbit is an ellipse. The middle circle is an ancillary inscribing circle that is used to determine \mathbf{r}_2 , the coordinate of the spacecraft in the x-y coordinate system given the angle of θ or ψ . At point B, another thrust is applied in the tangent direction showed in the figure, and the final orbit of the spacecraft is the out-most circle. Let $\mathbf{x}_1^- = (\mathbf{r}_1, \mathbf{v}_1^-)$ be the state of the spacecraft at A before the impulse $\Delta \mathbf{v}_1$ is applied, \mathbf{x}_1^- is composed of the position vector of \mathbf{r}_1 and the velocity vector \mathbf{v}_1^- of the spacecraft. We assume that the orbit is planar. Therefore, $\mathbf{r}_1 = (r_{11}(\mathbf{x}_1^-), r_{12}(\mathbf{x}_1^-))$ and $\mathbf{v}_1^- = (v_{11}(\mathbf{x}_1^-), v_{12}(\mathbf{x}_1^-))$. We denote the magnitude of \mathbf{r}_1 Figure 2.5: The two dimensional Hohmann transfer. by $r_1 = \sqrt{r_{11}(\mathbf{x}_1^-)^2 + r_{12}(\mathbf{x}_1^-)^2}$. Let $\Delta \mathbf{v}_1 = (\Delta v_{11}, \Delta v_{12})$ and $\Delta \mathbf{v}_2 = (\Delta v_{21}, \Delta v_{22})$ be the impulses at point A and B (see Figure 2.5), $\Delta v_1 = \sqrt{\Delta v_{11}^2 + \Delta v_{12}^2}$ and $\Delta v_2 = \sqrt{\Delta v_{21}^2 + \Delta v_{22}^2}$ be the magnitude of $\Delta \mathbf{v}_1$ and $\Delta \mathbf{v}_2$, respectively. Given \mathbf{x}_1^- , we can calculate the semi-major axis of the initial orbit from (2.41), which gives $$a(\mathbf{x}_{1}^{-}) = \frac{\mu}{2(\mu/r_{1} - v_{1}^{2}/2)} \cdot = \frac{r_{1}\mu}{2\mu - r_{1}\mathbf{v}_{1}^{-} \cdot \mathbf{v}_{1}^{-}}.$$ (2.62) The eccentricity vector **e** is defined as: $$\mathbf{e} = \frac{\mathbf{v} \times \mathbf{h}}{\mu} - \frac{\mathbf{r}}{r} = \frac{\mathbf{v} \times (\mathbf{r} \times \mathbf{v})}{\mu} - \frac{\mathbf{r}}{r} = \left(\frac{\mathbf{v} \cdot \mathbf{v}}{\mu} - \frac{1}{r}\right) \mathbf{r} - \left(\frac{\mathbf{r} \cdot \mathbf{v}}{\mu}\right) \mathbf{v}. \tag{2.63}$$ The last equation immediately follows from the vector identity (1.3). Therefore the eccentricity of the initial circular orbit is given by $$e(\mathbf{x}_1^-) = \left\| \left(\frac{\mathbf{v}_1^- \cdot \mathbf{v}_1^-}{\mu} - \frac{1}{r_1} \right) \mathbf{r}_1 - \left(\frac{\mathbf{r}_1 \cdot \mathbf{v}_1^-}{\mu} \right) \mathbf{v}_1^- \right\|. \tag{2.64}$$ Let $\mathbf{x}_1^+ = (\mathbf{r}_1, \mathbf{v}_1^-) + (\mathbf{0}_3, \Delta \mathbf{v}_1)$ be the state of the spacecraft at A immediately after the impulse $\Delta \mathbf{v}_1$ is applied, which is composed of the position vector of \mathbf{r}_1 and the velocity vector $\mathbf{v}_1^+ = \mathbf{v}_1^- + \Delta \mathbf{v}_1$ of the spacecraft. Given \mathbf{x}_1^+ , we can calculate the semi-major axis and eccentricity of the ellipse $$a(\mathbf{x}_{1}^{+}) = \frac{r_{1}\mu}{2\mu - r_{1}\mathbf{v}_{1}^{+} \cdot \mathbf{v}_{1}^{+}},$$ (2.65) $$e(\mathbf{x}_1^+) = \left\| \left(\frac{\mathbf{v}_1^+ \cdot \mathbf{v}_1^+}{\mu} - \frac{1}{r_1} \right) \mathbf{r}_1 - \left(\frac{\mathbf{r}_1 \cdot \mathbf{v}_1^+}{\mu} \right) \mathbf{v}_1^+ \right\|. \tag{2.66}$$ Solving *Kepler's equation* (2.61), we can calculate the spacecraft state \mathbf{x}_2^- at any position of the elliptic orbit, which is composed of the position vector of \mathbf{r}_2 and the velocity vector \mathbf{v}_2^- , *before* the impluse $\Delta \mathbf{v}_2$ is applied. Let Δt be the time for the spacecraft to travel from A to a point where the second impulse is applied. From (2.56), we have: $$M = \omega_0 \Delta t, \tag{2.67}$$ where ω_0 is the *mean motion*. The solution of Kepler's equation can be given in terms of the *mean anomaly M* defined as: $$\psi - e(\mathbf{x}_1^+)\sin(\psi) = M = \sqrt{\frac{\mu}{a(\mathbf{x}_1^+)^3}} \Delta t.$$ (2.68) Given M, we can solve (2.68) to obtain ψ . Let $\mathbf{r}_2 = (r_{21}(\mathbf{x}_2^-), r_{22}(\mathbf{x}_2^-))$ be the position vector of the spacecraft on the ellipse orbit corresponding to the given ψ . Then, $\mathbf{r}_2 = (r_{21}(\mathbf{x}_2^-), r_{22}(\mathbf{x}_2^-))$ can be calculated as follows. Let \bar{x} and \bar{y} be the coordinate system with origin at the center of the ellipse (in red line) of Figure 2.5, the axis of \bar{x} be parallel to the axis of x and the axis of y be parallel to the axis of y. Then the trajectory of the ellipse is given by $$\left(\frac{\bar{x}}{a}\right)^2 + \left(\frac{\bar{y}}{b}\right)^2 = 1,\tag{2.69}$$ where $b = a\sqrt{1 - e^2}$ is the *semi-minor axis* of the ellipse. From Figure 2.5, we have $\bar{x} = a\cos(\psi)$, therefore $$\bar{y}^2 = b^2 \sin^2(\psi) = a^2(1 - e^2) \sin^2(\psi).$$ Expressing \mathbf{r}_2 in (x,y) coordinate and noticing $a = a(\mathbf{x}_1^+)$ and $e = e(\mathbf{x}_1^+)$ in this case, we have $$\mathbf{r}_{2} = \begin{bmatrix} r_{21}(\mathbf{x}_{2}^{-}) \\ r_{22}(\mathbf{x}_{2}^{-}) \end{bmatrix} = a(\mathbf{x}_{1}^{+}) \begin{bmatrix} \cos(\psi) - e(\mathbf{x}_{1}^{+}) \\ \sqrt{1 - e(\mathbf{x}_{1}^{+})^{2}} \sin(\psi) \end{bmatrix}.$$ (2.70) Differentiating (2.51) we have $$\dot{r} = \frac{dr}{dt} = \frac{d}{dt} \left(\frac{a(1 - e^2)}{1 + e\cos(\theta)} \right) = \frac{ae\sin(\theta)(1 - e^2)}{(1 + e\cos(\theta))^2} \frac{d\theta}{dt} = \frac{re\dot{\theta}\sin(\theta)}{(1 + e\cos(\theta))}. \tag{2.71}$$ In view of (2.14), (2.39), and (2.55), we have $$r^2\dot{\theta} = h = \sqrt{a\mu(1-e^2)} = \omega_0 a^2 \sqrt{1-e^2}.$$ (2.72) Substituting (2.72) into (2.71) and using (2.51) yield $$\dot{r} = \frac{\omega_0 a e \sin(\theta)}{\sqrt{1 - e^2}},\tag{2.73}$$ and $$r\dot{\theta} = \frac{\omega_0 a(1 + e\cos(\theta))}{\sqrt{1 - e^2}}.$$ (2.74) From Figure 2.5, we have $$r_{21}(\mathbf{x}_2^-) = r_2 \cos(\theta), \quad r_{22}(\mathbf{x}_2^-) = r_2 \sin(\theta).$$ (2.75) Taking time derivative for $r_{21}(\mathbf{x}_2^-)$ and using (2.73), (2.74), (2.49), and (2.51), we have $$\dot{r}_{21}(\mathbf{x}_{2}^{-}) = \dot{r}_{2}\cos(\theta) - r_{2}\dot{\theta}\sin(\theta) = \frac{\omega_{0}a(\mathbf{x}_{1}^{+})e(\mathbf{x}_{1}^{+})\sin(\theta)\cos(\theta)}{\sqrt{1 - e(\mathbf{x}_{1}^{+})^{2}}} - \frac{\omega_{0}a(\mathbf{x}_{1}^{+})(1 + e(\mathbf{x}_{1}^{+})\cos(\theta))\sin(\theta)}{\sqrt{1 - e(\mathbf{x}_{1}^{+})^{2}}}$$ $$= -\frac{\omega_{0}a(\mathbf{x}_{1}^{+})\sin(\theta)}{\sqrt{1 - e(\mathbf{x}_{1}^{+})^{2}}}$$ $$= -\frac{\omega_{0}a(\mathbf{x}_{1}^{+})\sin(\psi)\sqrt{1 - e(\mathbf{x}_{1}^{+})^{2}}}{\sqrt{1 - e(\mathbf{x}_{1}^{+})^{2}}(1 -
e(\mathbf{x}_{1}^{+})\cos(\psi))}$$ $$= -\frac{\omega_{0}a(\mathbf{x}_{1}^{+})\sin(\psi)}{(1 - e(\mathbf{x}_{1}^{+})\cos(\psi))}$$ $$= -\frac{\omega_{0}a(\mathbf{x}_{1}^{+})^{2}\sin(\psi)}{r_{2}}.$$ (2.76) Taking time derivative for $r_{22}(\mathbf{x}_2^-)$ and using (2.73), (2.74), (2.49), and (2.51), we have $$\dot{r}_{22}(\mathbf{x}_{2}^{-}) = \dot{r}_{2}\sin(\theta) + r_{2}\dot{\theta}\cos(\theta) = \frac{\omega_{0}a(\mathbf{x}_{1}^{+})e(\mathbf{x}_{1}^{+})\sin^{2}(\theta)}{\sqrt{1 - e(\mathbf{x}_{1}^{+})^{2}}} + \frac{\omega_{0}a(\mathbf{x}_{1}^{+})(1 + e(\mathbf{x}_{1}^{+})\cos(\theta))\cos(\theta)}{\sqrt{1 - e(\mathbf{x}_{1}^{+})^{2}}} = \frac{\omega_{0}a(\mathbf{x}_{1}^{+})(e(\mathbf{x}_{1}^{+}) + \cos(\theta))}{\sqrt{1 - e(\mathbf{x}_{1}^{+})^{2}}} = \frac{\omega_{0}a(\mathbf{x}_{1}^{+})\left(e(\mathbf{x}_{1}^{+}) + \frac{\cos(\psi) - e(\mathbf{x}_{1}^{+})}{1 - e(\mathbf{x}_{1}^{+})\cos(\psi)}\right)}{\sqrt{1 - e(\mathbf{x}_{1}^{+})^{2}}} = \frac{\omega_{0}a(\mathbf{x}_{1}^{+})^{2}(e(\mathbf{x}_{1}^{+}) - e(\mathbf{x}_{1}^{+})^{2}\cos(\psi) + \cos(\psi) - e(\mathbf{x}_{1}^{+}))}{a(\mathbf{x}_{1}^{+})(1 - e(\mathbf{x}_{1}^{+})\cos(\psi))\sqrt{1 - e(\mathbf{x}_{1}^{+})^{2}}} = \frac{\omega_{0}a(\mathbf{x}_{1}^{+})^{2}\sqrt{1 - e(\mathbf{x}_{1}^{+})^{2}}\cos(\psi)}{r_{2}}.$$ (2.77) Combining the above two equations, we obtain the velocity vector \mathbf{v}_2^- which is given by $$\mathbf{v}_{2}^{-} = \frac{\omega_{0} a(\mathbf{x}_{1}^{+})^{2}}{r_{2}} \begin{bmatrix} -\sin(\psi) \\ \sqrt{1 - e(\mathbf{x}_{1}^{+})^{2}} \cos(\psi) \end{bmatrix}. \tag{2.78}$$ This yields $\mathbf{x}_2^- = (\mathbf{r}_2, \mathbf{v}_2^-)$. Given \mathbf{x}_2^- , we can calculate $\mathbf{x}_2^+ = \mathbf{x}_2^- + (\mathbf{0}_3, \Delta \mathbf{v}_2)$, which is the spacecraft state after the impulse $\Delta \mathbf{v}_2$ is applied. Given \mathbf{x}_2^+ , we can calculate $$a(\mathbf{x}_2^+) = \frac{r_2 \mu}{2\mu - r_2 \mathbf{v}_2^+ \cdot \mathbf{v}_2^+},\tag{2.79}$$ and $$e(\mathbf{x}_2^+) = \left\| \left(\frac{\mathbf{v}_2^+ \cdot \mathbf{v}_2^+}{\mu} - \frac{1}{r_2} \right) \mathbf{r}_2 - \left(\frac{\mathbf{r}_2 \cdot \mathbf{v}_2^+}{\mu} \right) \mathbf{v}_2^+ \right\|. \tag{2.80}$$ Let a_1 and a_2 be the *semi-major axis* of the initial circular trajectory that passes A and the desired major semi-major axis of the circular trajectory that passes B. Let T_1 and T_2 be the orbit periods corresponding to the known initial circular orbit and the desired final circular orbit, respectively, then in view of (2.55), they should satisfy the following conditions. $$T_1 = 2\pi \sqrt{\frac{a_1^3}{\mu}},\tag{2.81}$$ $$T_2 = 2\pi \sqrt{\frac{a_2^3}{\mu}}. (2.82)$$ For the decision vector $\mathbf{y} = (\mathbf{v}_1^+, a(\mathbf{x}_1^+), e(\mathbf{x}_1^+), \omega_0, M, \psi, \Delta t, \mathbf{x}_2^-, \mathbf{v}_2^+, \Delta \mathbf{v}_1, \Delta \mathbf{v}_2) \in \mathbf{R}^{16}$, a Hohmann transfer can be formulated as an optimization problem as follows: $$\min \quad \|\Delta \mathbf{v}_1\| + \|\Delta \mathbf{v}_2\| \tag{2.83a}$$ s.t. $$\mathbf{v}_1^+ - \mathbf{v}_1^- - \Delta \mathbf{v}_1 = 0$$ (2.83b) $$a(\mathbf{x}_{1}^{+}) - \frac{r_{1}\mu}{2\mu - r_{1}\mathbf{v}_{1}^{+} \cdot \mathbf{v}_{1}^{+}} = 0$$ (2.83c) $$e(\mathbf{x}_1^+) - \left\| \left(\frac{\mathbf{v}_1^+ \cdot \mathbf{v}_1^+}{\mu} - \frac{1}{r_1} \right) \mathbf{r}_1 - \left(\frac{\mathbf{r}_1 \cdot \mathbf{v}_1^+}{\mu} \right) \mathbf{v}_1^+ \right\| = 0$$ (2.83d) $$\omega_0 - \sqrt{\frac{\mu}{a(\mathbf{x}_1^+)^3}} = 0 \tag{2.83e}$$ $$M - \omega_0 \Delta t = 0 \tag{2.83f}$$ $$\psi - e(\mathbf{x}_1^+)\sin(\psi) - M = 0$$ (2.83g) $$\mathbf{r}_{2} - a(\mathbf{x}_{1}^{+}) \begin{bmatrix} \cos(\psi) - e(\mathbf{x}_{1}^{+}) \\ \sqrt{1 - e(\mathbf{x}_{1}^{+})^{2}} \sin(\psi) \end{bmatrix} = 0$$ (2.83h) $$\mathbf{v}_{2}^{-} - \frac{\omega_{0} a(\mathbf{x}_{1}^{+})^{2}}{r_{2}} \begin{bmatrix} -\sin(\psi) \\ \sqrt{1 - e(\mathbf{x}_{1}^{+})^{2}}\cos(\psi) \end{bmatrix} = 0$$ (2.83i) $$\mathbf{x}_{2}^{+} - \mathbf{x}_{2}^{-} - (\mathbf{0}, \Delta \mathbf{v}_{2}) = 0 \tag{2.83j}$$ $$\frac{r_2\mu}{2\mu - r_2\mathbf{v}_2^+ \cdot \mathbf{v}_2^+} - a_2 = 0 \tag{2.83k}$$ $$\left\| \left(\frac{\mathbf{v}_2^+ \cdot \mathbf{v}_2^+}{\mu} - \frac{1}{r_2} \right) \mathbf{r}_2 - \left(\frac{\mathbf{r}_2 \cdot \mathbf{v}_2^+}{\mu} \right) \mathbf{v}_2^+ \right\| = 0 \tag{2.831}$$ $$\|\Delta \mathbf{v}_1\|^2 \le 1 \tag{2.83m}$$ $$\|\Delta \mathbf{v}_2\|^2 \le 1\tag{2.83n}$$ $$a(\mathbf{x}_1^+) > a_1 \tag{2.830}$$ $$e(\mathbf{x}_1^+) \ge 0 \tag{2.83p}$$ $$\frac{T_1 + T_2}{2} - \Delta t \ge 0. {(2.83q)}$$ **Remark 2.1** Inequality constraints (2.83m) and (2.83n) are introduced because we would like to restrict the magnitude of the thrust in a reasonable range. Inequality constraints (2.83m) and (2.83n) are introduced based on the range of $a(\mathbf{x}_1^+)$ and $e(\mathbf{x}_1^+)$. # 2.5 Keplerian orbits in three dimensional space In Section 2.3, we discussed Keplerian orbits in the orbital plane, which is easy to deal with. In real world, a convenient spacecraft coordinate system is most likely in three dimensional space and the orbital plane is more likely a plane embedded in three dimensional space. #### 2.5.1 Celestial inertial coordinate system For an Earth-orbiting spacecraft, it is convenient to define the center of mass of the Earth as its origin (a geocentric system). To make it easy to use the formulas developed in the previous sections of this chapter, the coordinate system should be an *inertial coordinate system* without acceleration or deceleration. Since the Earth moves in an almost circular orbit around the Sun with a long period, it is practically acceptable as an inertial system. Let \mathbf{Z} be the axis of the Earth's rotational axis, and this axis is selected as the \mathbf{Z} axis of the inertial coordinate system. The \mathbf{Z} direction is perpendicular to the Earth's equator which is in the $\mathbf{X} - \mathbf{Y}$ plane of this coordinate system. Next, we define the **X** axis of the *geocentric inertial system*. It is known that the Earth's equator plane is not on the same plane as the *ecliptic plane*, which is the plane of the Earth orbiting around the sun. The Earth's equator plane is inclined to the ecliptic plane by an angle of about 23.5°. The two planes intersect along a line called the *vernal equinox* vector (see Figure 2.6). While the Earth Figure 2.6: Vernal equinox description. rotates around the Sun, it crosses this line twice a year. The point when Earth crosses this line in March is called the *vernal equinox*. The direction from the center of mass of the Sun to the vernal points is defined as the **X** direction of the geocentric inertial system. The third axis **Y** completes an orthogonal right-hand system. Both the equator plane and ecliptic plane move slowly because of the force of attraction of astronomical bodies. The coordinate axes may need some corrections over time. # 2.5.2 Orbital parameters Given the geocentric inertial coordinate system, the spacecraft orbit in this system can be described in Figure 2.7. As explained, the **X-Y** plane is the equator plane. **Z**-axis is the rotational axis of the Earth. The vector \mathbf{r}_p is the vector from the center of the mass of the Earth pointing to the *perigee*. The vector \mathbf{r} is a moving vector from the center of the Earth to the position of the spacecraft, which moves along the direction \mathbf{v} . The angle between \mathbf{r}_p and \mathbf{r} , θ , is called *true anomaly* which was defined in Figure 2.3 in two dimensional orbit plane. A coordinate system in the orbit plane is given by three vectors \mathbf{P} , \mathbf{Q} , and \mathbf{W} , where \mathbf{P} is the unit length vector from the *primary focus* (the center of the mass of the Earth) pointing to the perigee of the orbit. The unit length vector \mathbf{Q} is on the orbit plane and 90^o from \mathbf{P} in the direction of the moving spacecraft. \mathbf{W} is defined by $\mathbf{P} \times \mathbf{Q}$, which is the unit length vector along the *momentum axis* of the orbit. The angle between the orbit plane and the equator plane, i, is named as the *inclination* of the orbit. The orbit crosses the \mathbf{X} - \mathbf{Y} plane in two points, one is Figure 2.7: Parameters in orbit. ascending node, the other one is descending node. The line passes through the ascending node and descending node is called the node line. The angle between **X** axis and the node line pointing to the ascending node is called the *right ascension*, Ω . The angle between the node line pointing to the ascending node and **P** is ω which is called the *argument of perigee*. The three angles, i, Ω , and ω , plus three parameters discussed before, a, e, and $M = n(t - t_0)$, are known as classical orbit parameters. It is convenient to define a vector $\alpha = [a, e, i, \Omega, \omega, M]$ for the orbit parameters, which are summarized below: - a, the semi-major axis; - e, the eccentricity; - i, the inclination; - Ω , the right ascension of the ascending node; - ω , the argument of the perigee; and - $M = \omega_0(t t_0)$, the mean anomaly. Clearly, there is another way to present the spacecraft moving around the orbit by given (\mathbf{v}, \mathbf{r}) at any time. Chapter 3, provides in details, the transformations between these two different presentations. # Chapter 3 # **Rotational Sequences and Quaternion** Based on the missions of a spacecraft, the attitude of the spacecraft represented by the body frame should be aligned with some desired frame. Spacecraft attitude determination is to provide information on the difference between the spacecraft body frame and the desired frame. The desired spacecraft frame also depends on the spacecraft's position and the current time, GPS signals may be used to determine the spacecraft's current
position and the time. The most used time in aerospace engineering is the universal time (UT) [268]. The time and position can be used to calculate the ephemeris astronomical direction information, such as star directions, the Sun direction, the Earth direction, the Earth magnet field direction, observed from the spacecraft's position at the current time and represented in the desired frame. The body frame information can be obtained by the measurements about these directions from the spacecraft's on board instruments. When the body frame is perfectly aligned with the desired frame, the calculated ephemeris star directions, the Sun direction, the Earth direction, and the Earth magnet field direction at the given time should be identical or very close to the measurements from spacecraft's instruments. When the body frame is significantly different from the desired frame, the measured astronomical directions are significantly different from the ephemeris astronomical directions at the given time. This difference can be represented by a single rotation if quaternion is used or a series of rotations if Euler angles are used. In the latter case, the sequence of the rotations is very important. These rotations rotate some angle around a certain rotational axis, thereby estimating the distance between the spacecraft body frame and the desired frame. Therefore, mathematical definitions of rotation and rotational sequences are the most important concepts in spacecraft attitude determination and control. There are many ways to characterize the rotation and rotational sequences. We believe that the quaternion representation is one of the best characterizations, and we will focus our attention on this representation. Our presentation in this chapter follows the style of [126, 268, 283]. # 3.1 Some frequently used frames Many coordinate frames are used in spacecraft related applications. This section discusses some most important frames. For a more detailed discussion, readers are referred to [268]. # 3.1.1 Body-fixed frame The body coordinate system is vehicle-carried and is directly defined on the body of the spacecraft. Its origin is located at the center of the mass of the spacecraft. There may be different ways to define its axes. In this book, the axes are defined using the so-called principal axes of rotation of the rigid body. Let **J** be the moment of inertia matrix of the spacecraft, which is a three-dimensional and real symmetric matrix. Because **J** is real symmetric, it has three mutually orthogonal eigenvectors which are associated with three real eigenvalues, i.e., there are λ_i , i = 1, 2, 3, and \mathbf{x}_i , i = 1, 2, 3 such that $$\mathbf{J}\mathbf{x}_i = \lambda_i \mathbf{x}_i, \tag{3.1}$$ where, assuming that the spacecraft is in the normal operation, \mathbf{x}_1 defines the axis \mathbf{X}_b which points forward the direction of the spacecraft velocity (but may not be identical unless the orbit is circular), \mathbf{x}_2 defines the axis \mathbf{Z}_b which points downward and is on the orbit plane, and \mathbf{x}_3 defines the axis \mathbf{Y}_b which complies with the right-hand rule. # 3.1.2 The Earth centered inertial (ECI) frame The *Earth centered inertial* (ECI) frame is important because of two reasons. First, Newton's laws of motion and gravity applied to the spacecraft are defined in an inertial frame. Second, many types of satellites are inertial pointing spacecraft. This frame is defined relative to the rotation axis of the Earth and the plane of the Earth's orbit (the ecliptic plane) about the Sun. The Earth's equator is perpendicular to the rotation axis of the Earth. As the Earth moves along the ecliptic orbit, the equator plane and the ecliptic have two cross points. These two cross points are special as the tilt of the Earth's rotational axis is inclined neither away nor towards the Sun (the center of the Sun being in the same plane as the Earth's equator). The ECI frame is defined at one of these equinoxes, the *vernal* equinox (or March equinox). Because of many less significant (but may not be negligible) factors, such as the *precession of the equinoxes*, the vernal equinox used by aerospace engineers is defined by 2000 coordinates and the true of date $(TOD)^1$. The \mathbf{X}_I of the inertial frame is the direction from the Earth's center to the vernal equinox. The \mathbf{Z}_I axis is the Earth's rotational axis. The \mathbf{Y}_I follows the right-hand rule. #### 3.1.3 Local vertical local horizontal frame The *local vertical local horizontal frame* (LVLH) is one of the most desired frames for many satellites because its \mathbf{Z}_{lvlh} direction is always pointing to the center of the Earth (nadir pointing), which is a desired feature of many satellites. The origin of the local vertical local horizontal frame is the center of mass of an orbital spacecraft. The \mathbf{X}_{lvlh} direction is along the spacecraft velocity direction and perpendicular to \mathbf{Z}_{lvlh} , and \mathbf{Y}_{lvlh} is perpendicular to the orbit plan and follows the right-hand rule. #### 3.1.4 South east zenith (SEZ) frame The south east zenith frame is useful for ground stations to track a spacecraft. The location of the tracking instrument is the origin. \mathbf{X}_{SEZ} is the direction pointing to the south, \mathbf{Y}_{SEZ} is the direction pointing to the east, and \mathbf{Z}_{SEZ} is the direction pointing to the zenith. In this system, the azimuth is the angle measured from north, clockwise to the location beneath the object of interest. The elevation is measured from local horizon, positive up to the object of interest. # 3.1.5 North east nadir (NED) frame The *north east nadir frame* is opposite to the SEZ frame which is defined by the local horizontal plane. The center of the horizontal plane is the origin. \mathbf{X}_{NED} is the direction pointing to the north, \mathbf{Y}_{NED} is the direction pointing to the east, and \mathbf{Z}_{NED} is the nadir direction. # 3.1.6 The Earth-centered Earth-fixed (ECEF) frame Like the Earth Centered Inertial (ECI) frame, the *Earth-centered Earth-fixed* (ECEF) frame is the Earth-based frame. The ECI frame is independent of the motion and the rotation of the Earth. However, it may not be convenient in some cases as observatories on the ground rotate with the Earth. The center of the ECEF frame is the center of the Earth. Using the convention adopted at the International Meridian Conference in Washington D.C. 1884, the primary meridian ¹For the rigorous and precise definition, please read [268]. for the Earth is the meridian that the Royal Observatory at Greenwich lies on. The \mathbf{X}_{ECEF} is the direction from the center of the Earth pointing to the cross point of the primary meridian and equator. The \mathbf{Z}_{ECEF} is the direction from the center of the Earth pointing to the north pole. The \mathbf{Y}_{ECEF} is the direction that follows the right-hand rule. The ECEF frame is sometimes called the International Terrestrial Reference Frame (ITRF). Because of the plate tectonic motion, the frame may need some adjustment every year for certain applications. # 3.1.7 The Orbit (Perifocal PQW) frame In *Perifocal PQW frame*, the fundamental plane is the spacecraft orbit, and the origin is at the center of the Earth (see Figure 2.7). The \mathbf{P}_x axis points towards perigee, and the \mathbf{Q}_y is 90^0 from \mathbf{P}_x axis in the direction of spacecraft motion. The \mathbf{W}_z is normal to the orbit represented by $\mathbf{W}_z = \mathbf{P}_x \times \mathbf{Q}_y$. #### 3.1.8 The spacecraft coordinate (RSW) frame The *spacecraft coordinate (RSW) frame* is closely related to LVLH frame (see Figure 2.7). The \mathbf{R}_x axis always points from the Earth's center towards the spacecraft as it moves through the orbit. The \mathbf{S}_y axis points in the direction of (but not necessarily parallel to) the velocity vector and is perpendicular to the \mathbf{R}_x axis, an important additional requirement. The \mathbf{W}_z axis is normal to the orbital plane represented by $\mathbf{W}_z = \mathbf{R}_x \times \mathbf{S}_y$. # **3.2** Rotation sequences and mathematical representations # 3.2.1 Representing a fixed point in a rotational frame As we discussed at the beginning of this chapter, we determine the spacecraft's attitude by locating the astronomical objects in the sky from the spacecraft instruments which give the directions in the body frame; from the ephemeris information, we know these directions represented in the desired frame. Therefore, we have the information on some fixed (astronomical object) point in a rotational frame when the spacecraft body frame is different from the desired frame. This is equivalent to representing a fixed point in a rotational frame. Let $(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$ be the axes of a frame (see Figure 3.1 where **Z**-axis points out of the paper), and $(\mathbf{x}, \mathbf{y}, \mathbf{z})$ be the axes of another frame which rotates an angle of θ about **Z** axis. Let *P* be a fixed point in (\mathbf{X}, \mathbf{Y}) plane. Assume that the distance of *P* from the origin is *r*, then we can express *P* in the first frame coordinate as (x_1, y_1, z_1) $$x_1 = r\cos(\alpha), \quad y_1 = r\sin(\alpha), \quad z_1 = 0;$$ (3.2) **Figure 3.1:** A fixed point in a rotational frame. and in the second frame coordinate as (x_2, y_2, z_2) $$x_2 = r\cos(\alpha - \theta)$$, $y_2 = r\sin(\alpha - \theta)$, $z_2 = 0$. Thus, in view of (3.2), we have $$x_{2} = r\cos(\alpha)\cos(\theta) + r\sin(\alpha)\sin(\theta)$$ $$= x_{1}\cos(\theta) + y_{1}\sin(\theta),$$ $$y_{2} = r\sin(\alpha)\cos(\theta) - r\cos(\alpha)\sin(\theta)$$ $$= y_{1}\cos(\theta) - x_{1}\sin(\theta),$$ $$z_{2} = 0.$$ (3.3) We can write this transformation in a matrix form $$\begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} \cos(\theta) &
\sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} := Rot_3(\theta).$$ (3.4) Similarly, for a fixed point, if the frame rotates about Y axis for an angle θ , then the transformation can be expressed as $$\begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} := Rot_2(\theta).$$ (3.5) For a fixed point, if the frame rotates about **X** axis for an angle θ , then the transformation can be expressed as $$\begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & \sin(\theta) \\ 0 & -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} := Rot_1(\theta).$$ (3.6) Rotational matrices of (3.4), (3.5), and (3.6) are all unitary matrices. By definition, the length of each column of a unitary matrix is one, each column is orthogonal to other columns. Unitary matrices have many useful properties. Let C_1 and C_2 be two unitary matrices and v be a vector. Some most important properties of the unitary matrix are (see [77]): - $\|\mathbf{C}_1\mathbf{v}\| = \|\mathbf{C}_2\mathbf{v}\| = \|\mathbf{v}\|$, i.e., transformation by a unitary matrix does not change the vector length. - C_2C_1 is a unitary matrix. For rotational matrices, it means that the consecutive rotations can be expressed by the product of the rotational matrices, where C_1 is the first rotation and C_2 is the second rotation. - $\mathbf{C}_1^{-1} = \mathbf{C}_1^{\mathrm{T}}$, i.e., the inverse of a rotational matrix is simply a transpose of the rotational matrix. #### 3.2.2 Representing a rotational point in a fixed frame When analyzing relationship between frames, we sometimes need to represent a rotational point in a fixed frame. Let P_1 be a point obtained by rotating P an angle of θ around \mathbf{Z} axis (see Figure 3.2 where \mathbf{Z} -axis points out of the paper). Then P_1 can be expressed as $$x_2 = r\cos(\alpha + \theta)$$, $y_2 = r\sin(\alpha + \theta)$, $z_2 = 0$. Thus, in view of (3.2), we have $$x_2 = x_1 \cos(\theta) - y_1 \sin(\theta), \quad y_2 = y_1 \cos(\theta) + x_1 \sin(\theta), \quad z_2 = 0.$$ We can write this transformation in a matrix form $$\begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} := Rot_3(-\theta).$$ (3.7) Figure 3.2: A rotational point in a fixed frame. 32 Similarly, for a rotational point, if it rotates about **Y** axis for an angle θ , then the transformation can be expressed $$\begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} := Rot_2(-\theta).$$ (3.8) For a rotational point, if it rotates about **X** axis for an angle θ , then the transformation can be expressed $$\begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} := Rot_1(-\theta).$$ (3.9) # 3.2.3 Rotations in three dimensional space The rotations discussed above are simple rotations in two dimensional space. They are special cases in that the rotational axis is one of the coordinates that is perpendicular to the plane spanned by vectors before and after the rotation. Spacecraft attitude determination and control involve general rotations in three dimensional space. Consider the rotation described in Figure 3.3 where we rotate the axis \mathbf{X} to the axis \mathbf{x} . A popular method to represent this rotation is to use a series of rotations about coordinates described in the previous subsections, i.e., first we rotate the frame an α angle around $-\mathbf{Y}$ axis, then we rotate the intermediate \mathbf{x}' a β angle around the new \mathbf{Z} axis (\mathbf{z}' axis). The α and β angles are the Figure 3.3: An axis rotation in three dimensional space. so-called Euler angles. Therefore, the rotational matrix is given by $$\mathbf{C} = \begin{bmatrix} \cos(\beta) & \sin(\beta) & 0 \\ -\sin(\beta) & \cos(\beta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\alpha) & 0 & \sin(\alpha) \\ 0 & 1 & 0 \\ -\sin(\alpha) & 0 & \cos(\alpha) \end{bmatrix}$$ $$= \begin{bmatrix} \cos(\beta)\cos(\alpha) & \sin(\beta) & \cos(\beta)\sin(\alpha) \\ -\sin(\beta)\cos(\alpha) & \cos(\beta) & -\sin(\beta)\sin(\alpha) \\ -\sin(\alpha) & 0 & \cos(\alpha) \end{bmatrix}$$ $$= \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}$$ (3.10) which provides a different explanation of the rotation from \mathbf{X} axis to \mathbf{x} axis, i.e., the series of rotations can also be represented by a general rotational matrix (3.10). Let $$\cos(\theta) = \frac{1}{2}(C_{11} + C_{22} + C_{33} - 1), \tag{3.11}$$ $$\hat{\mathbf{e}} = \frac{1}{2\sin(\theta)} \begin{bmatrix} C_{23} - C_{32} \\ C_{31} - C_{13} \\ C_{12} - C_{21} \end{bmatrix} = \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}, \tag{3.12}$$ $$\mathbf{E} = \frac{1}{2\sin(\theta)}(\mathbf{C}^{\mathrm{T}} - \mathbf{C}) = \begin{bmatrix} 0 & -e_3 & e_2 \\ e_3 & 0 & -e_1 \\ -e_2 & e_1 & 0 \end{bmatrix}, \quad \theta \neq \pm k\pi, \quad k = 0, 1, 2, \dots$$ (3.13) the general rotational matrix (3.10) can be expressed as $$\mathbf{C} = \cos(\theta)\mathbf{I} + (1 - \cos(\theta))\hat{\mathbf{e}}\hat{\mathbf{e}}^{\mathrm{T}} - \sin(\theta)\mathbf{E}.$$ (3.14) It can be verified that **C** is a rotational matrix, $\hat{\mathbf{e}}$ is the rotational axis, and θ is the rotational angle [97]. **C** is called the *direction cosine matrix*. Actually, there may be infinite combinations of rotational axes and rotational angles that can rotate \mathbf{X} to \mathbf{x} . Moreover, Figure 3.4 and the following analysis show that in general case, the rotational axis of the direction cosine matrix may not be one of the coordinates. Let P be the middle point between \mathbf{X} and \mathbf{x} and \mathbf{y} be the angle between $O\mathbf{x}$ and OP. Let OQ be the unit vector that is perpendicular to the plane spanned by \mathbf{X} and \mathbf{x} vectors. Obviously, the rotation can be achieved by rotating 2ψ around OQ. Alternatively, another rotation with rotational axis OP and rotational angle π can also rotates \mathbf{X} to \mathbf{x} . In fact, we can use any vector on the plane spanned by OP and OQ as the rotational axis and find an appropriate rotational angle which will rotate \mathbf{X} to \mathbf{x} . The first rotation we described above is sometimes called the *minimum-angle rotation*, and the second rotation we described above is called the *maximum-angle rotation*. Figure 3.4: All possible rotations for one axis. #### 3.2.4 Rotation from one frame to another frame In spacecraft attitude determination, we are oftentimes required to find a rotation that brings one frame to another one. This means that we need to find a rotational axis and an appropriate rotational angle that rotates one given frame $(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$ to another given frame $(\mathbf{x}, \mathbf{y}, \mathbf{z})$. Let S be the middle point of \mathbf{Y} and \mathbf{y} , OR be the unit length vector that is perpendicular to the plane spanned by \mathbf{Y} and \mathbf{y} . The rotation that brings the frame $(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$ to $(\mathbf{x}, \mathbf{y}, \mathbf{z})$ is described in Figure 3.5, where the plane OPQ spanned by OP and OQ defines all the rotational axes that can rotate \mathbf{X} to \mathbf{x} ; the plane OSR spanned by OR and OS defines all the rotational axes that can rotate \mathbf{Y} to \mathbf{y} . Therefore, the intersection of these two planes defines the unique rotational axis that can rotate \mathbf{X} to \mathbf{x} and \mathbf{Y} to \mathbf{y} simultaneously. We will provide a rigorous derivation in Section 3.4. # 3.2.5 Rate of change of the direction cosine matrix In spacecraft dynamics modeling and controls, we need to know not only the attitude of the spacecraft, which is represented by the rotation from one frame to another frame, but also the *rate of this rotation*. The time dependence of the direction cosine matrix **A** at time t can be expressed by $\mathbf{A}(t)$. The time dependence of the direction cosine matrix **A** at time $t + \Delta t$ can be expressed by $$\mathbf{A}(t + \Delta t) = \mathbf{C}\mathbf{A}(t),$$ Figure 3.5: Rotation from one frame to another frame. where **C** is a rotation around $\hat{\mathbf{e}}$ with rotational angle $\theta = \Omega \Delta t$, and Ω is the *rate* of the rotation around the rotational axis. From (3.14), $$\mathbf{C} = \cos(\Omega \Delta t)\mathbf{I} + (1 - \cos(\Omega \Delta t))\hat{\mathbf{e}}\hat{\mathbf{e}}^{\mathrm{T}} - \sin(\Omega \Delta t)\mathbf{E}. \tag{3.15}$$ As $\Delta t \rightarrow 0$, using the notation of (1.6), $$\mathbf{C} \to \mathbf{I} - \mathbf{E}\Omega \Delta t = \mathbf{I} - \mathbf{S}(\boldsymbol{\omega})\Delta t = \mathbf{I} - \begin{bmatrix} 0 & -\boldsymbol{\omega}_3 & \boldsymbol{\omega}_2 \\ \boldsymbol{\omega}_3 & 0 & -\boldsymbol{\omega}_1 \\ -\boldsymbol{\omega}_2 & \boldsymbol{\omega}_1 & 0 \end{bmatrix} \Delta t,$$ where $\omega = (\omega_1, \omega_2, \omega_3)$ is the rate vector along the rotational axis $\hat{\mathbf{e}}$, and $$\mathbf{E}\Omega = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} = \mathbf{S}(\omega).$$ This gives $$\mathbf{A}(t+\Delta t) = (\mathbf{I} -
\mathbf{S}(\boldsymbol{\omega})\Delta t)\mathbf{A}(t),$$ or $$\mathbf{A}(t + \Delta t) - \mathbf{A}(t) = -\mathbf{S}(\omega)\mathbf{A}(t)\Delta t,$$ therefore, we get $$\frac{d\mathbf{A}}{dt} = -\mathbf{S}(\boldsymbol{\omega})\mathbf{A}(t). \tag{3.16}$$ # 3.2.6 Rate of change of vectors in rotational frame In spacecraft dynamics modeling and controls, vectors and their rates of change are oftentimes represented in different frames. For modeling and control purpose, we need to convert the vectors and their rates of changes represented in different frames into a single frame. Therefore, the relationship between the time derivatives of an arbitrary vector resolved along the a coordinate axes of one system and the derivatives in a different system is needed. Let \mathbf{a}' be the vector represented in a reference system and \mathbf{a} be the same vector represented in the body frame. Then there is a rotational matrix \mathbf{C} expressed in (3.14) such that $$\mathbf{a} = \mathbf{C}\mathbf{a}'$$. The product rule for differentiation gives $$\left(\frac{d\mathbf{a}}{dt}\right)\Big|_{b} = \frac{d\mathbf{C}}{dt}\mathbf{a}' + \mathbf{C}\left(\frac{d\mathbf{a}'}{dt}\right)\Big|_{r}$$ where the derivative $\left(\frac{d\mathbf{a}}{dt}\right)\Big|_{b}$ is represented in the body frame, and the deriva- tive $\left(\frac{d\mathbf{a}'}{dt}\right)\Big|_{r}$ is represented in the reference frame. Since C is the rotation from reference frame to body frame, $C\left(\frac{d\mathbf{a}'}{dt}\right) = \left(\frac{d\mathbf{a}'}{dt}\right)$. From (3.16), $$\left(\frac{d\mathbf{a}}{dt}\right)\Big|_{b} = -\mathbf{S}(\omega)\mathbf{C}\mathbf{a}' + \mathbf{C}\frac{d\mathbf{a}'}{dt}\Big|_{r}$$ $$= -\mathbf{S}(\omega)\mathbf{a} + \left(\frac{d\mathbf{a}'}{dt}\right)\Big|_{b}$$ $$= -\omega \times \mathbf{a} + \left(\frac{d\mathbf{a}'}{dt}\right)\Big|_{b}, \qquad (3.17)$$ where ω is the *rate of the rotation* between the reference frame and the body frame. # 3.3 Transformation between coordinate systems This section discusses some rotational matrix applications. We will focus on the transformation between different coordinate systems. # 3.3.1 Transformation from ECI (XYZ) to PQW coordinate In view of Figure 2.7, one can see that the transformation of XYZ coordinate to PQW coordinate can be done by (a) rotate around \mathbf{Z} axis by an angle Ω ; (b) then rotate around X axis by an angle i, and (c) then rotate around Z axis by an angle ω . Let c be a short notation for cos and s be a short notation for sin. In mathematics formula, this transformation can be expressed as: $$\begin{bmatrix} P \\ Q \\ W \end{bmatrix}$$ $$= [Rot_3(\omega)][Rot_1(i)][Rot_3(\Omega)] \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$ $$= \begin{bmatrix} c\omega & s\omega & 0 \\ -s\omega & c\omega & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & ci & si \\ 0 & -si & ci \end{bmatrix} \begin{bmatrix} c\Omega & s\Omega & 0 \\ -s\Omega & c\Omega & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}.$$ (3.18) #### 3.3.2 Transformation from ECI (XYZ) to RSW coordinate In view of Figure 2.7, one can see that the transformation of XYZ coordinate to RSW coordinate can be done by (a) rotate around \mathbf{Z} axis by an angle Ω ; (b) then rotate around \mathbf{X} axis by an angle i, and (c) then rotate around \mathbf{Z} axis by an angle $(\omega + \theta)$. Let c be a short notation for cos and s be a short notation for sin. In mathematics formula, this transformation can be expressed as: $$\begin{bmatrix} R \\ S \\ W \end{bmatrix}$$ $$= [Rot_3(\omega + \theta)][Rot_1(i)][Rot_3(\Omega)] \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$ $$= \begin{bmatrix} c(\omega + \theta) & s(\omega + \theta) & 0 \\ -s(\omega + \theta) & c(\omega + \theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & ci & si \\ 0 & -si & ci \end{bmatrix} \begin{bmatrix} c\Omega & s\Omega & 0 \\ -s\Omega & c\Omega & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix},$$ (3.19) where Ω is the *right ascension* of the *ascending node* of the orbit, *i* is the *inclination* of the orbit, ω is the *argument of perigee*, and θ is the *true anomaly*. The sum of ω and θ represents the location of the spacecraft relative to the ascending node. # 3.3.3 Transformation from six classical parameters to (v,r) In this section, we will find the spacecraft position and speed in the ECI coordinate system given six classical orbit parameters $[a, e, i, \Omega, \omega, M]$. Since all Figure 3.6: Transformation between orbit parameters and ECI frame. Keplerian orbits are in a plane, we can define a coordinate system \mathbf{x} , \mathbf{y} in a plane with z = 0. It follows from Figure 3.6 and (2.49) that $$x = a\cos(\psi) - c = a(\cos(\psi) - e), \tag{3.20}$$ and $$y = x \tan(\theta) = a(\cos(\psi) - e) \frac{\sin(\theta)}{\cos(\theta)}$$ $$= a(\cos(\psi) - e) \frac{\sin(\psi)\sqrt{1 - e^2}}{\cos(\psi) - e} = [a\sin(\psi)]\sqrt{1 - e^2}. \quad (3.21)$$ Given M and e, to find ψ , one can use Newton's method for the equation (2.61) which is provided again below $$M = \psi - e\sin(\psi). \tag{3.22}$$ Given ψ , x and y are obtained from (3.20) and (3.21). In view of Figure 2.7, (x,y,z) determines the spacecraft location in the PQW coordinate frame with z = 0. Therefore, to find \mathbf{r} and \mathbf{v} , it follows that $$\mathbf{r} = x\mathbf{P} + y\mathbf{Q} = a(\cos(\psi) - e)\mathbf{P} + a\sqrt{1 - e^2}\sin(\psi)\mathbf{Q}.$$ (3.23) From this equation, the location of the spacecraft in ECI frame is given by the inverse transformation of Equation (3.18) which is given by $$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = [Rot_3(\Omega)]^{-1}[Rot_1(i)]^{-1}[Rot_3(\omega)]^{-1} \begin{bmatrix} x \\ y \\ 0, \end{bmatrix}$$ (3.24) where (X, Y, Z) is the ECI coordinate of the spacecraft. To calculate the velocity vector, one simply needs to use $\mathbf{v} = \frac{d\mathbf{r}}{dt}$ which gives $$\mathbf{v} = \frac{d\mathbf{r}}{dt} = \frac{d\mathbf{r}}{d\psi} \frac{d\psi}{dt}.$$ (3.25) It follows from (3.22) and (2.56) that $$\frac{dM}{dt} = \omega_0 = \frac{d\Psi}{dt} - e\cos(\Psi)\frac{d\Psi}{dt},\tag{3.26}$$ which gives $$\frac{d\psi}{dt} = \frac{\omega_0}{1 - e\cos(\psi)} = \frac{a\omega_0}{r}.$$ (3.27) The last equation follows from (2.51). Differentiating (3.23) and using (3.27) yield $$\mathbf{v} = \frac{d\mathbf{r}}{dt} = \frac{a^2 \omega_0}{r} \left[-\sin(\psi)\mathbf{P} + \sqrt{1 - e^2}\cos(\psi)\mathbf{Q} \right] = v_p \mathbf{P} + v_q \mathbf{Q}, \quad (3.28)$$ where $(v_p, v_q, 0)$ is the spacecraft velocity in PQW coordinate frame. Using the inverse transformation of Equation (3.18) gives $$\begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = [Rot_3(\Omega)]^{-1} [Rot_1(i)]^{-1} [Rot_3(\omega)]^{-1} \begin{bmatrix} v_p \\ v_q \\ 0 \end{bmatrix}$$ (3.29) where (v_x, v_y, v_z) is the spacecraft velocity in the ECI coordinate frame. # 3.3.4 Transformation from (v,r) to six classical parameters Now, we consider the inverse transformation, i.e., given (\mathbf{v}, \mathbf{r}) in Cartesian coordinates, \mathbf{X} , \mathbf{Y} , \mathbf{Z} , v_x , v_y , and v_z , the task is to find the classical orbit parameters $\alpha = [a, e, i, \Omega, \omega, M]$. From (2.41), it follows immediately that $$a = \frac{\mu}{2\left[\frac{\mu}{r} - \frac{v^2}{2}\right]}.\tag{3.30}$$ Let $\mathbf{h} = [h_x, h_y, h_z]^{\mathrm{T}}$ be the *orbit momentum* represented in ECI frame and $h = |\mathbf{h}|$. Since $\mathbf{h} = \mathbf{r} \times \mathbf{v} = |\mathbf{h}|\mathbf{W}$ is a given, in view of Figure 2.7, it follows that $$\cos(i) = h_z/h. \tag{3.31}$$ From Figure 2.7 again, it follows that $$\sin(\Omega) = \frac{h_x}{\sqrt{h_x^2 + h_y^2}}, \quad \cos(\Omega) = -\frac{h_y}{\sqrt{h_x^2 + h_y^2}}.$$ (3.32) In view of (2.39), it follows that $$e = \sqrt{1 - \frac{h^2}{a\mu}}. (3.33)$$ From (3.22), to obtain $M = \psi - e \sin(\psi)$, one needs to know ψ . Given a, e, and \mathbf{r} , from (2.51), it follows that $$\psi = \cos^{-1}\left(\frac{1-|\mathbf{r}|}{ae}\right). \tag{3.34}$$ From (3.23), (3.28), and (2.51), it follows that $$\mathbf{r} \cdot \mathbf{v} = \frac{a^3 \omega_0}{r} \sin(\psi) \left[-(\cos(\psi) - e) + (1 - e^2) \cos(\psi) \right]$$ $$= \frac{a^3 \omega_0}{r} \sin(\psi) e(1 - e) \cos(\psi)$$ $$= \frac{a^2 \omega_0}{r} \sin(\psi) er = a^2 \omega_0 e \sin(\psi). \tag{3.35}$$ This yields, in view of (2.55), that $$\sin(\psi) = \frac{\mathbf{r} \cdot \mathbf{v}}{a^2 \omega_0 e} = \frac{\mathbf{r} \cdot \mathbf{v}}{e \sqrt{a\mu}}.$$ (3.36) Equations (3.34) and (3.36) gives ψ with correct sign. Therefore, M is obtained by using (2.61) which is given again below $$M = \psi - e\sin(\psi). \tag{3.37}$$ The last parameter is the *argument of perigee* ω . In view of Figure 3.6, in orbit plane, we have $$x = r\cos(\theta), \quad y = r\sin(\theta). \tag{3.38}$$ Since $\mathbf{r} = [X, Y, Z]^T$ is known in ECI frame, substituting x, y, X, Y, and Z into (3.19) gives $$\sin(\omega + \theta) = \frac{Z}{r\sin(i)}, \quad \cos(\omega + \theta) = \frac{X\cos(\Omega) + Y\sin(\Omega)}{r}.$$ (3.39) Since θ is given in (2.49), ω can be obtained from (3.39). # 3.4 Quaternion and its properties Unlike the Euler angles which represent a rotation by a series of rotations rotating around \mathbf{X} , or \mathbf{Y} or \mathbf{Z} axes, *quaternion* represents a rotation by a rotational angle around a rotational axis, which is not necessarily around \mathbf{X} , or \mathbf{Y} , or \mathbf{Z} axes. Quaternion was first introduced by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. A striking feature of quaternion is that the product of two quaternion is *non-commutative*, meaning that the product of two quaternions depends on which factor is to the left of the multiplication sign and
which is to the right. Let the standard basis \mathbf{i} , \mathbf{i} , and \mathbf{k} for the \mathbf{R}^3 satisfy the following condition $$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1.$$ (3.40) Let a 4-tuple of real numbers $$\bar{\mathbf{q}} = (q_0, q_1, q_2, q_3), \tag{3.41}$$ we define a quaternion as the sum of a scalar and a vector $$\bar{\mathbf{q}} = q_0 + \mathbf{i}q_1 + \mathbf{j}q_2 + \mathbf{k}q_3 = q_0 + \mathbf{q}, \tag{3.42}$$ where q_0 is called the *scalar part of the quaternion* and $$\mathbf{q} = \mathbf{i}q_1 + \mathbf{j}q_2 + \mathbf{k}q_3$$ is called the *vector part of the quaternion*. People use (3.41) and (3.42) interchangeably if no confusion is introduced. Though in aerospace engineering, we always use a special *normalized quaternion* $q_0 = \cos(\frac{\alpha}{2})$, and $\mathbf{q} = \hat{\mathbf{e}}\sin(\frac{\alpha}{2})$, where $\hat{\mathbf{e}}$ is rotational axis, and α is the rotational angle. We will derive some useful properties for the general form of quaternion. # 3.4.1 Equality and addition Let $$\bar{\mathbf{p}} = p_0 + \mathbf{i}p_1 + \mathbf{j}p_2 + \mathbf{k}p_3$$ and $$\bar{\mathbf{q}} = q_0 + \mathbf{i}q_1 + \mathbf{j}q_2 + \mathbf{k}q_3$$ be two quaternions, then the two quaternions are equal if and only if $$p_0 = q_0, \quad p_1 = q_1, \quad p_2 = q_2, \quad p_3 = q_3.$$ For the special normalized quaternion used in the aerospace engineering, if two quaternions are equal, they have the same rotational angle and the same rotational axis. The *sum of the two quaternions* is defined as $$\bar{\mathbf{p}} + \bar{\mathbf{q}} = (p_0 + q_0) + \mathbf{i}(p_1 + q_1) + \mathbf{j}(p_2 + q_2) + \mathbf{k}(p_3 + q_3).$$ The zero quaternion has scalar part 0 and vector part (0,0,0). The negative or an additive inverse of $\bar{\mathbf{q}}$ is $-\bar{\mathbf{q}}$. #### 3.4.2 Multiplication and the identity From (3.40), we have $$ij = k = -ji, jk = i = -kj, ki = j = -ik.$$ (3.43) Let $\bar{\mathbf{p}}$ and $\bar{\mathbf{q}}$ be defined as before, use (3.40) and (3.43), we define the *multiplication of two quaternions* $\bar{\mathbf{p}}$ and $\bar{\mathbf{q}}$ by $$\bar{\mathbf{p}} \otimes \bar{\mathbf{q}} = p_0 q_0 - \mathbf{p} \cdot \mathbf{q} + p_0 \mathbf{q} + q_0 \mathbf{p} + \mathbf{p} \times \mathbf{q},$$ (3.44) with the scalar part $p_0q_0 - \mathbf{p} \cdot \mathbf{q}$ and vector part $p_0\mathbf{q} + q_0\mathbf{p} + \mathbf{p} \times \mathbf{q}$. The quaternion *multiplicative identity* has scalar part 1 and vector part (0,0,0). The quaternion multiplication can be used to represent two consecutive rotations. Let $\bar{\mathbf{p}}$ and $\bar{\mathbf{q}}$ be the two consecutive rotations ($\bar{\mathbf{p}}$ represent the first rotation and $\bar{\mathbf{q}}$ represent the second rotation). The *composed rotation* is given by $\bar{\mathbf{r}} = \bar{\mathbf{p}} \otimes \bar{\mathbf{q}}$. The derivation is given in Section 3.4.4 (see also [284, pages 319-320]). #### 3.4.3 Complex conjugate, norm, and inverse The *complex conjugate of* quaternion $\bar{\mathbf{q}}$ is denoted by $$\bar{\mathbf{q}}^* = q_0 - \mathbf{q} = q_0 - iq_1 - jq_2 - kq_3.$$ (3.45) It is easy to see $$\bar{\mathbf{q}} + \bar{\mathbf{q}}^* = (q_0 + \mathbf{q}) + (q_0 - \mathbf{q}) = 2q_0.$$ (3.46) Given two quaternions $\bar{\bf p}$ and $\bar{\bf q}$, we have $$(\bar{\mathbf{p}} \otimes \bar{\mathbf{q}})^* = \bar{\mathbf{q}}^* \otimes \bar{\mathbf{p}}^*. \tag{3.47}$$ The *norm of* a quaternion is defined as $\|\bar{\mathbf{q}}\| = \sqrt{\bar{\mathbf{q}}^* \otimes \bar{\mathbf{q}}}$. It is also easy to verify that the norm satisfies $$\|\bar{\mathbf{q}}\| = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2}.$$ (3.48) We define the *inverse* of a quaternion by $$\bar{\mathbf{q}}^{-1} \otimes \bar{\mathbf{q}} = \bar{\mathbf{q}} \otimes \bar{\mathbf{q}}^{-1} = 1.$$ Pre- and post-multiplying by $\bar{\mathbf{q}}^*$ gives $$\bar{\boldsymbol{q}}^{-1} \otimes \bar{\boldsymbol{q}} \otimes \bar{\boldsymbol{q}}^* = \bar{\boldsymbol{q}}^* \otimes \bar{\boldsymbol{q}} \otimes \bar{\boldsymbol{q}}^{-1} = \bar{\boldsymbol{q}}^*.$$ Since $\bar{\mathbf{q}}^* \otimes \bar{\mathbf{q}} = \bar{\mathbf{q}} \otimes \bar{\mathbf{q}}^* = ||\bar{\mathbf{q}}||^2$, we have $$\bar{\mathbf{q}}^{-1} = \frac{\bar{\mathbf{q}}^*}{\|\bar{\mathbf{q}}\|^2}.\tag{3.49}$$ For normalized quaternion which satisfies $\|\bar{\mathbf{q}}\| = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2} = 1$, $$\bar{\mathbf{q}}^{-1} = \bar{\mathbf{q}}^*. \tag{3.50}$$ Finally, the *norm of the product* of two quaternions $\bar{\bf p}$ and $\bar{\bf q}$ is the product of the individual norms because $$\|\bar{\mathbf{p}} \otimes \bar{\mathbf{q}}\|^{2} = (\bar{\mathbf{p}} \otimes \bar{\mathbf{q}}) \otimes (\bar{\mathbf{p}} \otimes \bar{\mathbf{q}})^{*}$$ $$= \bar{\mathbf{p}} \otimes \bar{\mathbf{q}} \otimes \bar{\mathbf{q}}^{*} \otimes \bar{\mathbf{p}}^{*}$$ $$= \bar{\mathbf{p}} \otimes \|\mathbf{q}\|^{2} \otimes \bar{\mathbf{p}}^{*}$$ $$= \bar{\mathbf{p}} \otimes \bar{\mathbf{p}}^{*} \|\mathbf{q}\|^{2} = \|\mathbf{p}\|^{2} \|\mathbf{q}\|^{2}. \tag{3.51}$$ # 3.4.4 Rotation by quaternion operator Now we are ready to show how to rotate a vector using the quaternion operator. For this purpose, we will consider only the normalized quaternion $\bar{\bf q}=q_0+{\bf q}=\cos(\frac{\alpha}{2})+\hat{\bf e}\sin(\frac{\alpha}{2})$, where $\hat{\bf e}$ is the unit length rotational axis and α is the rotational angle. Clearly, quaternion does have the information about the rotational angle and the rotational axis. Similar to rotational matrices, we need the product of quaternions to be able to represent consecutive rotations. Let $\bar{\bf p}=\cos(\frac{\alpha}{2})+\hat{\bf e}\sin(\frac{\alpha}{2})$ and $\bar{\bf q}=\cos(\frac{\beta}{2})+\hat{\bf e}\sin(\frac{\beta}{2})$, from (3.44), we have $$\bar{\mathbf{r}} = \bar{\mathbf{p}} \otimes \bar{\mathbf{q}} = \left(\cos\left(\frac{\alpha}{2}\right) + \hat{\mathbf{e}}\sin\left(\frac{\alpha}{2}\right)\right) \otimes \left(\cos\left(\frac{\beta}{2}\right) + \hat{\mathbf{e}}\sin\left(\frac{\beta}{2}\right)\right)$$ $$= \cos\left(\frac{\alpha}{2}\right)\cos\left(\frac{\beta}{2}\right) - \hat{\mathbf{e}}\sin\left(\frac{\alpha}{2}\right) \cdot \hat{\mathbf{e}}\sin\left(\frac{\beta}{2}\right)$$ $$+ \cos\left(\frac{\alpha}{2}\right)\hat{\mathbf{e}}\sin\left(\frac{\beta}{2}\right) + \hat{\mathbf{e}}\sin\left(\frac{\alpha}{2}\right)\cos\left(\frac{\beta}{2}\right)$$ $$+ \hat{\mathbf{e}}\sin\left(\frac{\alpha}{2}\right) \times \hat{\mathbf{e}}\sin\left(\frac{\beta}{2}\right)$$ $$= \cos\left(\frac{\alpha}{2}\right)\cos\left(\frac{\beta}{2}\right) - \sin\left(\frac{\alpha}{2}\right)\sin\left(\frac{\beta}{2}\right)$$ $$+ \hat{\mathbf{e}}\left(\sin\left(\frac{\alpha}{2}\right)\cos\left(\frac{\beta}{2}\right) + \cos\left(\frac{\alpha}{2}\right)\sin\left(\frac{\beta}{2}\right)\right)$$ $$= \cos\left(\frac{\alpha + \beta}{2}\right) + \hat{\mathbf{e}}\sin\left(\frac{\alpha + \beta}{2}\right)$$ $$= \cos(\gamma) + \hat{\mathbf{e}}\sin(\gamma)$$ (3.52) This means that the product of two quaternions indeed represents two consecutive rotations. Parallel to the vector rotation using rotational matrix, we expect that a quaternion rotation operator involves *multiplication of a quaternion and a* vector. Therefore, the multiplication of a quaternion and a vector should be defined. To this end, we consider a vector v as a pure quaternion in which the scalar part is zero and the vector part is v, i.e., $\bar{\mathbf{v}} = 0 + \mathbf{v}$. For the sake of notational simplicity, we use $\bar{\mathbf{v}}$ and \mathbf{v} interchangeably for both vector and pure quaternion. From (3.44), the multiplication of a vector and a quaternion is defined as $$\bar{\mathbf{q}} \otimes \mathbf{v} = (q_0 + \mathbf{q}) \otimes (0 + \mathbf{v}) = -\mathbf{q} \cdot \mathbf{v} + q_0 \mathbf{v} + \mathbf{q} \times \mathbf{v}. \tag{3.53}$$ We also expect that the quaternion operator will rotate a vector into another vector, or a pure quaternion. Simple evaluation shows that neither $\mathbf{w} = \bar{\mathbf{q}} \otimes \mathbf{v}$ nor $\mathbf{w} = \mathbf{v} \otimes \bar{\mathbf{q}}$ is necessarily a pure vector. However, using (3.53) and (1.2), we have $$\mathbf{w} = \bar{\mathbf{q}} \otimes \mathbf{v} \otimes \bar{\mathbf{q}}^* = (q_0 + \mathbf{q}) \otimes (0 + \mathbf{v}) \otimes (q_0 - \mathbf{q})$$ $$= (-\mathbf{q} \cdot \mathbf{v} + q_0 \mathbf{v} + \mathbf{q} \times \mathbf{v}) \otimes (q_0 - \mathbf{q})$$ $$= -q_0(\mathbf{q} \cdot \mathbf{v}) + q_0(\mathbf{v} \cdot \mathbf{q}) + (\mathbf{q} \times \mathbf{v}) \cdot \mathbf{q}$$ $$+ (\mathbf{q} \cdot \mathbf{v}) \mathbf{q} + q_0^2 \mathbf{v} + q_0(\mathbf{q} \times \mathbf{v}) - q_0(\mathbf{v} \times \mathbf{q}) - (\mathbf{q} \times \mathbf{v}) \times \mathbf{q}$$ $$= (\mathbf{q} \cdot \mathbf{v}) \mathbf{q} + q_0^2 \mathbf{v} + 2q_0(\mathbf{q} \times \mathbf{v}) - (\mathbf{q} \cdot \mathbf{q}) \mathbf{v} + (\mathbf{v} \cdot \mathbf{q}) \mathbf{q}$$ $$= (2q_0^2 - 1) \mathbf{v} + 2(\mathbf{q} \cdot \mathbf{v}) \mathbf{q} + 2q_0(\mathbf{q} \times \mathbf{v})$$ $$= \left(\cos^2\left(\frac{\alpha}{2}\right) - \sin^2\left(\frac{\alpha}{2}\right)\right) \mathbf{v} + 2(\mathbf{q} \cdot \mathbf{v}) \mathbf{q} + 2q_0(\mathbf{q} \times \mathbf{v}), \quad (3.54)$$ which is a vector. In fact, the quaternion operator can be expressed by direction cosine matrix which may be more convenient in some cases. From (3.54), since $$2(q_0^2 - 1)\mathbf{v} = \begin{bmatrix} (2q_0^2 - 1) & 0 & 0 \\ 0 & (2q_0^2 - 1) & 0 \\ 0 & 0 & (2q_0^2 - 1) \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix},$$ $$2(\mathbf{v} \cdot \mathbf{q})\mathbf{q} = \begin{bmatrix} 2q_1^2 & 2q_1q_2 & 2q_1q_3 \\ 2q_1q_2 & 2q_2^2 & 2q_2q_3 \\ 2q_1q_3 & 2q_2q_3 & 2q_3^2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix},$$ $$2q_0(\mathbf{q} \times \mathbf{v}) = \begin{bmatrix} 0 & -2q_0q_3 & 2q_0q_2 \\
2q_0q_3 & 0 & -2q_0q_1 \\ -2q_0q_3 & 2q_0q_1 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix},$$ we have $$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 2q_0^2 - 1 + 2q_1^2 & 2q_1q_2 - 2q_0q_3 & 2q_1q_3 + 2q_0q_2 \\ 2q_1q_2 + 2q_0q_3 & 2q_2^2 + 2q_0^2 - 1 & 2q_2q_3 - 2q_0q_1 \\ 2q_1q_3 - 2q_0q_2 & 2q_2q_3 + 2q_0q_1 & 2q_3^2 + 2q_0^2 - 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}.$$ (3.55) This means that we can use either (3.54) or (3.55) for quaternion rotation. We will use them in different applications in the rest of the book. It is worthwhile to note, in view of (3.54), that (3.55) defines a general rotational matrix as $$\mathbf{C} = (q_0^2 - \mathbf{q}^{\mathrm{T}} \mathbf{q}) \mathbf{I} + 2\mathbf{q} \mathbf{q}^{\mathrm{T}} + 2q_0 \mathbf{S}(\mathbf{q}). \tag{3.56}$$ We now show that $\bar{\mathbf{q}} \otimes \mathbf{v} \otimes \bar{\mathbf{q}}^*$ is indeed the *quaternion operator* that rotates \mathbf{v} an α angle around $\hat{\mathbf{e}}$. First, it is easy to verify that $\bar{\mathbf{q}} \otimes \mathbf{v} \otimes \bar{\mathbf{q}}^*$ is linear operator, i.e., for two vectors \mathbf{a} , \mathbf{b} , and a scalar k, the following relation holds. $$\bar{\mathbf{q}} \otimes (k\mathbf{a} + \mathbf{b}) \otimes \bar{\mathbf{q}}^* = k\bar{\mathbf{q}} \otimes \mathbf{a} \otimes \bar{\mathbf{q}}^* + \bar{\mathbf{q}} \otimes \mathbf{b} \otimes \bar{\mathbf{q}}^*.$$ (3.57) Then, we decompose vector \mathbf{v} into two components, $\mathbf{v} = \mathbf{v}_q + \mathbf{v}_n$, where \mathbf{v}_q is parallel to \mathbf{q} and \mathbf{v}_n is perpendicular to \mathbf{q} . We show (a) under quaternion operator $\bar{\mathbf{q}} \otimes \mathbf{v} \otimes \bar{\mathbf{q}}^*$, the first component \mathbf{v}_q is invariant and (b) the second component \mathbf{v}_n rotates an angle of α . Since $\mathbf{v}_q = k\mathbf{q}$, where $k \leq 1$ is a constant, from (3.57), (3.53), and (3.44), using the fact that $\bar{\mathbf{q}}$ is a normalized quaternion, we have $$\bar{\mathbf{q}} \otimes \mathbf{v}_q \otimes \bar{\mathbf{q}}^* = \bar{\mathbf{q}} \otimes (k\mathbf{q}) \otimes \bar{\mathbf{q}}^* = k\bar{\mathbf{q}} \otimes (\mathbf{q}) \otimes \bar{\mathbf{q}}^* = k(-\mathbf{q} \cdot \mathbf{q} + q_0\mathbf{q}) \otimes (q_0 - \mathbf{q}) = k\mathbf{q}.$$ This proves (a). Using the facts that $$\begin{aligned} \mathbf{q} \cdot \mathbf{v}_n &= 0, \\ \cos\left(\alpha\right) &= \cos^2\left(\frac{\alpha}{2}\right) - \sin^2\left(\frac{\alpha}{2}\right), \\ \sin(\alpha) &= 2\cos\left(\frac{\alpha}{2}\right)\sin\left(\frac{\alpha}{2}\right), \\ q_0 &= \cos\left(\frac{\alpha}{2}\right), \\ \|\mathbf{q}\| &= \sin\left(\frac{\alpha}{2}\right), \\ \mathbf{q} \times \mathbf{v}_n &= \|\mathbf{q}\| \|\mathbf{v}_n\| \sin\left(\frac{\pi}{2}\right) \mathbf{v}_\perp = \|\mathbf{q}\| \|\mathbf{v}_n\| \mathbf{v}_\perp, \end{aligned}$$ where \mathbf{v}_{\perp} is a unit length vector perpendicular to both \mathbf{q} and \mathbf{v}_n , and from (3.54), we have $$\bar{\mathbf{q}} \otimes (\mathbf{v}_n) \otimes \bar{\mathbf{q}}^* = \left(\cos^2\left(\frac{\alpha}{2}\right) - \sin^2\left(\frac{\alpha}{2}\right)\right) \mathbf{v}_n + 2(\mathbf{q} \cdot \mathbf{v}_n) \mathbf{q} + 2q_0(\mathbf{q} \times \mathbf{v}_n)$$ $$= \cos(\alpha) \mathbf{v}_n + 2q_0(\mathbf{q} \times \mathbf{v}_n)$$ $$= \cos(\alpha) \mathbf{v}_n + 2\cos\left(\frac{\alpha}{2}\right) (\mathbf{q} \times \mathbf{v}_n)$$ $$= \cos(\alpha) \mathbf{v}_n + 2\cos\left(\frac{\alpha}{2}\right) \sin\left(\frac{\alpha}{2}\right) \|\mathbf{v}_n\| \mathbf{v}_\perp$$ $$= \cos(\alpha) \mathbf{v}_n + \sin(\alpha) \|\mathbf{v}_n\| \mathbf{v}_\perp. \tag{3.58}$$ Since \mathbf{v}_n and $\|\mathbf{v}_n\|\mathbf{v}_{\perp}$ have the same length, and they both perpendicular to \mathbf{v}_q , equation (3.58) indicates that $\bar{\mathbf{q}} \otimes (\mathbf{v}_n) \otimes \bar{\mathbf{q}}^*$ rotates \mathbf{v}_n an angle of α around axis \mathbf{q} . This proves (b). A fact parallel to the rotational matrix is that $\bar{\mathbf{q}} \otimes (\mathbf{v}) \otimes \bar{\mathbf{q}}^*$ does not change the length of \mathbf{v} , which is a direct result of (3.51) and the fact that $\bar{\mathbf{q}}$ is a normalized quaternion. $$\|\bar{\mathbf{q}} \otimes \mathbf{v} \otimes \bar{\mathbf{q}}^*\| = \|\bar{\mathbf{q}}\| \|\mathbf{v}\| \|\bar{\mathbf{q}}\|^* = \|\mathbf{v}\|. \tag{3.59}$$ Similar to the rotational matrix, the *inverse of the quaternion operator* $\mathbf{w} = \bar{\mathbf{q}} \otimes (\mathbf{v}) \otimes \bar{\mathbf{q}}^*$ on \mathbf{v} is simple and it is given by $$\bar{\mathbf{q}}^* \otimes (\mathbf{w}) \otimes \bar{\mathbf{q}} = \bar{\mathbf{q}}^* \otimes (\bar{\mathbf{q}} \otimes (\mathbf{v}) \otimes \bar{\mathbf{q}}^*) \otimes \bar{\mathbf{q}} = (\bar{\mathbf{q}}^* \otimes \bar{\mathbf{q}}) \otimes \mathbf{v} \otimes (\bar{\mathbf{q}}^* \otimes \bar{\mathbf{q}}) = \mathbf{v}$$ which rotates **w** an angle of α around $-\mathbf{q}$ and brings **w** back to **v**. It is easy to verify that $$\mathbf{v} = \bar{\mathbf{q}}^* \otimes \mathbf{w} \otimes \bar{\mathbf{q}} = (2q_0^2 - 1)\mathbf{w} + 2(\mathbf{q} \cdot \mathbf{w})\mathbf{q} - 2q_0(\mathbf{q} \times \mathbf{w}). \tag{3.60}$$ This gives $$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 2q_0^2 - 1 + 2q_1^2 & 2q_1q_2 + 2q_0q_3 & 2q_1q_3 - 2q_0q_2 \\ 2q_1q_2 - 2q_0q_3 & 2q_0^2 - 1 + 2q_2^2 & 2q_2q_3 + 2q_0q_1 \\ 2q_1q_3 + 2q_0q_2 & 2q_2q_3 - 2q_0q_1 & 2q_0^2 - 1 + 2q_3^2 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}.$$ (3.61) It is worthwhile to note, in view of (3.60), that (3.61) defines a general rotational matrix as $$\mathbf{A} = (q_0^2 - \mathbf{q}^{\mathrm{T}} \mathbf{q}) \mathbf{I} + 2\mathbf{q} \mathbf{q}^{\mathrm{T}} - 2q_0 \mathbf{S}(\mathbf{q}). \tag{3.62}$$ Formula (3.62) is another form of the rotational matrix (3.14). # 3.4.5 Matrix form of quaternion production We also find that in some applications, a *matrix form of quaternion production* is more convenient than the form of (3.44). Let $\bar{\mathbf{r}} = (r_0, r_1, r_2, r_3)$ be the composed quaternion of two consecutive quaternions of $\bar{\mathbf{p}}$ and $\bar{\mathbf{q}}$, i.e., $\bar{\mathbf{r}} = \bar{\mathbf{p}} \otimes \bar{\mathbf{q}}$. Expanding (3.44) gives $$r_0 = p_0 q_0 - p_1 q_1 - p_2 q_2 - p_3 q_3 \tag{3.63a}$$ $$r_1 = p_0 q_1 + p_1 q_0 + p_2 q_3 - p_3 q_2 (3.63b)$$ $$r_2 = p_0 q_2 - p_1 q_3 + p_2 q_0 + p_3 q_1 \tag{3.63c}$$ $$r_3 = p_0 q_3 + p_1 q_2 - p_2 q_1 + p_3 q_0.$$ (3.63d) (3.63) can be written in matrix form $$\begin{bmatrix} r_0 \\ r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} p_0 & -p_1 & -p_2 & -p_3 \\ p_1 & p_0 & -p_3 & p_2 \\ p_2 & p_3 & p_0 & -p_1 \\ p_3 & -p_2 & p_1 & p_0 \end{bmatrix} \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix}$$ (3.64a) $$= \begin{bmatrix} q_0 & -q_1 & -q_2 & -q_3 \\ q_1 & q_0 & q_3 & -q_2 \\ q_2 & -q_3 & q_0 & q_1 \\ q_3 & q_2 & -q_1 & q_0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix}.$$ (3.64b) #### 3.4.6 Derivative of the quaternion The *derivative of quaternion* is obtained as follows. Let $\bar{\bf q}(t)$ be the quaternion to a reference frame at time t, $\bar{\bf q}(t+\Delta t)$ be the quaternion to the reference frame at $t+\Delta t$, and $\bar{\bf p}(t)=\cos(\frac{\Delta\alpha}{2})+\hat{\bf e}(t)\sin(\frac{\Delta\alpha}{2})$ be the quaternion that brings $\bar{\bf q}(t)$ to $\bar{\bf q}(t+\Delta t)$, i.e., $\bar{\bf p}(t)$ is an incremental quaternion with rotational axis $\hat{\bf e}(t)$ and rotational angle $\Delta\alpha$. For $\Delta t\to 0$, $\cos(\frac{\Delta\alpha}{2})\to 1$ and $\sin(\frac{\Delta\alpha}{2})\to \frac{\Delta\alpha}{2}$, therefore, $\bar{\bf p}(t)\approx 1+\hat{\bf e}(t)\frac{\Delta\alpha}{2}$. This gives $$\bar{\mathbf{q}}(t+\Delta t) = \bar{\mathbf{q}}(t) \otimes \left(1 + \hat{\mathbf{e}}(t) \frac{\Delta \alpha}{2}\right),$$ or $$\bar{\mathbf{q}}(t+\Delta t) - \bar{\mathbf{q}}(t) = \bar{\mathbf{q}}(t) \otimes \left(0 + \hat{\mathbf{e}}(t) \frac{\Delta \alpha}{2}\right).$$ Divide Δt at both sides and let $\Delta t \rightarrow 0$, we obtain $$\frac{d\bar{\mathbf{q}}}{dt} = \bar{\mathbf{q}}(t) \otimes \left(0 + \frac{1}{2}\hat{\mathbf{e}}(t)\Omega(t)\right) = \bar{\mathbf{q}}(t) \otimes \left(0 + \frac{1}{2}\omega(t)\right),$$ where $\Omega(t) = \lim_{\Delta t \to 0} \frac{\Delta \alpha}{\Delta t}$ is a scalar, and $\omega(t) = \hat{\mathbf{e}}(t)\Omega(t)$ is a vector, and $(0 + \frac{1}{2}\omega(t)) = \frac{1}{2}(0, \omega_1, \omega_2, \omega_3)$ is a quaternion. Using matrix expression (3.64) for the quaternion product, we obtain $$\begin{bmatrix} \dot{q}_{0} \\ \dot{q}_{1} \\ \dot{q}_{2} \\ \dot{q}_{3} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 & -\omega_{1} & -\omega_{2} & -\omega_{3} \\ \omega_{1} & 0 & \omega_{3} & -\omega_{2} \\ \omega_{2} & -\omega_{3} & 0 & \omega_{1} \\ \omega_{3} & \omega_{2} & -\omega_{1} & 0 \end{bmatrix} \begin{bmatrix} q_{0} \\ q_{1} \\ q_{2} \\ q_{3} \end{bmatrix}$$ $$= \frac{1}{2} \begin{bmatrix} q_{0} & -q_{1} & -q_{2} & -q_{3} \\ q_{1} & q_{0} & -q_{3} & q_{2} \\ q_{2} & q_{3} & q_{0} & -q_{1} \\ q_{3} & -q_{2} & q_{1} & q_{0} \end{bmatrix} \begin{bmatrix} 0 \\ \omega_{1} \\ \omega_{2} \\ \omega_{3} \end{bmatrix}. \tag{3.65}$$ # Chapter 4 # **Spacecraft Dynamics and Modeling** The quaternion based model has several advantages over the Euler angle based model. For example, the quaternion based model is uniquely defined because it does not depend on rotational sequence, while an Euler angle based model can be different for different rotational sequences. Therefore, Euler angle based models may be error-prone if different groups work on the same project but use different rotational sequences. In engineering design practice, an agreement should be reached among different design groups working on the same project. Another attractive feature
of the quaternion based model is that a full quaternion model does not have any singular point in any rotational sequence. Therefore, quaternion model-based control design methods using the Lyapunov function have been discussed in many research papers, for example, [32, 278, 282]. Though the Lyapunov function is a powerful tool in global stability analysis, obtaining a control law and the associated Lyapunov function for the nonlinear systems is postulated by intuition, as noted in [194]. Moreover, most of these designs focus on global stability and do not pay much attention to the performance of the control system. In [194, 284], quaternion based linear error dynamics are adapted to get the desired performance for the attitude control system using classical frequency domain methods. However, state space time domain design methods, such as optimal control and pole assignment, are more attractive than the classical frequency domain design methods. In [344], a linearized state space quaternion model is derived. Unfortunately, the analysis shows that the linearized state space representation of the full quaternion model using all four quaternion components is uncontrollable. Therefore, pole assignment can only be achieved in some controllable subspace in the linearized state space quaternion model using all four quaternion components. In addition, the stability of the linearized closed loop system is unknown because an uncontrollable eigenvalue is at the origin of the complex plane. In this chapter, firstly a controllable quaternion model for inertial pointing spacecraft has been described. To create a controlled quaternion model, just the vector component of the quaternion is used. The cost of using only three components of the quaternion in the model is that similar to the Euler angle representation, the reduced model has a singular point at $\alpha=\pm\pi$, where α is the rotation angle around the rotation axis. However, this singular point is the farthest point to the point where the linearization is carried out. Therefore, the model and designed controller will work well in many applications. Secondly, a controllable quaternion model for nadir pointing spacecraft with momentum wheel(s) has been presented. This is a different model from the inertial pointing spacecraft models without a momentum wheel discussed in many literatures. This model includes five important features of many low orbit nadir pointing spacecraft: (a) an additional term for the momentum wheels is incorporated into the nonlinear dynamic equations, (b) the local vertical local horizontal frame is used as the reference frame and the rotation between the local vertical local horizontal frame and the inertial frame is considered in the model similar to the treatment in [235] for the Euler angle based models, (c) gravity gradient torque, a dominant and predictable disturbance for low orbit spacecraft is included to improve the model accuracy, (d) unlike the Euler angle models, the reduced quaternion model does not depend on the rotational sequence, and (e) the singularity of the reduced quaternion model is at the farthest angle of π comparing to the singularity of Euler angle model at an angle of $\pi/2$. This chapter will show by using only the vector component of the quaternion, that these linearized spacecraft models are fully controllable. Therefore, it is easier to use these reduced models than the full quaternion models in controller design because all modern state space control system design methods can be applied directly. The stability of the designed closed-loop spacecraft system is guaranteed because the linearized control system is fully controllable. The justification of using reduced quaternion models and their benefits were fully discussed [307]. The similar strategy was used in [209, 214, 335] but the merits were not discussed. # 4.1 The general spacecraft system equations #### 4.1.1 The dynamics equation Let **J** be the *inertia matrix* of a spacecraft defined by $$\mathbf{J} = \begin{bmatrix} J_{11} & J_{12} & J_{13} \\ J_{21} & J_{22} & J_{23} \\ J_{31} & J_{32} & J_{33} \end{bmatrix}, \tag{4.1}$$ $\omega_I = [\omega_{I1}, \omega_{I2}, \omega_{I3}]^T$ be the *angular velocity* vector of the spacecraft body with respect to the inertial frame, represented in the spacecraft body frame, \mathbf{h}_I be the *angular momentum* vector of the spacecraft about its center of mass represented in the *inertial frame*, $\mathbf{h} = \mathbf{J}\omega_I$ be the same vector of \mathbf{h}_I but represented in the *body frame*, \mathbf{m} be the external torque acting on the body about its center of mass. Then, from [230], we have $$\mathbf{m} = \left(\frac{d\mathbf{h}_I}{dt}\right)\bigg|_{L}$$ In view of (3.17), we have $$\mathbf{m} = \left(\frac{d\mathbf{h}_I}{dt}\right)\Big|_b = \left(\frac{d\mathbf{h}}{dt}\right) + \boldsymbol{\omega}_I \times \mathbf{h}. \tag{4.2}$$ This gives $$\left(\frac{d\mathbf{h}}{dt}\right) = \mathbf{J}\dot{\boldsymbol{\omega}}_{I} = -\boldsymbol{\omega}_{I} \times \mathbf{J}\boldsymbol{\omega}_{I} + \mathbf{m}.$$ The external torques \mathbf{m} are normally composed of (a) disturbance torques \mathbf{t}_d due to gravitational, aerodynamic, solar radiation, and other environmental torques in body frame, and is expressed by $$\mathbf{t}_d = [t_{d1}, t_{d2}, t_{d3}]^{\mathrm{T}},\tag{4.3}$$ and (b) the control torque **u** expressed by $$\mathbf{u} = [u_1, u_2, u_3]^{\mathrm{T}}. (4.4)$$ Therefore. $$\mathbf{J}\dot{\boldsymbol{\omega}}_{I} = -\boldsymbol{\omega}_{I} \times (\mathbf{J}\boldsymbol{\omega}_{I}) + \mathbf{t}_{d} + \mathbf{u} = -\mathbf{S}(\boldsymbol{\omega}_{I})(\mathbf{J}\boldsymbol{\omega}_{I}) + \mathbf{t}_{d} + \mathbf{u}, \tag{4.5}$$ # 4.1.2 The kinematics equation Denote the rotational axis of a body frame relative to a reference frame by a unit length vector $\hat{\mathbf{e}}$, the rotational angle around the rotational axis by α , the scalar component of the quaternion by $q_0 = \cos(\frac{\alpha}{2})$, the vector component of the quaternion by $\mathbf{q} = [q_1, q_2, q_3]^{\mathrm{T}} = \hat{\mathbf{e}} \sin(\frac{\alpha}{2})$, then, the quaternion that represents the rotation of the body frame relative to the reference frame is given by $$\bar{\mathbf{q}} = [q_0, \mathbf{q}^{\mathrm{T}}]^{\mathrm{T}} = \left[\cos\left(\frac{\alpha}{2}\right), \hat{\mathbf{e}}^{\mathrm{T}}\sin\left(\frac{\alpha}{2}\right)\right]^{\mathrm{T}}.$$ (4.6) Let ω be the spacecraft *body rate* with respect to reference frame represented in the body frame. From (3.65), which is repeated below, $$\begin{bmatrix} \dot{q}_{0} \\ \dot{q}_{1} \\ \dot{q}_{2} \\ \dot{q}_{3} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 & -\omega_{1} & -\omega_{2} & -\omega_{3} \\ \omega_{1} & 0 & \omega_{3} & -\omega_{2} \\ \omega_{2} & -\omega_{3} & 0 & \omega_{1} \\ \omega_{3} & \omega_{2} & -\omega_{1} & 0 \end{bmatrix} \begin{bmatrix} q_{0} \\ q_{1} \\ q_{2} \\ q_{3} \end{bmatrix}$$ $$= \frac{1}{2} \begin{bmatrix} q_{0} & -q_{1} & -q_{2} & -q_{3} \\ q_{1} & q_{0} & -q_{3} & q_{2} \\ q_{2} & q_{3} & q_{0} & -q_{1} \\ q_{3} & -q_{2} & q_{1} & q_{0} \end{bmatrix} \begin{bmatrix} 0 \\ \omega_{1} \\ \omega_{2} \\ \omega_{3} \end{bmatrix}, \quad (4.7)$$ the nonlinear spacecraft kinematics equations of motion can be represented by the quaternion as follows: $$\begin{cases} \dot{\mathbf{q}} = -\frac{1}{2}\boldsymbol{\omega} \times \mathbf{q} + \frac{1}{2}q_0\boldsymbol{\omega} \\ \dot{q}_0 = -\frac{1}{2}\boldsymbol{\omega}^{\mathrm{T}}\mathbf{q}. \end{cases} (4.8)$$ In view of (4.7), using the fact that $q_0 = \sqrt{1 - q_1^2 - q_2^2 - q_3^2}$, we have, $$\begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \sqrt{1 - q_1^2 - q_2^2 - q_3^2} & -q_3 & q_2 \\ q_3 & \sqrt{1 - q_1^2 - q_2^2 - q_3^2} & -q_1 \\ -q_2 & q_1 & \sqrt{1 - q_1^2 - q_2^2 - q_3^2} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix}$$ $$= \frac{1}{2} \mathbf{Q}(q_1, q_2, q_3) \boldsymbol{\omega} = \mathbf{g}(q_1, q_2, q_3, \boldsymbol{\omega}). \tag{4.9}$$ It is easy to verify $$\det\begin{pmatrix} \sqrt{1-q_1^2-q_2^2-q_3^2} & -q_3 & q_2 \\ q_3 & \sqrt{1-q_1^2-q_2^2-q_3^2} & -q_1 \\ -q_2 & q_1 & \sqrt{1-q_1^2-q_2^2-q_3^2} \end{pmatrix}$$ $$= \det(\mathbf{Q}(q_1, q_2, q_3)) = \frac{1}{\sqrt{1-q_1^2-q_2^2-q_3^2}}, \tag{4.10}$$ hence $\mathbf{Q}(q_1,q_2,q_3)$ is always a full rank matrix except for $\alpha=\pm\pi$. This means that unless $\alpha=\pm\pi$, the kinematics equation of motion using reduced quaternion representation can be simplified from (4.7) to (4.9). The main advantages of using (4.9) instead of (4.7) is as follows: (a) the system dimension is reduced from 7 to 6, yielding a simpler model, (b) the linearized system is controllable, (c) the stability analysis can be directly conducted based on the linearized system (there is no uncontrollable unstable pole, see [344]), and (d) all closed loop eigenvalues can be assigned to any position by appropriate feedback control law because the linearized system is controllable. The results presented in this chapter are based on [307, 309]. # 4.2 The inertial pointing spacecraft model # 4.2.1 The nonlinear inertial pointing spacecraft model The *inertial pointing spacecraft* is desired in many applications. The inertial pointing spacecraft model is one of the simplest spacecraft models. In this section, we assume that the spacecraft does not have a momentum wheel ($\mathbf{h}_w = 0$); therefore, the control torques are either thrusters or magnet torque rods or their combinations. (More details about spacecraft control actuators will be discussed in Chapter 10). To simplify the model further, we assume that the disturbance torque is negligible. In this case, (4.5) is reduced to $$\mathbf{J}\dot{\boldsymbol{\omega}}_{I} = -\boldsymbol{\omega}_{I} \times (\mathbf{J}\boldsymbol{\omega}_{I}) + \mathbf{u} =
-\mathbf{S}(\boldsymbol{\omega}_{I})(\mathbf{J}\boldsymbol{\omega}_{I}) + \mathbf{u}. \tag{4.11}$$ Let $\bar{\mathbf{q}}$ be the quaternion that represents the rotation of the spacecraft body frame relative to the inertial frame, the reduced kinematics equation is then the same as equation (4.9). # 4.2.2 The linearized inertial pointing spacecraft models We can derive the linearized spacecraft system from (4.11) and (4.9) by using the first order Taylor expansion around the stationary point $q_1 = q_2 = q_3 = 0$ and $\omega_I = 0$ as follows: $$\begin{split} \dot{\boldsymbol{\omega}}_{I} &\approx \mathbf{J}^{-1}\mathbf{u}, \\ \frac{\partial \mathbf{g}}{\partial \boldsymbol{\omega}_{I}} \bigg|_{\substack{\omega_{I} \approx 0 \\ q_{1} = q_{2} = q_{3} \approx 0}} \approx \frac{1}{2}\mathbf{I}_{3}, \\ \frac{\partial \mathbf{g}}{\partial \mathbf{q}} \bigg|_{\substack{\omega_{I} \approx 0 \\ q_{1} = q_{2} = q_{3} \approx 0}} \approx \frac{1}{2}\mathbf{0}_{3}. \end{split}$$ Therefore. $$\begin{bmatrix} \dot{\omega}_I \\ \dot{\mathbf{q}} \end{bmatrix} = \begin{bmatrix} \mathbf{0}_3 & \mathbf{0}_3 \\ \frac{1}{2}\mathbf{I}_3 & \mathbf{0}_3 \end{bmatrix} \begin{bmatrix} \boldsymbol{\omega}_I \\ \mathbf{q} \end{bmatrix} + \begin{bmatrix} \mathbf{J}^{-1} \\ \mathbf{0}_3 \end{bmatrix} \mathbf{u} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \tag{4.12}$$ where $$\mathbf{A} = \begin{bmatrix} \mathbf{0}_3 & \mathbf{0}_3 \\ \frac{1}{2}\mathbf{I}_3 & \mathbf{0}_3 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} \boldsymbol{\omega}_I \\ \mathbf{q} \end{bmatrix}, \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} \mathbf{J}^{-1} \\ \mathbf{0}_3 \end{bmatrix}$$ (4.13) It is easy to verify that this linearized spacecraft system equation is controllable. # 4.3 Nadir pointing momentum biased spacecraft model # 4.3.1 The nonlinear nadir pointing spacecraft model Momentum biased spacecraft is widely used in practice, and is discussed extensively in [235, Chapter 8]. For momentum biased spacecraft, a momentum wheel is installed in \mathbf{Y}_b axis which is perpendicular to the orbit plane. Normally, the momentum wheel spins in a constant speed, but it may also be used to generate control torque by changing the speed. Let $$\mathbf{h} = [h_1, h_2, h_3]^{\mathrm{T}} = [0, h_2, 0]^{\mathrm{T}}$$ (4.14) be the angular momentum of the momentum wheel in the body frame. The space-craft model (4.5) is therefore becomes $$\mathbf{J}\dot{\boldsymbol{\omega}}_{I} = -\boldsymbol{\omega}_{I} \times (\mathbf{J}\boldsymbol{\omega}_{I} + \mathbf{h}) + \mathbf{t}_{d} + \mathbf{u} = -\mathbf{S}(\boldsymbol{\omega}_{I})(\mathbf{J}\boldsymbol{\omega}_{I} + \mathbf{h}) + \mathbf{t}_{d} + \mathbf{u}, \tag{4.15}$$ For a nadir pointing spacecraft, the attitude of the spacecraft is represented by the rotation of the spacecraft body frame relative to the local vertical and local horizontal (LVLH) frame. Therefore, we will represent the quaternion and spacecraft body rate in terms of the rotations of the spacecraft body frame relative to the LVLH frame. Let $\boldsymbol{\omega} = [\omega_1, \omega_2, \omega_3]^T$ be the body rate with respect to the LVLH frame represented in the body frame, $\omega_{lvlh} = [0, -\omega_0, 0]^T$ be the *orbit rate* (or LVLH frame rate) with respect to the inertial frame, represented in the LVLH frame. Let v be the speed of the spacecraft, r be the distance from the spacecraft to the center of the Earth, p be the orbit period, then for circular orbit spacecraft, we have (see also the definition of mean motion of (2.55)) $$\omega_0 = \frac{v}{r} = \frac{2\pi}{p}.\tag{4.16}$$ Let A_l^b represent the *transformation matrix* from the LVLH frame to the space-craft body frame. Then, ω_l can be expressed by $$\omega_I = \omega + \mathbf{A}_l^b \omega_{lvlh} = \omega + \omega_{lvlh}^b \tag{4.17}$$ where $\omega_{lvlh}^b = \mathbf{A}_l^b \omega_{lvlh}$ is the rate of the LVLH frame with respect to the inertial frame, represented in the body frame. From (3.16), $\dot{A}_l^b = -\omega \times A_l^b$, therefore, $\dot{\omega}_l$ is given by $$\dot{\boldsymbol{\omega}}_{I} = \dot{\boldsymbol{\omega}} + \dot{\mathbf{A}}_{I}^{b} \boldsymbol{\omega}_{lvlh} + \mathbf{A}_{I}^{b} \dot{\boldsymbol{\omega}}_{lvlh} = \dot{\boldsymbol{\omega}} - \boldsymbol{\omega} \times \mathbf{A}_{I}^{b} \boldsymbol{\omega}_{lvlh} = \dot{\boldsymbol{\omega}} - \boldsymbol{\omega} \times \boldsymbol{\omega}_{lvlh}^{b}$$ (4.18) where we assumed that $\dot{\omega}_{lvlh}$ is small and can be neglected¹. Using Equations (4.17) and (4.18), we can rewrite Equation (4.15) as $$\mathbf{J}\dot{\boldsymbol{\omega}} = \mathbf{J}(\boldsymbol{\omega} \times \boldsymbol{\omega}_{lvlh}^b) - \boldsymbol{\omega} \times (\mathbf{J}\boldsymbol{\omega}) - \boldsymbol{\omega} \times (\mathbf{J}\boldsymbol{\omega}_{lvlh}^b) - \boldsymbol{\omega}_{lvlh}^b \times (\mathbf{J}\boldsymbol{\omega})$$ ¹This assumption is true for most satellites as long as the orbit eccentricity is small, i.e., the orbit is close to a circle. $$-\boldsymbol{\omega}_{lvlh}^{b} \times (\mathbf{J}\boldsymbol{\omega}_{lvlh}^{b}) - \boldsymbol{\omega} \times \mathbf{h} - \boldsymbol{\omega}_{lvlh}^{b} \times \mathbf{h} + \mathbf{t}_{d} + \mathbf{u}$$ $$= \mathbf{f}(\boldsymbol{\omega}, \boldsymbol{\omega}_{lvlh}^{b}, \mathbf{h}) + \mathbf{t}_{d} + \mathbf{u}, \tag{4.19}$$ where $$\mathbf{f}(\boldsymbol{\omega}, \boldsymbol{\omega}_{lvlh}^{b}, \mathbf{h})$$ $$= \mathbf{J}(\boldsymbol{\omega} \times \boldsymbol{\omega}_{lvlh}^{b}) - \boldsymbol{\omega} \times (\mathbf{J}\boldsymbol{\omega}) - \boldsymbol{\omega} \times (\mathbf{J}\boldsymbol{\omega}_{lvlh}^{b}) - \boldsymbol{\omega}_{lvlh}^{b} \times (\mathbf{J}\boldsymbol{\omega})$$ $$- \boldsymbol{\omega}_{lvlh}^{b} \times (\mathbf{J}\boldsymbol{\omega}_{lvlh}^{b}) - \boldsymbol{\omega} \times \mathbf{h} - \boldsymbol{\omega}_{lvlh}^{b} \times \mathbf{h}$$ (4.20) Let $\bar{\mathbf{q}} = [q_0, q_1, q_2, q_3]^{\mathrm{T}} = [q_0, \mathbf{q}^{\mathrm{T}}]^{\mathrm{T}} = [\cos(\frac{\alpha}{2}), \hat{\mathbf{e}}^{\mathrm{T}}\sin(\frac{\alpha}{2})]^{\mathrm{T}}$ be the quaternion representing the rotation of the body frame relative to the LVLH frame, where $\hat{\mathbf{e}}$ is the unit length rotational axis and α is the rotation angle about $\hat{\mathbf{e}}$. Therefore, the reduced kinematics equation is given by (4.9). From (3.61), \mathbf{A}_l^b can be written as $$\mathbf{A}_{l}^{b} = \left[\begin{array}{cccc} 2q_{0}^{2} - 1 + 2q_{1}^{2} & 2q_{1}q_{2} + 2q_{0}q_{3} & 2q_{1}q_{3} - 2q_{0}q_{2} \\ 2q_{1}q_{2} - 2q_{0}q_{3} & 2q_{0}^{2} - 1 + 2q_{2}^{2} & 2q_{2}q_{3} + 2q_{0}q_{1} \\ 2q_{1}q_{3} + 2q_{0}q_{2} & 2q_{2}q_{3} - 2q_{0}q_{1} & 2q_{0}^{2} - 1 + 2q_{3}^{2} \end{array} \right].$$ #### 4.3.2 The linearized nadir pointing spacecraft model It is difficult to design a controller with specified performance (such as settling time, rising time, and percentage of overshoot) using the nonlinear spacecraft system model described by (4.19) and (4.9). The common practice is to design the controller using a linearized system and then check if the designed controller works for the original nonlinear system using simulation. For a nadir pointing spacecraft system, we need the closed loop spacecraft system to have the following features: (a) the spacecraft body rate with respect to the LVLH frame is as small as possible, ideally, $\omega = 0$; and (b) the spacecraft body frame is aligned with the LVLH frame, i.e., the error is as small as possible, ideally, $q_1 = q_2 = q_3 = 0$. Since the rotation axis length is always 1, this implies that the rotation angle $\alpha = 0$. Therefore, the linearized model is the first order model of Taylor expansion of the nonlinear system (4.19) and (4.9) about $\omega = 0$ and $q_1 = q_2 = q_3 = 0$. By using quaternion representation of \mathbf{A}_l^b , assuming \mathbf{J} is almost diagonal (which is almost always true in real spacecraft designs), and neglecting high order terms of q_1 , q_2 , and q_3 , we have the following relations. $$\boldsymbol{\omega}_{lvlh}^{b} = \mathbf{A}_{l}^{b} \boldsymbol{\omega}_{lvlh} = \begin{bmatrix} 2q_{1}q_{2} + 2q_{0}q_{3} \\ 2q_{0}^{2} - 1 + 2q_{2}^{2} \\ 2q_{2}q_{3} - 2q_{0}q_{1} \end{bmatrix} (-\boldsymbol{\omega}_{0}) \Big|_{\substack{\boldsymbol{\omega} \approx 0 \\ q_{1} = q_{2} = q_{3} \approx 0}} \approx \begin{bmatrix} -2q_{3} \\ -1 \\ 2q_{1} \end{bmatrix} \boldsymbol{\omega}_{0},$$ $$(4.21)$$ Using (1.6) and $$\mathbf{J}\omega_{lvlh}^{b} pprox \left[egin{array}{c} -2J_{11}q_{3}\omega_{0} \ -J_{22}\omega_{0} \ 2J_{33}q_{1}\omega_{0} \end{array} ight],$$ we have $$\begin{aligned} & \omega_{lvlh}^{b} \times (\mathbf{J}\omega_{lvlh}^{b}) \Big|_{\substack{\omega \approx 0 \\ q_{1}=q_{2}=q_{3}\approx 0}} \\ &= \begin{bmatrix} 0 & 2q_{1}\omega_{0} & \omega_{0} \\ -2q_{1}\omega_{0} & 0 & -2q_{3}\omega_{0} \\ -\omega_{0} & 2q_{3}\omega_{0} & 0 \end{bmatrix} \begin{bmatrix} 2J_{11}q_{3}\omega_{0} \\ J_{22}\omega_{0} \\ -2J_{33}q_{1}\omega_{0} \end{bmatrix} \Big|_{\substack{\omega \approx 0 \\ q_{1}=q_{2}=q_{3}\approx 0}} \\ &\approx \omega_{0}^{2} \begin{bmatrix} 2(J_{22}-J_{33})q_{1} \\ 0 \\ 2(J_{22}-J_{11})q_{3} \end{bmatrix}, \tag{4.22}$$ and $$\left. \begin{array}{ccc} \boldsymbol{\omega}_{lvlh}^{b} \times \mathbf{h} \middle|_{\substack{\omega \approx 0 \\ q_{1} = q_{2} = q_{3} \approx 0}} &= & - \begin{bmatrix} 0 & 2q_{1}\boldsymbol{\omega}_{0} & \boldsymbol{\omega}_{0} \\ -2q_{1}\boldsymbol{\omega}_{0} & 0 & -2q_{3}\boldsymbol{\omega}_{0} \\ -\boldsymbol{\omega}_{0} & 2q_{3}\boldsymbol{\omega}_{0} & 0 \end{bmatrix} \begin{bmatrix} 0 \\ h_{2} \\ 0 \end{bmatrix} \middle|_{\substack{\omega \approx 0 \\ q_{1} = q_{2} = q_{3} \approx 0}} \\ \approx & -\boldsymbol{\omega}_{0} \begin{bmatrix} 2h_{2}q_{1} \\ 0 \\ 2h_{2}q_{3} \end{bmatrix}. \tag{4.23}$$ Using (4.21), (4.22), and (4.23), we have $$\left. \frac{\partial \mathbf{f}}{\partial \boldsymbol{\omega}} \right
_{\substack{\boldsymbol{\omega} \approx 0 \\ q_1 = q_2 = q_3 \approx 0}} \approx -\mathbf{J}\mathbf{S}(\boldsymbol{\omega}_{lvlh}^b) + \mathbf{S}(\mathbf{J}\boldsymbol{\omega}_{lvlh}^b) - \mathbf{S}(\boldsymbol{\omega}_{lvlh}^b)\mathbf{J} + \mathbf{S}(\mathbf{h}), \tag{4.24}$$ $$\frac{\partial \mathbf{f}}{\partial \mathbf{q}} \bigg|_{\substack{\boldsymbol{\omega} \approx 0 \\ q_1 = q_2 = q_3 \approx 0}} = \frac{\partial (-\boldsymbol{\omega}_{lvlh}^b \times (\mathbf{J} \boldsymbol{\omega}_{lvlh}^b) - \boldsymbol{\omega}_{lvlh}^b \times \mathbf{h})}{\partial \mathbf{q}} \bigg|_{\substack{\boldsymbol{\omega} \approx 0 \\ q_1 = q_2 = q_3 \approx 0}} \\ \approx \begin{bmatrix} 2\boldsymbol{\omega}_0^2 (J_{33} - J_{22}) + 2h_0 \boldsymbol{\omega}_0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2\boldsymbol{\omega}_0^2 (J_{11} - J_{22}) + 2h_0 \boldsymbol{\omega}_0 \end{bmatrix}, \tag{4.25}$$ $$\frac{\partial \mathbf{g}}{\partial \omega} \bigg|_{\substack{\omega \approx 0 \\ q_1 = q_2 = q_3 \approx 0}} \approx \frac{1}{2} \mathbf{I}_3, \tag{4.26}$$ $$\frac{\partial \mathbf{g}}{\partial \mathbf{q}} \bigg|_{\substack{\omega \approx 0 \\ q_1 = q_2 = q_3 \approx 0}} \approx \frac{1}{2} \mathbf{0}_3, \tag{4.27}$$ where I_3 is a 3 × 3 dimensional identity matrix, $\mathbf{0}_3$ is a 3 × 3 dimensional zero matrix. Equation (4.24) can be simplified further as follows. $$\mathbf{JS}(\boldsymbol{\omega}_{lvlh}^{b}) = -\begin{bmatrix} -J_{13}\boldsymbol{\omega}_{0} & 0 & J_{11}\boldsymbol{\omega}_{0} \\ -J_{23}\boldsymbol{\omega}_{0} & 0 & J_{21}\boldsymbol{\omega}_{0} \\ -J_{33}\boldsymbol{\omega}_{0} & 0 & J_{31}\boldsymbol{\omega}_{0} \end{bmatrix} = \begin{bmatrix} 0 & 0 & -J_{11}\boldsymbol{\omega}_{0} \\ 0 & 0 & 0 \\ J_{33}\boldsymbol{\omega}_{0} & 0 & J0 \end{bmatrix}. \quad (4.28)$$ $$\mathbf{S}(\mathbf{J}\boldsymbol{\omega}_{lvlh}^{b}) = -\begin{bmatrix} 0 & -J_{32}\boldsymbol{\omega}_{0} & J_{22}\boldsymbol{\omega}_{0} \\ J_{32}\boldsymbol{\omega}_{0} & 0 & -J_{12}\boldsymbol{\omega}_{0} \\ -J_{22}\boldsymbol{\omega}_{0} & J_{12}\boldsymbol{\omega}_{0} & 0 \end{bmatrix}$$ $$= \begin{bmatrix} 0 & 0 & -J_{22}\boldsymbol{\omega}_{0} \\ 0 & 0 & 0 \\ J_{22}\boldsymbol{\omega}_{0} & 0 & 0 \end{bmatrix}. \tag{4.29}$$ $$\mathbf{S}(\boldsymbol{\omega}_{lvlh}^{b})\mathbf{J} = -\begin{bmatrix} J_{31}\boldsymbol{\omega}_{0} & J_{32}\boldsymbol{\omega}_{0} & J_{33}\boldsymbol{\omega}_{0} \\ 0 & 0 & 0 \\ -J_{11}\boldsymbol{\omega}_{0} & -J_{12}\boldsymbol{\omega}_{0} & -J_{13}\boldsymbol{\omega}_{0} \end{bmatrix}$$ $$= \begin{bmatrix} 0 & 0 & -J_{33}\boldsymbol{\omega}_{0} \\ 0 & 0 & 0 \\ J_{11}\boldsymbol{\omega}_{0} & 0 & 0 \end{bmatrix}. \tag{4.30}$$ $$\mathbf{S}(\mathbf{h}) = \begin{bmatrix} 0 & 0 & h_2 \\ 0 & 0 & 0 \\ -h_2 & 0 & 0 \end{bmatrix}. \tag{4.31}$$ Therefore $$\frac{\partial \mathbf{f}}{\partial \omega} \Big|_{\substack{\omega \approx 0 \\ q_1 = q_2 = q_3 \approx 0}} = \begin{bmatrix} 0 & 0 & (J_{11} - J_{22} + J_{33})\omega_0 + h_2 \\ 0 & 0 & 0 \\ -(J_{11} - J_{22} + J_{33})\omega_0 - h_2 & 0 & 0 \end{bmatrix}.$$ (4.32) For many nadir pointing satellites, we need to model the disturbance torque in the linearized model. For low Earth orbit spacecraft, aerodynamic torque, and gravity gradient torque are the dominant disturbance torques. It is difficult to model the aerodynamic torque because it is related to solar activity, geomagnetic index, spacecraft geometry, spacecraft attitude, spacecraft altitude, and many other factors, but it is known that the gravity gradient torque can be modeled by (see derivation in Chapter 5 or [235, 85]) $$\mathbf{t}_{gg} = \begin{bmatrix} 3\omega_0^2 (J_{33} - J_{22})\phi \\ 3\omega_0^2 (J_{33} - J_{11})\theta \\ 0 \end{bmatrix}, \tag{4.33}$$ where ϕ and θ are the Euler angles for the roll and the pitch. For small Euler angles (see [283]), $\phi = 2q_1$ and $\theta = 2q_2$, this gives $$\mathbf{t}_{gg} = \begin{bmatrix} 6\omega_0^2(J_{33} - J_{22})q_1 \\ 6\omega_0^2(J_{33} - J_{11})q_2 \\ 0 \end{bmatrix}$$ $$= \begin{bmatrix} 6\omega_0^2(J_{33} - J_{22}) & 0 & 0 \\ 0 & 6\omega_0^2(J_{33} - J_{11}) & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix}. \quad (4.34)$$ From (4.19), $\mathbf{J}\dot{\boldsymbol{\omega}} \approx \frac{\partial \mathbf{f}}{\partial \boldsymbol{\omega}} \boldsymbol{\omega} + \frac{\partial \mathbf{f}}{\partial \mathbf{q}} \mathbf{q} + \mathbf{t}_d + \mathbf{u}. \tag{4.35}$ Assuming $\mathbf{t}_d = \mathbf{t}_{gg}$, and combining equations (4.35), (4.25), (4.26), (4.27), (4.32), and (4.34), we have the quaternion based linearized spacecraft system described by $$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & J_{11} & J_{12} & J_{13} \\ 0 & 0 & 0 & J_{21} & J_{22} & J_{23} \\ 0 & 0 & 0 & J_{31} & J_{32} & J_{33} \end{bmatrix} \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \\ \dot{\omega}_1 \\ \dot{\omega}_2 \\ \dot{\omega}_3 \end{bmatrix}$$ $$= \begin{bmatrix} 0 & 0 & 0 & .5 & 0 & 0 \\ 0 & 0 & 0 & 0 & .5 & 0 \\ 0 & 0 & 0 & 0 & 0 & .5 & 0 \\ 0 & 0 & 0 & 0 & 0 & .5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & .5 \\ f_{41} & 0 & 0 & 0 & 0 & 0 & f_{46} \\ 0 & f_{52} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & f_{63} & f_{64} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ u_x \\ u_y \\ u_z \end{bmatrix}$$ $$(4.36)$$ where $f_{41} = 8(J_{33} - J_{22})\omega_0^2 + 2h_2\omega_0$, $f_{46} = (J_{11} - J_{22} + J_{33})\omega_0 + h_2$, $f_{64} = -f_{46}$, $f_{52} = 6(J_{33} - J_{11})\omega_0^2$, and $f_{63} = 2(J_{11} - J_{22})\omega_0^2 + 2h_2\omega_0$. It is straightforward to check that the linearized spacecraft model is fully controllable. Therefore, all modern control design methods in linear system theory can be applied directly, and the designed linear system is guaranteed to be stable. Clearly, it is easy to modify the model to include three reaction wheels. # Chapter 5 # **Space Environment and Disturbance Torques** The previous chapter briefly mentioned that *disturbance torques* affect spacecraft attitude. The gravitational torque was considered in the modeling process because this torque is predictable and easy to calculate. There are several other disturbance torques induced by the space environment. These torques can significantly affect the attitude of spacecraft if the attitude control system is not well designed because these torques are difficult to predict and they are likely not incorporated into the spacecraft dynamics models used for the control system design. These unmodeled torques introduce uncertainties. Although these disturbance torques are normally not considered in the analytical models used to design the controllers, in engineering design practice, the designed controller should be able to compensate for these unmodeled disturbance torques to make sure a spacecraft's attitude is aligned with its desired frame. On the other hand, given the information such as the geometry, the electrical and the mechanical properties of the spacecraft, the attitude, the altitude, the coordinate, the speed of the spacecraft, the current time, etc., we are still able to model the space environment and to approximately calculate these disturbance torques. Therefore, in engineering practice, the designed controllers' performances should be verified or tested in a simulation system that includes both the space environment models and the disturbance torques omitted in the design stage. In this chapter, we will discuss the models of the most significant space environment phenomena and the associated unmodeled disturbance torques. ### 5.1 Gravitational torques The study of a rigid body in a gravitational field is based on Newton's laws. The problem has been studied for hundreds of years. A good historical review in this field can be found in [85]. The importance of gravitational torques on spacecraft was quickly realized in the early stage of the spacecraft development. For example, a detailed analysis of various disturbance torques acted on Sputnik 3 has shown that the gravitational torque was the major disturbance torque and was larger, by a factor of six, than the next largest disturbance torque, the magnetic torque acted on the spacecraft [17]. This large disturbance torque caused some operational problems for some spacecraft when the designs did not consider this disturbance torque. For example, the first Canadian spacecraft, Alouette 1, was spin stabilized and employed four long antennas. The long booms cause a large inertia difference which introduced a comparatively rapid precession [193]. The adversary effect of the gravitational torques was carefully studied and the formula of gravitational torque was derived. An experiment was conducted in spacecraft Explorer 11 where the angular momentum vector was determined by radio signals and the spacecraft's motion was checked against calculated gravitational torque acting on the spacecraft. A good match between calculated torque and measured torque is obtained [186]. The knowledge about the gravitational torques is sometimes used in spacecraft design to stabilize some spacecraft [235]. Now, it has become a widely accepted engineering practice to include the gravitational torque in spacecraft models whenever it is appropriate. But still, in some applications, gravitational torques are treated as unmodeled disturbances. Our description of gravitational torques in this section follows the style of [85, 235]. Let **r** be a vector of length r along the line connecting the centers of mass of two objects whose masses are m_1 and m_2 . Let $G = 6.669 * 10^{-11} m^3 / kg - s^2$ be the universal constant of gravitation. The force attracting the two objects each other is given by (2.2) (see also [230]) $$\mathbf{f} = \frac{Gm_1m_2\mathbf{r}}{|\mathbf{r}|^3}.$$ If the first object is the Earth, and the second object is the
spacecraft, since the mass of the Earth m_1 is a constant, we can simplify the formula as $$\mathbf{f} = \frac{\mu m \mathbf{r}}{|\mathbf{r}|^3},$$ where $\mu = Gm_1$ is the geocentric gravitational constant of the Earth and $m = m_2$ is the mass of the spacecraft. Let dm be an small element of the spacecraft, the vector from the center of the mass of the spacecraft to dm be \mathbf{p} , the vector from the center of Earth to the center of the mass of the spacecraft be \mathbf{R} . Since $\mathbf{r} = \mathbf{R} + \mathbf{p}$ and $d\mathbf{f} = -\frac{\mu dm}{|\mathbf{r}|^3}\mathbf{r}$, the gravitational torque or the moment induced by dm about the center of the mass of the spacecraft is given by $$d\mathbf{t}_{g} = \mathbf{p} \times d\mathbf{f} = -\mathbf{p} \times \frac{\mu dm}{|\mathbf{r}|^{3}} \mathbf{r} = -\frac{\mu dm}{|\mathbf{r}|^{3}} \mathbf{p} \times \mathbf{r} \approx -\frac{\mu dm}{|\mathbf{r}|^{3}} \mathbf{p} \times \mathbf{R}.$$ (5.1) Since $|\mathbf{p}| \ll |\mathbf{R}|$ and for small x, $(1+x)^{-k} \approx 1 - kx$, $$|\mathbf{r}|^{-3} = \left((\mathbf{R} + \mathbf{p})^{\mathrm{T}} (\mathbf{R} + \mathbf{p}) \right)^{-\frac{3}{2}} = \left(|\mathbf{R}|^{2} + 2\mathbf{R} \cdot \mathbf{p} + |\mathbf{p}|^{2} \right)^{-\frac{3}{2}}$$ $$\approx |\mathbf{R}|^{-3} \left(1 + \frac{2\mathbf{R} \cdot \mathbf{p}}{|\mathbf{R}|^{2}} \right)^{-\frac{3}{2}} \approx |\mathbf{R}|^{-3} \left(1 - \frac{3\mathbf{R} \cdot \mathbf{p}}{|\mathbf{R}|^{2}} \right). \tag{5.2}$$ Integrating of (5.1) over the entire spacecraft body mass and using (5.2) yield $$\mathbf{t}_{g} = \int -\frac{\mu dm}{|\mathbf{R}|^{3}} \left(1 - \frac{3\mathbf{R} \cdot \mathbf{p}}{|\mathbf{R}|^{2}} \right) \mathbf{p} \times \mathbf{R}. \tag{5.3}$$ Because $\int \mathbf{p}dm = 0$ by the definition of the center of mass, the gravitational torque or gravity gradient torque is given by $$\mathbf{t}_{g} = \frac{3\mu}{|\mathbf{R}|^{5}} \int (\mathbf{R} \cdot \mathbf{p})(\mathbf{p} \times \mathbf{R}) dm = -\frac{3\mu}{|\mathbf{R}|^{5}} \mathbf{R} \times \int \mathbf{p}(\mathbf{p} dm \cdot \mathbf{R}). \tag{5.4}$$ Using the definition of *inertia dyadic* (see for example [284, page 335]) $$\mathbf{J} = \int (\boldsymbol{\rho}^2 \mathbf{I} - \mathbf{p} \mathbf{p}) dm,$$ or $$\int \mathbf{p}\mathbf{p}dm = \int \rho^2 \mathbf{I}dm - \mathbf{J},$$ we can reduce (5.4) as $$\mathbf{t}_{g} = -\frac{3\mu}{|\mathbf{R}|^{5}} \mathbf{R} \times \int (\rho^{2} \mathbf{I} dm - \mathbf{J}) \cdot \mathbf{R} = \frac{3\mu}{|\mathbf{R}|^{5}} \mathbf{R} \times \mathbf{J} \mathbf{R}, \tag{5.5}$$ where the last relation uses the fact that $\mathbf{R} \times \rho^2 \mathbf{IR} = \rho^2 \mathbf{R} \times \mathbf{R} = 0$. We need to represent the *gravity gradient torque* in the body frame. Notice that in local vertical local horizontal frame, $$\mathbf{R} = \left[\begin{array}{c} 0 \\ 0 \\ -|\mathbf{R}| \end{array} \right].$$ Let $\bar{\mathbf{q}}$ be the quaternion transformation between body frame and local vertical local horizontal frame. Then, using (3.61), we can represent \mathbf{R} in body frame as $$\mathbf{R} = \begin{bmatrix} 2q_0^2 - 1 + 2q_1^2 & 2q_1q_2 + 2q_0q_3 & 2q_1q_3 - 2q_0q_2 \\ 2q_1q_2 - 2q_0q_3 & 2q_0^2 - 1 + 2q_2^2 & 2q_2q_3 + 2q_0q_1 \\ 2q_1q_3 + 2q_0q_2 & 2q_2q_3 - 2q_0q_1 & 2q_0^2 - 1 + 2q_3^2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -|\mathbf{R}| \end{bmatrix}.$$ When body frame is close to local vertical local horizontal frame, $q_0 \approx 1$, $q_1 \approx 0$, $q_2 \approx 0$, and $q_3 \approx 0$, this means $$\mathbf{R} = |\mathbf{R}| \begin{bmatrix} 2q_2 \\ -2q_1 \\ -1 \end{bmatrix}.$$ Assuming that $\mathbf{J} = \text{diag}(J_{11}, J_{22}, J_{33})$, we have $$\mathbf{R} \times \mathbf{J}\mathbf{R} \approx |\mathbf{R}|^2 \begin{bmatrix} 2q_1(J_{33} - J_{22}) \\ 2q_2(J_{33} - J_{11}) \\ 0 \end{bmatrix}.$$ (5.6) Since the lateral velocity of a body in a circular orbit of radius $|\mathbf{R}|$ is given in (2.32) (see also [284, page 221]) $$v = \sqrt{\frac{\mu}{|\mathbf{R}|}},\tag{5.7}$$ and angular orbital velocity of the body is given by (2.55) $$\omega_0 = \frac{v}{|\mathbf{R}|} = \sqrt{\frac{\mu}{|\mathbf{R}|^3}},\tag{5.8}$$ substituting (5.6) and (5.8) into (5.5) yields $$\mathbf{t}_{g} = \begin{bmatrix} 6\omega_{0}^{2}(J_{33} - J_{22})q_{1} \\ 6\omega_{0}^{2}(J_{33} - J_{11})q_{2} \\ 0 \end{bmatrix}$$ (5.9) which is identical to (4.34) used in the linearized model for the controller design. To verify the controller design in a simulation system, the more accurate formula (5.5) should be used. ### 5.2 Atmosphere-induced torques Atmospheric condition is the source that causes one of the major disturbance torques for spacecraft. The atmospheric condition is determined by many factors. The most significant one is the air density that directly affects the torques which result from aerodynamic interaction between the spacecraft and the atmosphere. A simple conservative estimate of the aerodynamic force that involves only the density is given in [153]. $$\mathbf{f} = -\rho V^2 [(2 - \sigma_n - \sigma_t)(\mathbf{e}_v \cdot \mathbf{e}_n)^2 \mathbf{e}_n + \sigma_t (\mathbf{e}_v \cdot \mathbf{e}_n) \mathbf{e}_v] dA, \tag{5.10}$$ where \mathbf{f} is the aerodynamic force on an element area dA, dA is the projected area of spacecraft element normal to the incident flow which is related to the spacecraft geometry and attitude, V is the spacecraft velocity which is related to the altitude of the spacecraft, ρ is the atmospheric density, σ_n is the normal momentum exchange coefficient, σ_t is the tangential momentum exchange coefficient, \mathbf{e}_v is the unit spacecraft velocity vector, and \mathbf{e}_n is the outward unit vector normal to dA. The momentum exchange coefficients are generally considered to be functions of the surface material of the spacecraft. An empirical value of 0.8 has been used for σ_t and σ_n in applications. For some simple geometric figures, formulas of aerodynamic force are given in [283, page 575, Table 17–3]. Having the aerodynamic force, the aerodynamic torque can be evaluated by $$\mathbf{t}_a = \mathbf{r} \times \mathbf{f},\tag{5.11}$$ where \mathbf{r} is the moment arm. The density varies due to a lot of factors, but a very simple graph that represents density as a function of altitude can be used for a coarse estimation [283, page 107]. More complex modeling atmospheres have been developed based on both physical relationships and observed phenomena [274, 275]. A detailed description of the theory and observations are beyond the scope of this book. In [148], seven different effects other than altitude that result in variations of density, temperature, and composition of the upper atmosphere are listed as follows: variations with solar activity diurnal variation variations with geomagnetic activity semiannual variation seasonal-latitudinal variations of the lower thermo-sphere seasonal-latitudinal variations of helium rapid density fluctuations probably associated with tidal and gravity waves These effects are discussed in detail and many references are provided in [148]. To compute more accurate atmospheric density that takes these effects into account, a set of formulas that use 10.7-cm solar flux and geomagnetic activity as inputs are also provided in Appendix A of [148]. Some NASA programs [147] use the density model of [177] which is based on an analytic approximation to the Harris-Priester atmospheric model [86, 87]. The density values at a fixed height h above the Earth for either the minimum atmospheric density (ρ_{min}) or the maximum atmospheric density (ρ_{max}) can be represented by the following simple analytic formula [177]. $$\rho(f,h) = A(f - 65)^{\alpha} + B\left(2 - e^{-\beta(f - 65)}\right),\tag{5.12}$$ where ρ is the density, A, B, α, β are height-dependent, best-fit parameters to fit the tabulated Harris-Priester density values, and f is the 10.7-centimeter solar flux level in units of 10–22 watts/meter2/hertz, an uplinkable parameter, commonly referred to as F10.7. For any given height h, ρ_{min} and ρ_{max} can be obtained by interpolating between the two adjacent heights, h_1 and h_2 , for which parametric equations are available, as follows: $$\rho(f,h) = \rho(f,h_1) \left[\frac{\rho(f,h_2)}{\rho(f,h_1)} \right]^k, \tag{5.13}$$ where $h_1 < h < h_2$ and $k = \frac{h-h_1}{h_2-h_1}$. If h is smaller than 110 kilometer, the formula (5.12) can be used to get the density. If h is greater than 2000 kilometer, then density is 0. The best-fit of A, B, α, β for ρ_{min} and ρ_{max} are given in Tables 5.1 and 5.2. A day-to-night variation in the density of the upper atmosphere was recognized in early investigations of spacecraft drag. In the sunlit hemisphere, the density is greater than in the dark hemisphere, so the effect of the diurnal variation produces an atmospheric bulge, which is referred to as the "diurnal bulge". Therefore, a more accurate density estimation is between ρ_{min} and ρ_{max} . For details, readers are referred to [147]. | Table 5.1: Best-fit | parameters for | the 1 | Harris-l | Priester | minimum | atmosp | heric c | lensity, | ρ_{min} . | |----------------------------|----------------|-------|----------|----------|---------|--------|---------|----------|----------------| |----------------------------|----------------|-------|----------|----------|---------|--------|---------|----------|----------------| | h (km) | A (km/km^3) | α_{min} | $B(km/km^3)$ | eta_{min} | |--------|---------------|----------------|--------------|-------------| | 110 | 7.8000D+01 | 0.0 | 0.0 | 0.0 | | 120 | 2.4900D+01 | 0.0 | 0.0 | 0.0 | | 130 | -1.1939D-02 | 0.8751 | 8.9780D+00 | 0.0 | | 140 | -3.3128D-03 | 0.8803 | 4.0690D+00 | 0.0 | | 150 | 3.0904D-03 | 0.5179 | 2.0860D+00 | 0.0 | | 160 | 3.8306D-03 | 0.7550 | 1.1460D+00 | 0.0 | | 170 | 3.8433D-03 |
0.7929 | 6.6160D-01 | 0.0 | | 180 | 2.6344D-03 | 0.8610 | 4.0160D-01 | 0.0 | | 190 | 1.9229D-03 | 0.8996 | 2.5300D-01 | 0.0 | | 200 | 1.4409D-03 | 0.9285 | 1.6280D-01 | 0.0 | | 210 | 9.3739D-04 | 0.9807 | 1.0760D-01 | 0.0 | | 220 | 5.8783D-04 | 1.0373 | 7.2870D-02 | 0.0 | | 230 | 3.8447D-04 | 1.0837 | 5.0380D-02 | 0.0 | | 240 | 2.5352D-04 | 1.1285 | 3.5490D-02 | 0.0 | | 250 | 1.6852D-04 | 1.1720 | 2.5410D-02 | 0.0 | | 260 | 1.1296D-04 | 1.2142 | 1.8460D-02 | 0.0 | | 270 | 7.7290D-05 | 1.2528 | 1.3580D-02 | 0.0 | | 280 | 5.3951D-05 | 1.2880 | 1.0100D-02 | 0.0 | | 300 2.7122D-05 1.3533 5.7190D-03 0 320 5.7779D-06 1.5646 3.3050D-03 6.673 340 2.4895D-06 1.6656 1.9530D-03 8.878 360 1.1952D-06 1.7486 1.1750D-03 1.087 380 6.0302D-07 1.8240 7.1670D-04 1.300 400 3.1547D-07 1.8940 4.4280D-04 1.512 420 1.7111D-07 1.9579 2.7790D-04 1.760 440 9.1715D-08 2.0256 1.7600D-04 1.986 460 4.9008D-08 2.0947 1.1280D-04 2.235 480 2.5849D-08 2.1671 7.3460D-05 2.483 500 1.3512D-08 2.2420 4.8660D-05 2.722 520 6.9794D-09 2.3197 3.2910D-05 2.930 540 3.5672D-09 2.4001 2.2790D-05 3.090 560 1.7865D-09 2.4851 1.6220D-05 3.192 580 8.91 | .0
.0
.0
9D.03
2D-03
5D-02
6D-02
9D-02
3D-02
7D-02 | |--|---| | 320 5.7779D-06 1.5646 3.3050D-03 6.673 340 2.4895D-06 1.6656 1.9530D-03 8.878 360 1.1952D-06 1.7486 1.1750D-03 1.087 380 6.0302D-07 1.8240 7.1670D-04 1.300 400 3.1547D-07 1.8940 4.4280D-04 1.512 420 1.7111D-07 1.9579 2.7790D-04 1.760 440 9.1715D-08 2.0256 1.7600D-04 1.986 460 4.9008D-08 2.0947 1.1280D-04 2.235 480 2.5849D-08 2.1671 7.3460D-05 2.483 500 1.3512D-08 2.2420 4.8660D-05 2.722 520 6.9794D-09 2.3197 3.2910D-05 2.930 540 3.5672D-09 2.4851 1.6220D-05 3.192 580 8.9173D-10 2.5712 1.1880D-05 3.215 600 4.3949D-10 2.6602 8.9780D-06 3.060 640 | 9D.03
2D-03
5D-02
6D-02
9D-02
3D-02
7D-02 | | 340 2.4895D-06 1.6656 1.9530D-03 8.878 360 1.1952D-06 1.7486 1.1750D-03 1.087 380 6.0302D-07 1.8240 7.1670D-04 1.300 400 3.1547D-07 1.8940 4.4280D-04 1.512 420 1.7111D-07 1.9579 2.7790D-04 1.760 440 9.1715D-08 2.0256 1.7600D-04 1.986 460 4.9008D-08 2.0947 1.1280D-04 2.235 480 2.5849D-08 2.1671 7.3460D-05 2.483 500 1.3512D-08 2.2420 4.8660D-05 2.722 520 6.9794D-09 2.3197 3.2910D-05 2.930 540 3.5672D-09 2.4001 2.2790D-05 3.090 560 1.7865D-09 2.4851 1.6220D-05 3.192 580 8.9173D-10 2.5712 1.1880D-05 3.215 600 4.3949D-10 2.6602 8.9780D-06 3.060 640 | 2D-03
5D-02
6D-02
9D-02
3D-02
7D-02 | | 360 1.1952D-06 1.7486 1.1750D-03 1.087 380 6.0302D-07 1.8240 7.1670D-04 1.300 400 3.1547D-07 1.8940 4.4280D-04 1.512 420 1.7111D-07 1.9579 2.7790D-04 1.760 440 9.1715D-08 2.0256 1.7600D-04 1.986 460 4.9008D-08 2.0947 1.1280D-04 2.235 480 2.5849D-08 2.1671 7.3460D-05 2.483 500 1.3512D-08 2.2420 4.8660D-05 2.722 520 6.9794D-09 2.3197 3.2910D-05 2.930 540 3.5672D-09 2.4001 2.2790D-05 3.090 560 1.7865D-09 2.4851 1.6220D-05 3.192 580 8.9173D-10 2.5712 1.1880D-05 3.215 600 4.3949D-10 2.6602 8.9780D-06 3.060 640 1.0590D-10 2.8414 5.5930D-06 2.927 660 | 5D-02
6D-02
9D-02
3D-02
7D-02
8D-02 | | 380 6.0302D-07 1.8240 7.1670D-04 1.300 400 3.1547D-07 1.8940 4.4280D-04 1.512 420 1.7111D-07 1.9579 2.7790D-04 1.760 440 9.1715D-08 2.0256 1.7600D-04 1.986 460 4.9008D-08 2.0947 1.1280D-04 2.235 480 2.5849D-08 2.1671 7.3460D-05 2.483 500 1.3512D-08 2.2420 4.8660D-05 2.722 520 6.9794D-09 2.3197 3.2910D-05 2.930 540 3.5672D-09 2.4001 2.2790D-05 3.090 560 1.7865D-09 2.4851 1.6220D-05 3.192 580 8.9173D-10 2.5712 1.1880D-05 3.215 600 4.3949D-10 2.6602 8.9780D-06 3.060 640 1.0590D-10 2.8414 5.5930D-06 2.927 660 5.2157D-11 2.9322 4.5890D-06 2.784 680 | 6D-02
9D-02
3D-02
7D-02
8D-02 | | 400 3.1547D-07 1.8940 4.4280D-04 1.512 420 1.7111D-07 1.9579 2.7790D-04 1.760 440 9.1715D-08 2.0256 1.7600D-04 1.986 460 4.9008D-08 2.0947 1.1280D-04 2.235 480 2.5849D-08 2.1671 7.3460D-05 2.483 500 1.3512D-08 2.2420 4.8660D-05 2.722 520 6.9794D-09 2.3197 3.2910D-05 2.930 540 3.5672D-09 2.4001 2.2790D-05 3.090 560 1.7865D-09 2.4851 1.6220D-05 3.192 580 8.9173D-10 2.5712 1.1880D-05 3.215 600 4.3949D-10 2.6602 8.9780D-06 3.060 640 1.0590D-10 2.8414 5.5930D-06 2.927 660 5.2157D-11 2.9322 4.5890D-06 2.784 680 2.6007D-11 3.0211 3.8460D-06 2.642 | 9D-02
3D-02
7D-02
8D-02 | | 420 1.7111D-07 1.9579 2.7790D-04 1.760 440 9.1715D-08 2.0256 1.7600D-04 1.986 460 4.9008D-08 2.0947 1.1280D-04 2.235 480 2.5849D-08 2.1671 7.3460D-05 2.483 500 1.3512D-08 2.2420 4.8660D-05 2.722 520 6.9794D-09 2.3197 3.2910D-05 2.930 540 3.5672D-09 2.4001 2.2790D-05 3.090 560 1.7865D-09 2.4851 1.6220D-05 3.192 580 8.9173D-10 2.5712 1.1880D-05 3.215 600 4.3949D-10 2.6602 8.9780D-06 3.060 640 1.0590D-10 2.8414 5.5930D-06 2.927 660 5.2157D-11 2.9322 4.5890D-06 2.784 680 2.6007D-11 3.0211 3.8460D-06 2.642 | 3D-02
7D-02
8D-02 | | 440 9.1715D-08 2.0256 1.7600D-04 1.986 460 4.9008D-08 2.0947 1.1280D-04 2.235 480 2.5849D-08 2.1671 7.3460D-05 2.483 500 1.3512D-08 2.2420 4.8660D-05 2.722 520 6.9794D-09 2.3197 3.2910D-05 2.930 540 3.5672D-09 2.4001 2.2790D-05 3.090 560 1.7865D-09 2.4851 1.6220D-05 3.192 580 8.9173D-10 2.5712 1.1880D-05 3.215 600 4.3949D-10 2.6602 8.9780D-06 3.060 640 1.0590D-10 2.8414 5.5930D-06 2.927 660 5.2157D-11 2.9322 4.5890D-06 2.784 680 2.6007D-11 3.0211 3.8460D-06 2.642 | 7D-02
8D-02 | | 460 4.9008D-08 2.0947 1.1280D-04 2.235 480 2.5849D-08 2.1671 7.3460D-05 2.483 500 1.3512D-08 2.2420 4.8660D-05 2.722 520 6.9794D-09 2.3197 3.2910D-05 2.930 540 3.5672D-09 2.4001 2.2790D-05 3.090 560 1.7865D-09 2.4851 1.6220D-05 3.192 580 8.9173D-10 2.5712 1.1880D-05 3.215 600 4.3949D-10 2.6602 8.9780D-06 3.060 640 1.0590D-10 2.8414 5.5930D-06 2.927 660 5.2157D-11 2.9322 4.5890D-06 2.784 680 2.6007D-11 3.0211 3.8460D-06 2.642 | 8D-02 | | 480 2.5849D-08 2.1671 7.3460D-05 2.483 500 1.3512D-08 2.2420 4.8660D-05 2.722 520 6.9794D-09 2.3197 3.2910D-05 2.930 540 3.5672D-09 2.4001 2.2790D-05 3.090 560 1.7865D-09 2.4851 1.6220D-05 3.192 580 8.9173D-10 2.5712 1.1880D-05 3.215 600 4.3949D-10 2.6602 8.9780D-06 3.165 620 2.1604D-10 2.7503 6.9870D-06 3.060 640 1.0590D-10 2.8414 5.5930D-06 2.927 660 5.2157D-11 2.9322 4.5890D-06 2.784 680 2.6007D-11 3.0211 3.8460D-06 2.642 | | | 500 1.3512D-08 2.2420 4.8660D-05 2.722 520 6.9794D-09 2.3197 3.2910D-05 2.930 540 3.5672D-09 2.4001 2.2790D-05 3.090 560 1.7865D-09 2.4851 1.6220D-05 3.192 580 8.9173D-10 2.5712 1.1880D-05 3.215 600 4.3949D-10 2.6602 8.9780D-06 3.165 620 2.1604D-10 2.7503 6.9870D-06 3.060 640 1.0590D-10 2.8414 5.5930D-06 2.927 660 5.2157D-11 2.9322 4.5890D-06 2.784 680 2.6007D-11 3.0211 3.8460D-06 2.642 | 7D-02 | | 520 6.9794D-09 2.3197 3.2910D-05 2.930 540 3.5672D-09 2.4001 2.2790D-05 3.090 560 1.7865D-09 2.4851 1.6220D-05 3.192 580 8.9173D-10 2.5712 1.1880D-05 3.215 600 4.3949D-10 2.6602 8.9780D-06 3.165 620 2.1604D-10 2.7503 6.9870D-06 3.060 640 1.0590D-10 2.8414 5.5930D-06 2.927 660 5.2157D-11 2.9322 4.5890D-06 2.784 680 2.6007D-11 3.0211 3.8460D-06 2.642 | | | 540 3.5672D-09 2.4001 2.2790D-05 3.090 560 1.7865D-09 2.4851 1.6220D-05 3.192 580 8.9173D-10 2.5712 1.1880D-05 3.215 600 4.3949D-10 2.6602 8.9780D-06 3.165 620 2.1604D-10 2.7503 6.9870D-06 3.060 640 1.0590D-10 2.8414 5.5930D-06 2.927 660 5.2157D-11 2.9322 4.5890D-06 2.784 680 2.6007D-11 3.0211 3.8460D-06 2.642 | 8D-02 | | 560 1.7865D-09 2.4851 1.6220D-05 3.192 580 8.9173D-10 2.5712 1.1880D-05 3.215 600 4.3949D-10 2.6602 8.9780D-06 3.165 620 2.1604D-10 2.7503 6.9870D-06 3.060 640 1.0590D-10 2.8414 5.5930D-06 2.927 660 5.2157D-11 2.9322 4.5890D-06 2.784 680 2.6007D-11 3.0211 3.8460D-06 2.642 | 3D-02 | | 580 8.9173D-10 2.5712 1.1880D-05 3.215 600 4.3949D-10 2.6602 8.9780D-06 3.165 620 2.1604D-10 2.7503 6.9870D-06 3.060 640 1.0590D-10 2.8414 5.5930D-06 2.927 660 5.2157D-11 2.9322 4.5890D-06 2.784 680 2.6007D-11 3.0211 3.8460D-06 2.642 | 5D-02 | | 600 4.3949D-10 2.6602 8.9780D-06 3.165 620 2.1604D-10 2.7503 6.9870D-06 3.060 640 1.0590D-10 2.8414 5.5930D-06 2.927 660 5.2157D-11 2.9322 4.5890D-06 2.784 680 2.6007D-11 3.0211 3.8460D-06 2.642 | 4D-02 | | 620 2.1604D-10 2.7503 6.9870D-06 3.060 640 1.0590D-10 2.8414 5.5930D-06 2.927 660 5.2157D-11 2.9322 4.5890D-06 2.784 680 2.6007D-11 3.0211 3.8460D-06 2.642 | 7D-02 | | 640 1.0590D-10 2.8414 5.5930D-06 2.927 660 5.2157D-11 2.9322 4.5890D-06 2.784 680 2.6007D-11 3.0211 3.8460D-06 2.642 | 1D-02 | | 660 5.2157D-11 2.9322 4.5890D-06 2.784 680 2.6007D-11 3.0211 3.8460D-06 2.642 | 2D-02 | | 680 2.6007D-11 3.0211 3.8460D-06 2.642 | 3D-02 | | | 1D-02 | | 700 1.3122D-11 3.1084 3.2810D-06 2.518 | 3D-02 | | | 5D-02 | | 720 6.7645D-12 3.1921 2.8380D-06 2.427 | 0D-02 | | 740 3.6011D-12 3.2702 2.4820D-06 2.358 | 1D-02 | | 760 1.9792D-12 3.3428 2.1900D-06 2.316 | 4D-02 | | 780 1.1312D-12 3.4087 1.9440D-06 2.306 | 8D-02 | | 800 6.8348D-13 3.4647 1.7360D-06 2.308 | 3D-02 | | 850 2.6558D-12 3.0991 1.1800D-06 2.618 | 1D-02 | | 900
1.4314D-12 3.1164 8.7000D-07 3.026 | 3D-02 | | 950 9.7814D-13 3.0982 6.6000D-07 3.812 | 2D-02 | | 1000 1.5905D-12 2.9272 4.8000D-07 4.723 | 7D-02 | | 1100 1.3351D-11 2.3794 3.0000D-07 3.590 | 9D-02 | | 1200 6.4934D-11 1.9547 1.8500D-07 2.981 | 4D-02 | | 1300 3.6950D-10 1.5317 1.1300D-07 1.711 | 1D-02 | | 1400 1.1825D-09 1.2630 7.3000D-08 1.000 | 0D-03 | | 1500 7.2326D-10 1.3027 5.2000D-08 2.582 | 2D-04 | | 1600 3.9700D-10 1.3579 3.7000D-08 1.000 | 0D-03 | | 1700 3.1532D-10 1.3817 2.5500D-08 1.000 | 0D-03 | | 1800 1.8189D-10 1.4228 1.8200D-08 1.000 | | | 1900 1.3933D-10 1.4313 1.3000D-08 1.000 | 0D-03 | | 2000 9.5796D-11 1.4598 1.0000D-08 1.000 | | **Table 5.2:** Best-fit parameters for the Harris-Priester maximum atmospheric density, ρ_{max} . | h (km) | $A (km/km^3)$ | α_{max} | $B (km/km^3)$ | β_{max} | |--------|---------------|----------------|---------------|---------------| | 110 | 7.8000D+01 | 0.0 | 0.0 | 0.0 | | 120 | 2.4900D+01 | 0.0 | 0.0 | 0.0 | | 130 | -1.0288D-02 | 0.9124 | 9.3310D+00 | 0.0 | | 140 | -1.5957D-03 | 1.0205 | 4.2120D+00 | 0.0 | | 150 | 6.0816D-03 | 0.4198 | 2.1680D+00 | 0.0 | | 160 | 4.3565D-03 | 0.7089 | 1.2360D+00 | 0.0 | | 170 | 3.7004D-03 | 0.7724 | 7.5580D-01 | 0.0 | | 180 | 2.9642D-03 | 0.8090 | 4.8850D-01 | 0.0 | | 190 | 2.4927D-03 | 0.8261 | 3.2740D-01 | 0.0 | | 200 | 1.8838D-03 | 0.8559 | 2.2840D-01 | 0.0 | | 210 | 1.5208D-03 | 0.8719 | 1.6340D-01 | 0.0 | | 220 | 1.2219D-03 | 0.8895 | 1.1920D-01 | 0.0 | | 230 | 9.5705D-04 | 0.9114 | 8.8510D-02 | 0.0 | | 240 | 7.4926D-04 | 0.9332 | 6.6660D-02 | 0.0 | | 250 | 5.8527D-04 | 0.9554 | 5.0830D-02 | 0.0 | | 260 | 4.5493D-04 | 0.9787 | 3.9190D-02 | 0.0 | | 270 | 3.5273D-04 | 1.0027 | 3.0500D-02 | 0.0 | | 280 | 2.7128D-04 | 1.0288 | 2.3940D-02 | 0.0 | | 290 | 2.0847D-04 | 1.0555 | 1.8940D-02 | 0.0 | | 300 | 1.6154D-04 | 1.0809 | 1.5100D-02 | 0.0 | | 320 | 1.0021D-04 | 1.1258 | 9.8860D-03 | 0.0 | | 340 | 6.3023D-05 | 1.1692 | 6.6080D-03 | 0.0 | | 360 | 4.0140D-05 | 1.2115 | 4.4940D-03 | 0.0 | | 380 | 2.5853D-05 | 1.2529 | 3.1000D-03 | 0.0 | | 400 | 1.6829D-05 | 1.2934 | 2.1630D-03 | 0.0 | | 420 | 2.1107D-05 | 1.3320 | 1.5260D-03 | 0.0 | | 440 | 7.3292D-06 | 1.3719 | 1.0850D-03 | 0.0 | | 460 | 4.8575D-06 | 1.4120 | 7.7670D-04 | 0.0 | | 480 | 3.2318D-06 | 1.4521 | 5.5990D-04 | 0.0 | | 500 | 2.1442D-06 | 1.4936 | 4.0610D-04 | 0.0 | | 520 | 1.1880D-06 | 1.5650 | 2.9630D-04 | 2.8426D-03 | | 540 | 7.4848D-07 | 1.6173 | 2.1740D-04 | 3.8473D-03 | | 560 | 4.7709D-07 | 1.6685 | 1.6050D-04 | 4.7660D-03 | | 580 | 3.0399D-07 | 1.7205 | 1.1920D-04 | 5.7479D-03 | | 600 | 1.9500D-07 | 1.7720 | 8.9100D-05 | 6.6919D-03 | | 620 | 1.2570D-07 | 1.8231 | 8.7080D-05 | 7.5966D-03 | | 640 | 8.1577D-08 | 1.8734 | 5.0900D-05 | 8.4180D-03 | | 660 | 5.2632D-08 | 1.9253 | 3.8960D-05 | 9.3167D-03 | | 680 | 3.4199D-08 | 1.9763 | 3.0110D-05 | 1.0066D-02 | | 700 | 2.2130D-08 | 2.0285 | 2.3510D-05 | 1.0866D-02 | | 720 | 1.4432D-08 | 2.0795 | 1.8570D-05 | 1.1472D-02 | |-------|------------|--------|------------|------------| | 740 | 9.3506D-09 | 2.1321 | 1.4840D-05 | 1.2121D-02 | | 760 | 6.0874D-09 | 2.1841 | 1.2020D-05 | 1.2575D-02 | | 780 | 3.9601D-09 | 2.2365 | 9.8670D-06 | 1.3009D-02 | | 800 | 2.5823D-09 | 2.2888 | 8.1930D-06 | 1.3276D-02 | | 850 | 2.1946D-09 | 2.2422 | 6.2000D-06 | 2.5529D-03 | | 900 | 2.0811D-09 | 2.1776 | 4.4000D-06 | -1.9168D-0 | | 3 950 | 4.5331D-10 | 2.3997 | 3.3000D-06 | 5.0229D-03 | | 1000 | 1.2710D-10 | 2.5811 | 2.7000D-06 | 1.2919D-02 | | 1100 | 1.2207D-11 | 2.9070 | 1.7500D-06 | 2.7866D-02 | | 1200 | 2.6581D-12 | 3.0632 | 1.2000D-06 | 3.2416D-02 | | 1300 | 7.4153D-13 | 3.1939 | 8.5000D-07 | 3.9225D-02 | | 1400 | 5.4632D-14 | 3.5853 | 6.2000D-07 | 4.1313D-02 | | 1500 | 7.7086D-15 | 3.8596 | 4.7500D-07 | 3.4612D-02 | | 1600 | 1.7322D-15 | 4.0683 | 3.6500D-07 | 3.5450D-02 | | 1700 | 6.3293D-15 | 3.7397 | 3.0000D-07 | 3.4738D-02 | | 1800 | 2.1463D-13 | 2.9859 | 2.2000D-07 | 4.1007D-02 | | 1900 | 9.0409D-13 | 2.6444 | 1.8000D-07 | 3.5595D-02 | | 2000 | 5.9649D-12 | 2.2291 | 1.4600D-07 | 3.1280D-02 | | | | | | | It is easy to see that the density model is not simple but involves many factors. Therefore, the aerodynamic disturbance torque are most likely not incorporated into spacecraft dynamic models used for controller design purposes. This requires that the spacecraft attitude controller designs have good disturbance rejection performance. Furthermore, the designed controller should be verified in a simulation model that includes atmospheric density and aerodynamic torque estimations. ### 5.3 Magnetic field-induced torques Similar to gravitational torques, *magnetic field induced torques* can adversely affect on-board equipment and can change the spacecraft's drag, attitude, and direction of motion. A description of the degradation of the performance of the attitude control system caused by magnetic field-induced torques was reported in [225]. On the other hand, people quickly realized that magnetic field induced torques can be used with *magnet torque rods* to control the spacecraft's attitude [4]. Many control algorithms are specifically designed for control systems using only magnet torque rods, for example [208, 236, 216]. Magnetic disturbance torques are results of the interaction between the spacecraft's residual magnetic field and the geomagnetic field. The dominant source of the magnetic disturbance torque is spacecraft's magnetic moment because the material selection in spacecraft design makes other magnetic distur- bance sources negligible [14, 58]. The magnetic moment induced torque is given by $$\mathbf{t}_m = \mathbf{m} \times \mathbf{r}_m, \tag{5.14}$$ where **m** (in $A \cdot m^2$) is the sum of the individual magnetic moments caused by permanent and induced magnetism and the spacecraft-generated current loops, and \mathbf{r}_m is the *geocentric magnetic flux density* (in Wb/m^2). The description of geocentric magnetic field is discussed in [84, 63, 187]. Given the spacecraft geocentric spherical polar coordinates (r, θ, ϕ) , where r is the spacecraft geocentric distance pointing down in nadir direction, θ is the *co-elevation* pointing to the north direction, and ϕ is the *east longitude* from Greenwich pointing to the east (this information can be provided by GPS installed on spacecraft), the geomagnetic flux density vector $\mathbf{r}_m = -grad(V) := \nabla \times V$ is obtained by taking gradient of $V(r, \theta, \phi)$. The *scalar potential function* $V(r, \theta, \phi)$ is given by the following formula [84, 226, 52, 187]: $$V(r,\theta,\phi) = a \sum_{n=1}^{\infty} \sum_{m=0}^{n} \left(\frac{a}{r}\right)^{n+1} P_n^m \cos(\theta) \left(g_n^m \cos(m\phi) + h_n^m \sin(m\phi)\right), \quad (5.15)$$ where a = 6378km is the equatorial radius of the Earth, $P_n^m(\theta)$ are Schmidt seminormalized Legendre polynomials of degree n and order m (the input to these polynomials are actually in $\cos(\theta)$, rather than θ , but this has been dropped for brevity), g_n^m and h_n^m are Gauss coefficients in unit nanotesla (nT). The set of Gaussian coefficients used in the analytical models is called the International Geomagnetic Reference Field (IGRF). These coefficients are updated every five years by a group of scientists from the International Association of Geomagnetism and Aeronomy (IAGA). The recent one, which takes advantage of a comprehensive set of observation data, including satellite measurements from the CHAMP, Orsted and SAC-C missions, was published in 2015 [98, 261]. This version of IGRF remains valid until 2020. By using the conservative of the magnetic field $(\nabla \times \mathbf{B} = 0)$, we have the geomagnetic vector $\mathbf{r}_m = -grad(V)$ by taking minus gradient of V for (r, θ, ϕ) [283]. $$B_r = \frac{-\partial V}{\partial r} = \sum_{n=1}^{\infty} \left(\frac{a}{r}\right)^{n+2} (n+1) \sum_{m=0}^{n} \left(g_n^m \cos(m\phi) + h_n^m \sin(m\phi)\right) P_n^m(\theta)$$ (5.16a) $$B_{\theta} = \frac{-1}{r} \frac{\partial V}{\partial \theta} = \sum_{n=1}^{\infty} \left(\frac{a}{r}\right)^{n+2} \sum_{m=0}^{n} \left(g_n^m \cos(m\phi) + h_n^m \sin(m\phi)\right) \frac{\partial P_n^m(\theta)}{\partial \theta}$$ (5.16b) $$B_{\phi} = \frac{-1}{r\sin(\theta)} \frac{\partial V}{\partial \phi} = \frac{-1}{\sin(\theta)} \sum_{n=1}^{\infty} \left(\frac{a}{r}\right)^{n+2} \sum_{m=0}^{n} m \left(-g_n^m \sin(m\phi) + h_n^m \cos(m\phi)\right) P_n^m(\theta)$$ (5.16c) To calculate the magnetic field, one must first calculate the associated Legendre polynomials. Legendre polynomials are a set of orthogonal polynomials that also satisfy the zero mean condition. The following equations for the Legendre polynomials and associated Legendre polynomials are provided in [226]. The regular Legendre polynomials $P_n(v)$ are calculated to satisfy the following equation: $$(1 - 2vx + x^2) - 1/2 = \sum_{n=0}^{\infty} P_n(v)x^n.$$ (5.17) Solving this equation gives $$P_n(v) = \frac{1}{2^n n!} \left(\frac{d}{dv}\right)^n \left(v^2 - 1\right)^n.$$ (5.18) The above Legendre polynomials are related to the associated Legendre polynomials through the following equation: $$P_{n,m}(v) = \left(1 - v^2\right)^{1/2m} \frac{d^m}{dv^m} \left(P_n(v)\right). \tag{5.19}$$ Note that for all m > n, the associated Legendre polynomial is equal to zero. The formulas in Equation (5.19) represent traditional associated Legendre polynomials that have not been normalized. There are two commonly used normalizations. The first is the Gaussian normalized associated Legendre polynomials, $P^{n,m}$, which is related to the non-normalized set by the following equation $$P^{n,m}(v) = \frac{2^n!(n-m)!}{(2n)!} P_{n,m}(v).$$ (5.20) The second is the Schmidt semi-normalized form, P_n^m , which is related to the non-normalized set by the following equation $$P_n^m = \left(\frac{2(n-m)!}{(n+m)!}\right)^{1/2} P_{n,m}.$$ (5.21) The two Gaussian normalized associated Legendre polynomials are related as [283]:
$$P_n^m = S_{n,m} P^{n,m}, (5.22)$$ where $S_{n,m}$ is defined by $$S_{n,m} = \left(\frac{(2 - \delta_m^0)(n - m)!}{(n + m)!}\right)^{1/2} \frac{(2n - 1)!!}{(n - m)!},\tag{5.23}$$ where the Kronecker delta is defined as $\delta_i^j = 1$ if i = j and $\delta_i^j = 0$ if $i \neq j$, and $(2n-1)!! := 1 \cdot 3 \cdot (2n-1)$. Due to the fact that these normalization values can be calculated irrespective of the value of θ at which the associated Legendre polynomials are calculated, it is much simpler to instead normalize the model coefficients, g_n^m and h_n^m , such that $$g^{n,m} = S_{n,m} g_n^m, (5.24)$$ and $$h^{n,m} = S_{n,m} h_n^m. (5.25)$$ To produce efficient computer code, the preceding formulas should be decomposed into recursive formulas as seen in [52, 283]. The following recursive relationships is used in MATLAB® code of [52]. First, the recursive formulas for the Gaussian normalized associated Legendre polynomials are as follows: $$P^{0,0} = 1, (5.26a)$$ $$P^{n,n} = \sin(\theta)P^{n-1,n-1},$$ (5.26b) $$P^{n,m} = \cos(\theta)P^{n-1,m} - K^{n,m}P^{n-2,m}, \tag{5.26c}$$ $$K^{n,m} = 0, \quad n = 1,$$ (5.26d) $$K^{n,m} = \frac{(n-1)^2 - m^2}{(2n-1)(2n-3)}, \quad n > 1.$$ (5.26e) The recursive formulas for the Gaussian normalized derivatives of the associated Legendre polynomials are $$\frac{\partial P^{0,0}}{\partial \theta} = 0, \tag{5.27a}$$ $$\frac{\partial P^{n,n}}{\partial \theta} = \sin(\theta) \frac{\partial P^{n-1,n-1}}{\partial \theta} + \cos(\theta) P^{n-1,n-1}, \tag{5.27b}$$ $$\frac{\partial P^{n,m}}{\partial \theta} = \cos(\theta) \frac{\partial P^{n-1,m}}{\partial \theta} - \sin(\theta) P^{n-1,m} - K^{n,m} \frac{\partial P^{n-2,m}}{\partial \theta}.$$ (5.27c) Using mathematical induction, one can get the recursive formulas for $S_{n,m}$ as follows: $$S_{0.0} = 1, (5.28a)$$ $$P_{n,0} = P_{n-1,0}\left(\frac{2n-1}{n}\right), \quad n \ge 1,$$ (5.28b) $$S_{n,m} = S_{n,m-1} \sqrt{\frac{(n-m+1)(\delta_m^1 + 1)}{n+m}} \quad m \ge 1.$$ (5.28c) The procedure to calculate (B_r, B_θ, B_ϕ) is summarized as follows: #### Algorithm 5.1 - 1. Get the Gauss coefficients g_n^m and h_n^m from IGRF table. - 2. Calculate $S_{n,m}$ from (5.28). - 3. Calculate $P^{n,m}$ from (5.26). - 4. Calculate P_n^m from (5.22). - 5. Calculate $\frac{\partial P^{n,m}}{\partial \theta}$ from (5.27). - 6. Calculate $\frac{\partial P_n^m}{\partial \theta} = S_{n,m} \frac{\partial P^{n,m}}{\partial \theta}$. - 7. $(B_r, B_{\theta}, B_{\phi})$ is given by (5.16). Similar to the ECEF frame, the geocentric spherical polar coordinates (r, θ, ϕ) rotates with the Earth (relatively with the ECI frame as described in [283, Appendix H]). For the results of Equation (5.16) to be effective in spacecraft application, they must be converted to geocentric inertial frame (ECI frame). This is done by the following transformation [283, (H-14), page 782]. $$B_x^I = (B_r \cos(\delta) + B_\theta \sin(\delta)) \cos(\alpha) - B_\phi \sin(\alpha)$$ (5.29a) $$B_{\nu}^{I} = (B_{r}\cos(\delta) + B_{\theta}\sin(\delta))\sin(\alpha) + B_{\phi}\cos(\alpha)$$ (5.29b) $$B_z^I = (B_r \sin(\delta) - B_\theta \cos(\delta)), \tag{5.29c}$$ where δ is the latitude measured positive North from the equator (declination), and α is the local sidereal time of the location in question (celestial time in Greenwich). The details on the computation of (5.29) is provided in [52] and a Matlab code is attached there. The next step is to transform the magnetic field to the orbit (PQW) frame using the following equation [268, Figure 2-16 and (3.28)]. $$\mathbf{B}^{o} = Rot_{3}(\boldsymbol{\omega})Rot_{1}(i)Rot_{3}(\Omega)\mathbf{B}^{I}, \tag{5.30}$$ where ω is the argument of perigee, Ω is the right ascension of the ascending node, and i the inclination. Let $s \cdot$ and $c \cdot$ denote for $\sin(\cdot)$ and $\cos(\cdot)$. Expanding (5.30) gives: $$\begin{bmatrix} B_x^o \\ B_y^o \\ B_z^o \end{bmatrix} = \begin{bmatrix} c\omega & s\omega & 0 \\ -s\omega & c\omega & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & ci & si \\ 0 & -si & ci \end{bmatrix} \begin{bmatrix} c\Omega & s\Omega & 0 \\ -s\Omega & c\Omega & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} B_x^I \\ B_y^I \\ B_z^I \end{bmatrix}.$$ (5.31) Then, a transformation from orbit frame to spacecraft coordinate (RSW) frame is needed. This transformation is given by (3.18) (see also [268, Figure 2-16 and (3.29)]): $$\mathbf{B}^{s} = Rot_{3}(\theta)\mathbf{B}^{o},\tag{5.32}$$ where θ is the true anomaly. Combining (5.31) and (5.32) gives (3.19) (see also [235, (2.6.4), pages 25–26]): $$\mathbf{B}^{s}$$ $$= Rot_{3}(\omega + \theta)Rot_{1}(i)Rot_{3}(\Omega)\mathbf{B}^{I}$$ $$= \begin{bmatrix} c(\omega + \theta)c\Omega - cis(\omega + \theta)s\Omega & c(\omega + \theta)s\Omega + s(\omega + \theta)cic\Omega & s(\omega + \theta)si \\ -s(\omega + \theta)c\Omega - cis\Omega c(\omega + \theta) & -s(\omega + \theta)s\Omega + c(\omega + \theta)cic\Omega & c(\omega + \theta)si \\ sis\Omega & -sic\Omega & ci \end{bmatrix} \begin{bmatrix} B_{s}^{I} \\ B_{s}^{I} \\ B_{s}^{I} \end{bmatrix}.$$ (5.33) From spacecraft coordinate frame (see Figure 2.7), one can determine the magnetic field vector in LVLH coordinate $$\mathbf{B}^{L} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} Rot_{2}(\pi)\mathbf{B}^{s}.$$ (5.34) Finally, to calculate the magnetic field vector described in (5.16) in body frame, (B_x^L, B_y^L, B_z^L) needs to be transformed to the spacecraft body frame as \mathbf{r}_m , one may use 1-2-3 rotational sequence [283, Table E-1, page 764], the formula is given by $$r_{m_x} = \cos(\psi)\cos(\theta)B_x^L$$ $$+(\cos(\psi)\sin(\theta)\sin(\phi) + \sin(\psi)\cos(\phi))B_y^L$$ $$+(-\cos(\psi)\cos(\phi)\sin(\theta) + \sin(\psi)\sin(\phi))B_z^L$$ $$r_{m_y} = -\sin(\psi)\cos(\theta)B_x^L$$ $$+(-\sin(\psi)\sin(\theta)\sin(\phi) + \cos(\psi)\cos(\phi))B_y^L$$ $$+(\sin(\psi)\sin(\theta)\cos(\phi) + \cos(\psi)\sin(\phi))B_z^L$$ $$(5.35b)$$ $$r_{m_z} = \sin(\theta)B_x^L - \cos(\theta)\sin(\phi)B_y^L + \cos(\theta)\cos(\phi)B_z^L,$$ $$(5.35c)$$ where ϕ , θ , and ψ are roll, pitch, and yaw angles respectively. When these angles are small, equation (5.35) can be simplified as to $$r_{m_x} = B_x^L + \psi B_y^L + \theta B_z^L \tag{5.36a}$$ $$r_{m_y} = -\psi B_x^L + B_y^L + \phi B_z^L \tag{5.36b}$$ $$r_{m_z} = \theta B_x^L - \phi B_y^L + B_z^L. \tag{5.36c}$$ #### 5.4 Solar radiation torques Solar radiation acting on the spacecraft's surface generates radiation force or pressure on the surface of the spacecraft. The magnitude of this force or pressure depends on several factors, such as the intensity and spectral distribution of the incident radiation, the geometry of the surface and its optical properties, and the orientation of the Sun vector relative to the spacecraft [283, Section 17.2.2]. The mean momentum flux pressure acting on the surface normal to the Sun's radiation is $P = 4.563 \times 10^{-6} N/m^2$ 1AU from the sun. Let A be the surface area, **n** be a unit vector normal to the surface and opposite to the vector of incoming photons **q**, **t** be the transverse unit vector perpendicular to the **n** and in the plane spanned by **q** and **n**, α be the photon incident angle between **q** and $-\mathbf{n}$, ρ_s be the fraction of specularly reflected photons, ρ_d be the fraction of diffusely reflected photons, and ρ_a be the fraction of absorbed photons ($\rho_s + \rho_d + \rho_a = 1$), then the solar radiation pressure induced force is given by [286] $$\mathbf{f} = F_n \mathbf{n} + F_t \mathbf{t}, \tag{5.37}$$ where $$F_n = PA \left[(1 + \rho_s) \cos^2(\alpha) + \frac{2}{3} \rho_d \cos(\alpha) \right],$$ and $$F_t = PA(1 - \rho_s)\cos(\alpha)\sin(\alpha)$$. For other simple geometric figures other than flat plate, the solar radiation pressure induced force is given in [283, Table 17.2]. Given **f** in (5.37), the *solar pressure induced torque* is given by [281] $$\mathbf{t}_{s} = \mathbf{r} \times \mathbf{f},\tag{5.38}$$ where \mathbf{r} is the vector from body center of mass to the optical center of pressure. ### **5.5** Internal torques Internal torques can be generated by moving parts of the spacecraft, the astronauts inside a manned space station, or the leak of gas or liquid in thrusters. When these leaks, motions, or rotations happen, they generate torques. It is relatively easier to model these torques than those mentioned in the previous sections. Some of these motion-induced torques are relatively large, such as deployments of the solar panels or booms. These torques must be incorporated at least in the simulation systems to check if the designed controller can compensate for these torques or not. If not, these torques may have to be incorporated into spacecraft dynamical models for controller design purposes. If it is impossible to design a controller based on a high fidelity physics model that includes these large disturbance torques. Spacecraft design may have to be modified. For example, it may require reducing the forces or the torques generated by the instrument deployments or increasing the capacity of the actuators. We do not address this issue in this chapter because it is based on specific spacecraft designs. # Chapter 6 # Spacecraft Attitude Determination Spacecraft attitude determination is very important for two reasons. First, control engineers need to know if the spacecraft's attitude is in the desired orientation. Second, if the spacecraft attitude is not in the perfect position, the attitude information will be compared automatically to the desired attitude, and the error information is then used to calculate how much action is needed for each actuator to bring the spacecraft to the desired attitude. From Section 3.2.4, we have seen that to determine the frame rotation, one needs to know the coordinates of at least two vector pairs in the body frame and the
desired reference frame. Given this coordinate information, one can determine the rotational axis and the rotational angle, which represent the attitude deviation of the body frame from the desired reference frame. This intuition has been used by many researchers to develop their attitude determination methods, such as [13, 31, 162, 200, 215, 233, 234, 277, 298]. In this chapter, we will first introduce Wahba's problem [277], then Davenport's formula [51], followed by a well known method QUEST [234], an analytic solution for a special case of Wahba's problem developed in [162], and an analytic solution to the general Wahba's problem. QUEST and the analytic solution divide the computation of the spacecraft attitude into two steps: (a) compute the largest eigenvalue of Davenport's **K**-matrix and (b) compute the corresponding eigenvector, and the second step is sensitive to the accuracy of the first step. Therefore, some numerical method that combines the two steps into one, i.e., directly solves the largest eigenvalue and its corresponding eigenvector of the K-matrix is considered. Some simple analysis is performed and some simulation results are presented to show the potential advantages of the direct method. # 6.1 Wahba's problem Suppose we have measurements of two directions represented by two unit vectors \mathbf{b}_1 and \mathbf{b}_2 in the spacecraft body frame. These measurements can be unit vectors of some observed objects, such as stars, the Sun, or the Earth, or some ambient vector field such as the Earth's magnetic field or gravity vector. Engineers consider only unit vectors because the length of the vectors has no information relevant to the attitude determination and unit length makes expression simpler. As pointed out earlier, engineers also need to know the representations of these two unit vectors in some reference frames \mathbf{r}_1 and \mathbf{r}_2 . Depending on the spacecraft's mission, the reference frame is usually the inertial frame or the local vertical local horizontal frame. The attitude to be determined is the rotational matrix or the quaternion that rotates the reference frame to the spacecraft body frame. Therefore one can find an attitude matrix \mathbf{A} such that $$\mathbf{Ar}_1 = \mathbf{b}_1, \tag{6.1a}$$ $$\mathbf{Ar}_2 = \mathbf{b}_2. \tag{6.1b}$$ Since a rotational matrix is also orthogonal, equation (6.1) implies $$\mathbf{b}_1 \cdot \mathbf{b}_2 = (\mathbf{A}\mathbf{r}_1) \cdot (\mathbf{A}\mathbf{r}_2) = \mathbf{r}_1^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A}\mathbf{r}_2 = \mathbf{r}_1 \cdot \mathbf{r}_2. \tag{6.2}$$ In general, given two sets of m known reference vectors $\{\mathbf{r}_1, \dots, \mathbf{r}_m\}$ and m observation vectors $\{\mathbf{b}_1, \dots, \mathbf{b}_m\}$, $m \ge 2$, find the proper rotational matrix \mathbf{A} which brings the first set into the best least squares coincidence with the second, i.e., $$\min_{\mathbf{A}} \frac{1}{2} \sum_{i=1}^{m} \|\mathbf{b}_i - \mathbf{A} \mathbf{r}_i\|^2.$$ (6.3) This problem was first defined by Wahba and is called Wahba's problem [277] which is the base of most attitude determination methods. A slightly more general assumption is that there is a set of weights a_i , each is associated with a corresponding observation \mathbf{b}_i , and $\sum_i a_i = 1$. Then Wahba's problem takes the following form: $$\min_{\mathbf{A}} \frac{1}{2} \sum_{i=1}^{m} a_i \|\mathbf{b}_i - \mathbf{A} \mathbf{r}_i\|^2.$$ (6.4) #### 6.2 **Davenport's formula** Most popular methods, such as QUEST [234], ESOQ [180], and FOMA [161], use Davenport's q-method [51] (K-matrix derivation is accessible in [118]). Rewriting (6.3) by using equations (6.1) and (6.2), then using the facts: (a) \mathbf{b}_i and \mathbf{r}_i are unit vectors, and (b) A is orthogonal matrix, we have $$\frac{1}{2} \sum_{i=1}^{m} \|\mathbf{b}_{i} - \mathbf{A}\mathbf{r}_{i}\|^{2} = \frac{1}{2} \sum_{i=1}^{m} (\mathbf{b}_{i}^{\mathsf{T}} \mathbf{b}_{i} - 2\mathbf{b}_{i}^{\mathsf{T}} \mathbf{A}\mathbf{r}_{i} + \mathbf{r}_{i}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{A}\mathbf{r}_{i})$$ $$= m - \frac{1}{2} \sum_{i=1}^{m} \mathbf{b}_{i}^{\mathsf{T}} \mathbf{A}\mathbf{r}_{i} = m - \frac{1}{2} Tr(\mathbf{W}^{\mathsf{T}} \mathbf{A}\mathbf{V}), \quad (6.5)$$ where $\mathbf{W} = [\mathbf{b}_1, \dots, \mathbf{b}_m], \mathbf{V} = [\mathbf{r}_1, \dots, \mathbf{r}_m],$ and $Tr(\cdot)$ represents the trace of the matrix in the argument. Using (3.62) and the fact that $Tr(\mathbf{AB}) = Tr(\mathbf{BA})$ for any matrices A and B with appropriate dimensions, we have $$Tr(\mathbf{W}^{\mathsf{T}}\mathbf{A}\mathbf{V})$$ $$= Tr(\mathbf{W}^{\mathsf{T}}\left((q_{0}^{2} - \mathbf{q}^{\mathsf{T}}\mathbf{q})\mathbf{I} + 2\mathbf{q}\mathbf{q}^{\mathsf{T}} - 2q_{0}\mathbf{q}^{\times}\right)\mathbf{V})$$ $$= (q_{0}^{2} - \mathbf{q}^{\mathsf{T}}\mathbf{q})Tr(\mathbf{W}^{\mathsf{T}}\mathbf{V}) + 2Tr(\mathbf{q}\mathbf{q}^{\mathsf{T}}\mathbf{V}\mathbf{W}^{\mathsf{T}}) - 2q_{0}Tr(\mathbf{W}^{\mathsf{T}}\mathbf{q}^{\times}\mathbf{V}). \quad (6.6)$$ Let $\mathbf{B} = \mathbf{W}\mathbf{V}^{\mathrm{T}}$, $\sigma = Tr(\mathbf{B})$, $\mathbf{H} = \mathbf{B} + \mathbf{B}^{\mathrm{T}}$, and $\mathbf{z}^{\mathrm{T}} = [B_{23} - B_{32}, B_{31} - B_{13}, B_{12} - B_{21}]$. The second term of (6.6) can be rewritten as $$2Tr(\mathbf{q}\mathbf{q}^{\mathsf{T}}\mathbf{V}\mathbf{W}^{\mathsf{T}}) = 2\mathbf{q}^{\mathsf{T}}\mathbf{V}\mathbf{W}^{\mathsf{T}}\mathbf{q} = \mathbf{q}^{\mathsf{T}}(\mathbf{V}\mathbf{W}^{\mathsf{T}} + \mathbf{W}\mathbf{V}^{\mathsf{T}})\mathbf{q} = \mathbf{q}^{\mathsf{T}}\mathbf{H}\mathbf{q}. \tag{6.7}$$ Since $\mathbf{z}^{\times} = \mathbf{B}^{\mathrm{T}} - \mathbf{B}$, $\mathbf{q}^{\times^{\mathrm{T}}} = -\mathbf{q}^{\times}$, and $Tr(\mathbf{q}^{\times}\mathbf{z}^{\times}) = -2\mathbf{q}^{\mathrm{T}}\mathbf{z}$, the third term of (6.6) can be rewritten as $$2q_0Tr(\mathbf{q}^{\times}\mathbf{V}\mathbf{W}^{\mathrm{T}})$$ $$= q_0Tr(\mathbf{q}^{\times}\mathbf{B}^{\mathrm{T}} + \mathbf{B}\mathbf{q}^{\times^{\mathrm{T}}})$$ $$= q_0Tr(\mathbf{q}^{\times}\mathbf{B}^{\mathrm{T}} + \mathbf{q}^{\times^{\mathrm{T}}}\mathbf{B})$$ $$= q_0Tr(\mathbf{q}^{\times}(\mathbf{B}^{\mathrm{T}} - \mathbf{B}))$$ $$= q_0Tr(\mathbf{q}^{\times}\mathbf{z}^{\times}) = -2q_0\mathbf{q}^{\mathrm{T}}\mathbf{z}.$$ (6.8) Substituting (6.7) and (6.8) into (6.6) produces $$Tr(\mathbf{W}^{\mathrm{T}}\mathbf{A}\mathbf{V})$$ $$= (q_{0}^{2} - \mathbf{q}^{\mathrm{T}}\mathbf{q})\boldsymbol{\sigma} + \mathbf{q}^{\mathrm{T}}\mathbf{H}\mathbf{q} + 2q_{0}\mathbf{q}^{\mathrm{T}}\mathbf{z}$$ $$= [q_{0} \mathbf{q}^{\mathrm{T}}]\begin{bmatrix} \boldsymbol{\sigma} & \mathbf{z}^{\mathrm{T}} \\ \mathbf{z} & \mathbf{H} - \boldsymbol{\sigma}\mathbf{I} \end{bmatrix}\begin{bmatrix} q_{0} \\ \mathbf{q} \end{bmatrix}$$ $$:= \mathbf{\tilde{q}}^{\mathrm{T}}\mathbf{K}\mathbf{\tilde{q}}, \tag{6.9}$$ where $$\mathbf{K} = \begin{bmatrix} \mathbf{\sigma} & \mathbf{z}^{\mathrm{T}} \\ \mathbf{z} & \mathbf{H} - \mathbf{\sigma} \mathbf{I} \end{bmatrix}. \tag{6.10}$$ Therefore, $$\min_{\mathbf{A}} \frac{1}{2} \sum_{i=1}^{m} \|\mathbf{b}_{i} - \mathbf{A}\mathbf{r}_{i}\|^{2} = m - \frac{1}{2} \max_{\mathbf{A}} Tr(\mathbf{W}^{\mathsf{T}} \mathbf{A} \mathbf{V}) = m - \frac{1}{2} \max_{\bar{\mathbf{q}} = 1} \bar{\mathbf{q}}^{\mathsf{T}} \mathbf{K} \bar{\mathbf{q}}. \quad (6.11)$$ By introducing the Lagrange multiplier λ for the unit length constraint of $\|\bar{\mathbf{q}}\| = 1$, we reduce Wahba's problem to Davenport's problem $$\max_{\lambda,\tilde{\mathbf{q}}} \bar{\mathbf{q}}^{\mathrm{T}} \mathbf{K} \bar{\mathbf{q}} - \lambda (\bar{\mathbf{q}}^{\mathrm{T}} \bar{\mathbf{q}} - 1). \tag{6.12}$$ Taking the derivative of (6.12) gives the optimal solution which satisfies $$\mathbf{K}\bar{\mathbf{q}} = \lambda \bar{\mathbf{q}}.\tag{6.13}$$ The optimization problem is reduced to finding the largest eigenvalue of \mathbf{K} and its corresponding eigenvector, which is Davenport's formula. ## 6.3 Attitude determination using QUEST and FOMA In the early of 1980s, the computation of the largest eigenvalue and its corresponding eigenvector of the **K**-matrix in an on-board computer was a burden. Shuster [234] developed QUEST algorithm to approximately solve (6.13). By using the *Cayley-Hamilton theorem* (cf. [220, pages 4–5]), Shuster [234] derived the first analytic formula of the characteristic polynomial of the **K**-matrix which is a polynomial of degree of 4, given as $$f(\lambda) = \lambda^4 - (a+b)\lambda^2 - c\lambda + (ab+c\sigma - d) = 0, \tag{6.14}$$ where $\sigma = 0.5Tr(\mathbf{H}) = Tr(\mathbf{B})$, $\kappa = Tr(adj(\mathbf{H}))$, $\Delta = \det(\mathbf{H})$, $a = \sigma^2 - \kappa$, $b = \sigma^2 + \mathbf{z}^T\mathbf{z}$, $c = \Delta + \mathbf{z}^T\mathbf{H}\mathbf{z}$, and $d = \mathbf{z}^T\mathbf{H}^2\mathbf{z}$. For many applications, the largest eigenvalue may be approximated by $\lambda \approx 1$. Shuster [234] suggested using *Newton-Raphson iteration* to find the λ using the initial guess $\lambda^0 = 1$. To calculate the eigenvector using λ , Shuster used the *Rodriguez parameters* defined as follows: $$\mathbf{p} = \frac{\mathbf{q}}{a_0} = \mathbf{q} \tan \left(\frac{\alpha}{2} \right).$$ Since $K\bar{q} = \lambda \bar{q}$, from the K-matrix, it is easy to see that $$[(\lambda+\sigma)I-H]p=z.$$ ${\bf p}$ can be obtained by solving linear system equations. Once ${\bf p}$ is available, the quaternion is given by $$\bar{\mathbf{q}} = \frac{1}{\sqrt{1 + \mathbf{p}^{\mathrm{T}} \mathbf{p}}} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix}. \tag{6.15}$$ To avoid the possible singularity in Rodriguez parameter, Shuster and Oh developed a method of sequential rotations which avoids the singularity. This method is widely recognized and is refereed to as the QUEST method. The operation count for QUEST method was analyzed in [315] and is listed as follows. - 1. constructing the characteristic
polynomial (6.14): 67 flops in total. - 2. in each iteration of Newton method: 18 flops. - 3. constructing the quaternion (6.15): 33 flops. This flop count shows that QUEST needs a very small number of flops in every iteration. The construction of the characteristic polynomial and the quaternion may be the main effort in QUEST. Markley [161] derived an equivalent characteristic polynomial for the **K**-matrix and also used Newton's method for his expression of the polynomial to find the largest eigenvalue λ iteratively. Using this largest eigenvalue, Markley's method finds the rotational matrix explicitly. This method is now referred to as the FOMA algorithm. This method is computationally more expensive than QUEST, and similar to QUEST, is sensitive to the accuracy of the solution of the largest eigenvalue. ## 6.4 Analytic solution of two vector measurements Though QUEST is very efficient, if the attitude determination is based on only two vector measurements, there is a simpler method which is an analytic solution [162]. #### 6.4.1 The minimum-angle rotation quaternion First, it is worthwhile to notice that for the quaternion which maps the reference vector \mathbf{r}_1 to the body frame vector \mathbf{b}_1 , the minimal rotational angle α is determined by $\cos(\alpha) = \mathbf{b}_1 \cdot \mathbf{r}_1$. Using the minimum-angle rotation quaternion (see Figure 3.4), the rotational axis must be perpendicular to \mathbf{r}_1 and \mathbf{b}_1 and satisfy the right-hand rule, which means that the unit length rotational axis is given by $\hat{\mathbf{e}} = \frac{\mathbf{b}_1 \times \mathbf{r}_1}{\sin(\alpha)}$. Using the following identities of the trigonometry [206] $$\frac{1-\cos(\alpha)}{2} = \sin^2\left(\frac{\alpha}{2}\right),\,$$ $$\cot\left(\frac{\alpha}{2}\right) = \frac{1 + \cos(\alpha)}{\sin(\alpha)},$$ we can verify that the minimum-angle rotation quaternion is given by $$(1 + \mathbf{b}_{1} \cdot \mathbf{r}_{1}, \mathbf{b}_{1} \times \mathbf{r}_{1}) \frac{1}{\sqrt{2(1 + \mathbf{b}_{1} \cdot \mathbf{r}_{1})}}$$ $$= (1 + \cos(\alpha), \mathbf{b}_{1} \times \mathbf{r}_{1}) \sqrt{\frac{1}{2(1 + \cos(\alpha))}}$$ $$= (1 + \cos(\alpha), \mathbf{b}_{1} \times \mathbf{r}_{1}) \sqrt{\frac{1 - \cos(\alpha)}{2(1 - \cos^{2}(\alpha))}}$$ $$= (1 + \cos(\alpha), \mathbf{b}_{1} \times \mathbf{r}_{1}) \frac{\sin(\frac{\alpha}{2})}{\sin(\alpha)}$$ $$= \left(\frac{1 + \cos(\alpha)}{\sin(\alpha)}, \frac{\mathbf{b}_{1} \times \mathbf{r}_{1}}{\sin(\alpha)}\right) \sin(\frac{\alpha}{2})$$ $$= \left(\cot(\frac{\alpha}{2}), \hat{\mathbf{e}}\right) \sin(\frac{\alpha}{2})$$ $$= \left(\cos(\frac{\alpha}{2}), \hat{\mathbf{e}}\sin(\frac{\alpha}{2})\right) = \bar{\mathbf{q}}_{min}. \tag{6.16}$$ #### 6.4.2 The general rotation quaternion Denote $\bar{\mathbf{q}}(\hat{\mathbf{e}}, \alpha)$ as the quaternion that has rotational axis $\hat{\mathbf{e}}$ and rotational angle α . Then, the most general rotation that maps \mathbf{r}_1 to \mathbf{b}_1 is given by $$\bar{\mathbf{q}}_1 = \bar{\mathbf{q}}(\mathbf{r}_1, \phi_r) \otimes \bar{\mathbf{q}}_{min} \otimes \bar{\mathbf{q}}(\mathbf{b}_1, \phi_b), \tag{6.17}$$ where ϕ_b and ϕ_r are arbitrary angles of rotation about \mathbf{b}_1 and \mathbf{r}_1 , respectively. Using (1.2), (1.3), (1.4), (3.44), and the facts that $$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta), \tag{6.18}$$ and $$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta), \tag{6.19}$$ equation (6.17) can be reduced by using (3.44) and (1.1), as follows: $$(1 + \mathbf{b}_{1} \cdot \mathbf{r}_{1}, \mathbf{b}_{1} \times \mathbf{r}_{1}) \otimes \left(\cos\left(\frac{\phi_{b}}{2}\right), \mathbf{b}_{1} \sin\left(\frac{\phi_{b}}{2}\right)\right)$$ $$= \left((1 + \mathbf{b}_{1} \cdot \mathbf{r}_{1})\cos\left(\frac{\phi_{b}}{2}\right) - (\mathbf{b}_{1} \times \mathbf{r}_{1}) \cdot \mathbf{b}_{1} \sin\left(\frac{\phi_{b}}{2}\right),$$ $$+ (1 + \mathbf{b}_{1} \cdot \mathbf{r}_{1})\mathbf{b}_{1} \sin\left(\frac{\phi_{b}}{2}\right) + (\mathbf{b}_{1} \times \mathbf{r}_{1})\cos\left(\frac{\phi_{b}}{2}\right) + (\mathbf{b}_{1} \times \mathbf{r}_{1}) \times \mathbf{b}_{1} \sin\left(\frac{\phi_{b}}{2}\right)\right)$$ $$= \left((1 + \mathbf{b}_{1} \cdot \mathbf{r}_{1}) \cos \left(\frac{\phi_{b}}{2} \right), + (1 + \mathbf{b}_{1} \cdot \mathbf{r}_{1}) \mathbf{b}_{1} \sin \left(\frac{\phi_{b}}{2} \right) + (\mathbf{b}_{1} \times \mathbf{r}_{1}) \cos \left(\frac{\phi_{b}}{2} \right) + (\mathbf{r}_{1} - (\mathbf{b}_{1} \cdot \mathbf{r}_{1}) \mathbf{b}_{1}) \sin \left(\frac{\phi_{b}}{2} \right) \right)$$ $$= \left((1 + \mathbf{b}_{1} \cdot \mathbf{r}_{1}) \cos \left(\frac{\phi_{b}}{2} \right), (\mathbf{b}_{1} + \mathbf{r}_{1}) \sin \left(\frac{\phi_{b}}{2} \right) + (\mathbf{b}_{1} \times \mathbf{r}_{1}) \cos \left(\frac{\phi_{b}}{2} \right) \right). \tag{6.20}$$ Thus, we have $$\left(\cos\left(\frac{\phi_{r}}{2}\right), \mathbf{r}_{1}\sin\left(\frac{\phi_{r}}{2}\right)\right) \otimes (1 + \mathbf{b}_{1} \cdot \mathbf{r}_{1}, \mathbf{b}_{1} \times \mathbf{r}_{1}) \otimes \left(\cos\left(\frac{\phi_{b}}{2}\right), \mathbf{b}_{1}\sin\left(\frac{\phi_{b}}{2}\right)\right) = \left(\cos\left(\frac{\phi_{r}}{2}\right), \mathbf{r}_{1}\sin\left(\frac{\phi_{r}}{2}\right)\right) \otimes \left((1 + \mathbf{b}_{1} \cdot \mathbf{r}_{1})\cos\left(\frac{\phi_{b}}{2}\right), (\mathbf{b}_{1} + \mathbf{r}_{1})\sin\left(\frac{\phi_{b}}{2}\right) + (\mathbf{b}_{1} \times \mathbf{r}_{1})\cos\left(\frac{\phi_{b}}{2}\right)\right).$$ (6.21) Let q_0 and \mathbf{q} be the scalar part and vector part of the quaternion defined by (6.21). Using (3.44), (1.4), and (6.19), and the fact that $\|\mathbf{r}_1\| = 1 = \|\mathbf{b}_1\|$, we have $$q_{0} = (1 + \mathbf{b}_{1} \cdot \mathbf{r}_{1}) \cos \left(\frac{\phi_{r}}{2}\right) \cos \left(\frac{\phi_{b}}{2}\right)$$ $$-\mathbf{r}_{1} \cdot (\mathbf{b}_{1} + \mathbf{r}_{1}) \sin \left(\frac{\phi_{r}}{2}\right) \sin \left(\frac{\phi_{b}}{2}\right) - \mathbf{r}_{1} \cdot (\mathbf{b}_{1} \times \mathbf{r}_{1}) \sin \left(\frac{\phi_{r}}{2}\right) \cos \left(\frac{\phi_{b}}{2}\right)$$ $$= (1 + \mathbf{b}_{1} \cdot \mathbf{r}_{1}) \cos \left(\frac{\phi_{r}}{2}\right) \cos \left(\frac{\phi_{b}}{2}\right) - (1 + \mathbf{b}_{1} \cdot \mathbf{r}_{1}) \sin \left(\frac{\phi_{r}}{2}\right) \sin \left(\frac{\phi_{b}}{2}\right)$$ $$= (1 + \mathbf{b}_{1} \cdot \mathbf{r}_{1}) \left(\cos \left(\frac{\phi_{r}}{2}\right) \cos \left(\frac{\phi_{b}}{2}\right) - \sin \left(\frac{\phi_{r}}{2}\right) \sin \left(\frac{\phi_{b}}{2}\right)\right)$$ $$= (1 + \mathbf{b}_{1} \cdot \mathbf{r}_{1}) \cos \left(\frac{\phi_{r} + \phi_{b}}{2}\right). \tag{6.22}$$ From (6.21), using (3.44), (1.3), (6.18), and (6.19), we have $$\mathbf{q} = (1 + \mathbf{b}_1 \cdot \mathbf{r}_1) \mathbf{r}_1 \cos\left(\frac{\phi_b}{2}\right) \sin\left(\frac{\phi_r}{2}\right) \\ + (\mathbf{b}_1 + \mathbf{r}_1) \sin\left(\frac{\phi_b}{2}\right) \cos\left(\frac{\phi_r}{2}\right) + (\mathbf{b}_1 \times \mathbf{r}_1) \cos\left(\frac{\phi_b}{2}\right) \cos\left(\frac{\phi_r}{2}\right) \\ + \mathbf{r}_1 \times (\mathbf{b}_1 + \mathbf{r}_1) \sin\left(\frac{\phi_r}{2}\right) \sin\left(\frac{\phi_b}{2}\right) + \mathbf{r}_1 \times (\mathbf{b}_1 \times \mathbf{r}_1) \sin\left(\frac{\phi_r}{2}\right) \cos\left(\frac{\phi_b}{2}\right)$$ $$= \mathbf{r}_{1} \cos\left(\frac{\phi_{b}}{2}\right) \sin\left(\frac{\phi_{r}}{2}\right) + (\mathbf{b}_{1} \cdot \mathbf{r}_{1}) \mathbf{r}_{1} \cos\left(\frac{\phi_{b}}{2}\right) \sin\left(\frac{\phi_{r}}{2}\right)$$ $$+ (\mathbf{b}_{1} + \mathbf{r}_{1}) \sin\left(\frac{\phi_{b}}{2}\right) \cos\left(\frac{\phi_{r}}{2}\right) + (\mathbf{b}_{1} \times \mathbf{r}_{1}) \cos\left(\frac{\phi_{r}}{2}\right) \cos\left(\frac{\phi_{b}}{2}\right)$$ $$- (\mathbf{b}_{1} \times \mathbf{r}_{1}) \sin\left(\frac{\phi_{r}}{2}\right) \sin\left(\frac{\phi_{b}}{2}\right)$$ $$+ \mathbf{b}_{1} \sin\left(\frac{\phi_{r}}{2}\right) \cos\left(\frac{\phi_{b}}{2}\right) - (\mathbf{b}_{1} \cdot \mathbf{r}_{1}) \mathbf{r}_{1} \cos\left(\frac{\phi_{b}}{2}\right) \sin\left(\frac{\phi_{r}}{2}\right)$$ $$= (\mathbf{b}_{1} + \mathbf{r}_{1}) \sin\left(\frac{\phi_{b}}{2}\right) \cos\left(\frac{\phi_{r}}{2}\right) + (\mathbf{b}_{1} + \mathbf{r}_{1}) \sin\left(\frac{\phi_{r}}{2}\right) \cos\left(\frac{\phi_{b}}{2}\right)$$ $$+ (\mathbf{b}_{1} \times \mathbf{r}_{1}) \left(\cos\left(\frac{\phi_{r}}{2}\right) \cos\left(\frac{\phi_{b}}{2}\right) - \sin\left(\frac{\phi_{r}}{2}\right) \sin\left(\frac{\phi_{b}}{2}\right)\right)$$ $$= (\mathbf{b}_{1} + \mathbf{r}_{1}) \sin\left(\frac{\phi_{r} + \phi_{b}}{2}\right) + (\mathbf{b}_{1} \times \mathbf{r}_{1}) \cos\left(\frac{\phi_{r} + \phi_{b}}{2}\right)$$ $$= (\mathbf{b}_{1} + \mathbf{r}_{1}) \sin\left(\frac{\phi}{2}\right) + (\mathbf{b}_{1} \times \mathbf{r}_{1}) \cos\left(\frac{\phi}{2}\right),$$ $$(6.23)$$ where $\phi = \phi_r + \phi_b$. Combining (6.17), (6.16), (6.21), (6.22), and (6.23) yields $$\bar{\mathbf{q}}_{1} = \frac{1}{\sqrt{2(1+\mathbf{b}_{1}\cdot\mathbf{r}_{1})}} \left((1+\mathbf{b}_{1}\cdot\mathbf{r}_{1})\cos\left(\frac{\phi}{2}\right), (\mathbf{b}_{1}\times\mathbf{r}_{1})\cos\left(\frac{\phi}{2}\right) + (\mathbf{b}_{1}+\mathbf{r}_{1})\sin\left(\frac{\phi}{2}\right) \right). \tag{6.24}$$ Similarly, the most general rotation that maps \mathbf{r}_2 to \mathbf{b}_2 is given by $$\bar{\mathbf{q}}_{2} = \frac{1}{\sqrt{2(1+\mathbf{b}_{2}\cdot\mathbf{r}_{2})}} \left((1+\mathbf{b}_{2}\cdot\mathbf{r}_{2})\cos\left(\frac{\psi}{2}\right), (\mathbf{b}_{2}\times\mathbf{r}_{2})\cos\left(\frac{\psi}{2}\right) + (\mathbf{b}_{2}+\mathbf{r}_{2})\sin\left(\frac{\psi}{2}\right) \right) \tag{6.25}$$ for some angle ψ . ## 6.4.3 Attitude determination using two vector measurements As every quaternion in the family of $\bar{\mathbf{q}}_1(\phi)$ maps \mathbf{r}_1 to \mathbf{b}_1 and every quaternion in the family of
$\bar{\mathbf{q}}_2(\psi)$ maps \mathbf{r}_2 to \mathbf{b}_2 , we need to find a quaternion $\bar{\mathbf{q}}$ which is in both families so that it can maps \mathbf{r}_1 to \mathbf{b}_1 and \mathbf{r}_2 to \mathbf{b}_2 simultaneously. This means that both the scalar part and the vector part of $\bar{\mathbf{q}}_1$ and $\bar{\mathbf{q}}_2$ are equal for some ϕ and ψ . For the scalar part, we need $$\frac{(1+\mathbf{r}_{1}\cdot\mathbf{b}_{1})}{\sqrt{2(1+\mathbf{r}_{1}\cdot\mathbf{b}_{1})}}\cos\left(\frac{\phi}{2}\right) = \frac{(1+\mathbf{r}_{2}\cdot\mathbf{b}_{2})}{\sqrt{2(1+\mathbf{r}_{2}\cdot\mathbf{b}_{2})}}\cos\left(\frac{\psi}{2}\right)$$ $$\cos\left(\frac{\psi}{2}\right) = \sqrt{\frac{1+\mathbf{r}_{1}\cdot\mathbf{b}_{1}}{1+\mathbf{r}_{2}\cdot\mathbf{b}_{2}}}\cos\left(\frac{\phi}{2}\right) \qquad (6.26a)$$ For vector part, we need $$\frac{(\mathbf{b}_{1} \times \mathbf{r}_{1})}{\sqrt{(1+\mathbf{b}_{1} \cdot \mathbf{r}_{1})}} \cos\left(\frac{\phi}{2}\right) + \frac{(\mathbf{b}_{1} + \mathbf{r}_{1})}{\sqrt{(1+\mathbf{b}_{1} \cdot \mathbf{r}_{1})}} \sin\left(\frac{\phi}{2}\right) \\ = \frac{(\mathbf{b}_{2} \times \mathbf{r}_{2})}{\sqrt{(1+\mathbf{b}_{2} \cdot \mathbf{r}_{2})}} \cos\left(\frac{\psi}{2}\right) + \frac{(\mathbf{b}_{2} + \mathbf{r}_{2})}{\sqrt{(1+\mathbf{b}_{2} \cdot \mathbf{r}_{2})}} \sin\left(\frac{\psi}{2}\right) \tag{6.27}$$ Substituting (6.26a) and (6.26b) into (6.27) yields $$\begin{split} &(\mathbf{b}_1 \times \mathbf{r}_1) \cos \left(\frac{\phi}{2}\right) + (\mathbf{b}_1 + \mathbf{r}_1) \sin \left(\frac{\phi}{2}\right) \\ &= \frac{1 + \mathbf{b}_1 \cdot \mathbf{r}_1}{1 + \mathbf{b}_2 \cdot \mathbf{r}_2} \cos \left(\frac{\phi}{2}\right) (\mathbf{b}_2 \times \mathbf{r}_2) + (\mathbf{b}_2 + \mathbf{r}_2) \frac{\sqrt{(1 + \mathbf{b}_1 \cdot \mathbf{r}_1)}}{(1 + \mathbf{b}_2 \cdot \mathbf{r}_2)} \sqrt{1 + \mathbf{b}_2 \cdot \mathbf{r}_2 - (1 + \mathbf{b}_1 \cdot \mathbf{r}_1) \cos^2 \left(\frac{\phi}{2}\right)} \end{split}$$ Applying dot product of $\mathbf{b}_2 - \mathbf{r}_2$ on both side, the right-hand side vanishes because $(\mathbf{b}_2 + \mathbf{r}_2) \cdot (\mathbf{b}_2 - \mathbf{r}_2) = 0$, and from (1.4), $(\mathbf{b}_2 \times \mathbf{r}_2) \cdot (\mathbf{b}_2 - \mathbf{r}_2) = 0$. Therefore, we have $$(\mathbf{b}_1 \times \mathbf{r}_1) \cdot (\mathbf{b}_2 - \mathbf{r}_2) \cos\left(\frac{\phi}{2}\right) + (\mathbf{b}_1 + \mathbf{r}_1) \cdot (\mathbf{b}_2 - \mathbf{r}_2) \sin\left(\frac{\phi}{2}\right) = 0,$$ (6.28) or $$\frac{\sin\left(\frac{\phi}{2}\right)}{\cos\left(\frac{\phi}{2}\right)} = -\frac{(\mathbf{b}_1 \times \mathbf{r}_1) \cdot (\mathbf{b}_2 - \mathbf{r}_2)}{(\mathbf{b}_1 + \mathbf{r}_1) \cdot (\mathbf{b}_2 - \mathbf{r}_2)}.$$ (6.29) For any two vectors **a** and **b**, if **a** is proportional to **b**, we denote this relation as $\mathbf{a} \propto \mathbf{b}$. Clearly, if $\mathbf{a} \propto \mathbf{b}$, and $\mathbf{b} \propto \mathbf{c}$, then $\mathbf{a} \propto \mathbf{c}$. from (6.24) and (6.29), we have $$\begin{split} \bar{\mathbf{q}} &\propto \left(1 + \mathbf{b}_{1} \cdot \mathbf{r}_{1}, \mathbf{b}_{1} \times \mathbf{r}_{1} + \frac{\sin\left(\frac{\phi}{2}\right)}{\cos\left(\frac{\phi}{2}\right)} (\mathbf{b}_{1} + \mathbf{r}_{1})\right) \\ &\propto \left((1 + \mathbf{b}_{1} \cdot \mathbf{r}_{1}), \mathbf{b}_{1} \times \mathbf{r}_{1} - \frac{(\mathbf{b}_{1} \times \mathbf{r}_{1}) \cdot (\mathbf{b}_{2} - \mathbf{r}_{2})}{(\mathbf{b}_{1} + \mathbf{r}_{1}) \cdot (\mathbf{b}_{2} - \mathbf{r}_{2})} (\mathbf{b}_{1} + \mathbf{r}_{1})\right) \\ &\propto \left((\mathbf{b}_{1} + \mathbf{r}_{1}) \cdot (\mathbf{b}_{2} - \mathbf{r}_{2}), \frac{(\mathbf{b}_{1} \times \mathbf{r}_{1})((\mathbf{b}_{1} + \mathbf{r}_{1}) \cdot (\mathbf{b}_{2} - \mathbf{r}_{2})) - ((\mathbf{b}_{1} \times \mathbf{r}_{1}) \cdot (\mathbf{b}_{2} - \mathbf{r}_{2}))(\mathbf{b}_{1} + \mathbf{r}_{1})}{(1 + \mathbf{b}_{1} \cdot \mathbf{r}_{1})}\right) \end{split}$$ $$(6.30)$$ In view of (6.2), the scalar part of (6.30) implies $$(\mathbf{b}_1 + \mathbf{r}_1) \cdot (\mathbf{b}_2 - \mathbf{r}_2) = \mathbf{b}_2 \cdot \mathbf{r}_1 - \mathbf{b}_1 \cdot \mathbf{r}_2. \tag{6.31}$$ For the numerator of the vector part of (6.30), using (1.3), (1.2), and the fact that \mathbf{b}_1 and \mathbf{r}_1 are unit vectors, we have $$(\mathbf{b}_{1} \times \mathbf{r}_{1})((\mathbf{b}_{1} + \mathbf{r}_{1}) \cdot (\mathbf{b}_{2} - \mathbf{r}_{2})) - ((\mathbf{b}_{1} \times \mathbf{r}_{1}) \cdot (\mathbf{b}_{2} - \mathbf{r}_{2}))(\mathbf{b}_{1} + \mathbf{r}_{1})$$ $$= (\mathbf{b}_{2} - \mathbf{r}_{2}) \times ((\mathbf{b}_{1} \times \mathbf{r}_{1}) \times (\mathbf{b}_{1} + \mathbf{r}_{1}))$$ $$= (\mathbf{b}_{2} - \mathbf{r}_{2}) \times (\mathbf{r}_{1} - (\mathbf{r}_{1} \cdot \mathbf{b}_{1})\mathbf{b}_{1} + (\mathbf{b}_{1} \cdot \mathbf{r}_{1})\mathbf{r}_{1} - \mathbf{b}_{1})$$ $$= (\mathbf{b}_{2} - \mathbf{r}_{2}) \times (\mathbf{r}_{1} - \mathbf{b}_{1} + (\mathbf{r}_{1} - \mathbf{b}_{1})(\mathbf{r}_{1} \cdot \mathbf{b}_{1}))$$ $$= ((\mathbf{b}_{2} - \mathbf{r}_{2}) \times (\mathbf{r}_{1} - \mathbf{b}_{1}))(1 + \mathbf{r}_{1} \cdot \mathbf{b}_{1})$$ $$= ((\mathbf{b}_{1} - \mathbf{r}_{1}) \times (\mathbf{b}_{2} - \mathbf{r}_{2}))(1 + \mathbf{r}_{1} \cdot \mathbf{b}_{1})$$ $$(6.32)$$ Combining (6.30), (6.31), and (6.32) yields $$\bar{\mathbf{q}} \propto (\mathbf{b}_2 \cdot \mathbf{r}_1 - \mathbf{b}_1 \cdot \mathbf{r}_2, (\mathbf{b}_1 - \mathbf{r}_1) \times (\mathbf{b}_2 - \mathbf{r}_2)).$$ Normalizing the right-hand side gives $$\bar{\mathbf{q}} = \frac{(\mathbf{b}_2 \cdot \mathbf{r}_1 - \mathbf{b}_1 \cdot \mathbf{r}_2, (\mathbf{b}_1 - \mathbf{r}_1) \times (\mathbf{b}_2 - \mathbf{r}_2))}{\sqrt{(\mathbf{b}_2 \cdot \mathbf{r}_1 - \mathbf{b}_1 \cdot \mathbf{r}_2)^2 + \|(\mathbf{b}_1 - \mathbf{r}_1) \times (\mathbf{b}_2 - \mathbf{r}_2)\|^2}}$$ (6.33) Therefore, given known ephemeris \mathbf{r}_1 and \mathbf{r}_2 , observations \mathbf{b}_1 and \mathbf{b}_2 , the attitude quaternion is uniquely defined. The attitude quaternion is extremely simple though the derivation is tedious. It is worthwhile to note that this solution does not need to compute the largest eigenvalue and its corresponding eigenvector. The operation count is very low. In fact, the calculation of $\mathbf{b}_2 \cdot \mathbf{r}_1 - \mathbf{b}_1 \cdot \mathbf{r}_2$ needs 11 flops and the calculation of $(\mathbf{b}_1 - \mathbf{r}_1) \times (\mathbf{b}_2 - \mathbf{r}_2)$ needs 15 flops. Given these two quantities, the calculation of the square root needs 7 flops. Therefore, the total flops is 11 + 15 + 7 + 4 = 37 flops. ### 6.5 Analytic formula for general case Although all flight experiences were successful for the QUEST method, using a specific example, Markley and Mortari [166] showed that QUEST does not always converge. It is well known that Newton's method (used in QUEST to find zeros of a polynomial) is inadequate for general use since it may fail to converge to a solution. Cheng and Shuster [43] find a fix for the specific problem raised by Markley and Mortari [166]. But even if Newton's method converges, its behavior may be erratic in regions where the function is not convex [188]. On the other hand, equation (6.14) is a polynomial of degree 4 which admits analytic solutions. ### 6.5.1 Analytic formula Since the characteristic polynomial of (6.14) has an order of four, it admits and analytic solution. Mortari noticed this and proposed a closed-form solution which is now referred to as the ESOQ algorithm [180]. This solution, however, was known as not numerically stable by experts for a long time but this issue was not discussed openly in literature. In this section, we provide a different but more robust analytic solution based on the characteristic polynomial of the **K**-matrix presented in [180] which is given as follows. $$p(x) = x^4 + ax^3 + bx^2 + cx + d = 0, (6.34)$$ where a = 0, $b = -2(tr[\mathbf{B}])^2 + tr[adj(\mathbf{H})] - \mathbf{z}^T\mathbf{z}$, $\mathbf{H} = \mathbf{B} + \mathbf{B}^T$, $adj(\mathbf{H})$ the adjugate matrix of \mathbf{H} , $c = -tr[adj(\mathbf{K})]$, and $d = \det(\mathbf{K})$ are all known parameters. Several different methods were proposed in the last several hundred years [93] to solve (6.34). A latest effort was by Shmakov [232] who found a universal method to find the roots of the general quartic polynomial. A special case of this method is simpler than all previous methods and it can be directly adopted to solve (6.34). We summarize the steps as follows (see [329]). First, equation (6.34) can be factorized as the product of two quadratic polynomials as $$(x^{2} + g_{1}x + h_{1})(x^{2} + g_{2} + h_{2})$$ $$= x^{4} + (g_{1} + g_{2})x^{3} + (g_{1}g_{2} + h_{1} + h_{2})x^{2} + (g_{1}h_{2} + g_{2}h_{1})x + h_{1}h_{2} = 0.$$ (6.35) Moreover, g_1 , g_2 , h_1 , and h_2 are solutions of two quadratic equations defined by $$g^2 - ag + \frac{2}{3}b - y = 0 ag{6.36a}$$ $$h^2 - \left(y + \frac{b}{3}\right)h + d = 0 ag{6.36b}$$ where y is the real root(s) of the following cubic polynomial $$y^3 + py + q = 0, (6.37a)$$ $$p = ac - \frac{b^2}{3} - 4d, (6.37b)$$ $$q = \frac{abc}{3} - a^2d - \frac{2}{27}b^3 - c^2 + \frac{8}{3}bd.$$ (6.37c) The roots of the cubic equation can be obtained by the famous *Cardano's for-mula* [206] $$y_1 = \sqrt[3]{-\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}}$$ (6.38a) $$y_2 = \omega_1 \sqrt[3]{-\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3} + \omega_2 \sqrt[3]{-\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}}$$ (6.38b) $$y_3 = \omega_2 \sqrt[3]{-\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}} + \omega_1 \sqrt[3]{-\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}}$$ (6.38c) where $\omega_1 = \frac{-1+i\sqrt{3}}{2}$ and
$\omega_2 = \frac{-1-i\sqrt{3}}{2}$. It is well-known that (6.37) has either one real solution or three real solutions. If the discriminate $$\Delta = \left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3 > 0,$$ then (6.37) has a real solution given by (6.38a), and a pair of complex conjugate solutions given by (6.38b) and (6.38c). If $\Delta=0$, the (6.37) has three zero solutions. If $\Delta<0$, then (6.37) has three distinct real solutions. In this case, to avoid complex operations, the solutions can be given in a different form. Let $r=\sqrt{-\left(\frac{p}{3}\right)^3}$, $\theta=\frac{1}{3}\arccos\left(-\frac{q}{2r}\right)$, then the three real solutions are given by $$y_1 = 2r^{\frac{1}{3}}\cos(\theta),$$ (6.39a) $$y_2 = 2r^{\frac{1}{3}}\cos\left(\theta + \frac{2\pi}{3}\right),$$ (6.39b) $$y_3 = 2r^{\frac{1}{3}}\cos\left(\theta + \frac{4\pi}{3}\right).$$ (6.39c) Given a real y, from (6.36), we have $$g_{1,2} = \pm \sqrt{y - \frac{2}{3}b},$$ (6.40a) $$h_{1,2} = \frac{y + \frac{b}{3} \pm \sqrt{(y + b/3)^2 - 4d}}{2}$$ (6.40b) In view of (6.35), it is worthwhile to notice that the following relations must be held $$(g_1 + g_2) = a, (6.41a)$$ $$g_1g_2 + h_1 + h_2 = b,$$ (6.41b) $$g_1 h_2 + g_2 h_1 = c, (6.41c)$$ $$h_1 h_2 = d,$$ (6.41d) where (6.41a), (6.41b), and (6.41d) do not depend on the selections of g_1 , g_2 , h_1 , and h_2 (these relations always hold), but (6.41c) does depend on the choices of g_1 , g_2 , h_1 , and h_2 . In practice, it can always take g_1 as positive sign in (6.40a) and g_2 as minus sign in (6.40a); it can then be tried that h_1 takes positive sign in (6.40b) and h_2 takes minus sign in (6.40b); if (6.41c) holds, the correct selection is obtained; otherwise, h_1 takes minus sign in (6.40b) and h_2 takes positive sign in (6.40b) so that (6.41c) holds. Finally, the roots of the quartic (6.34) are given by $$x_{1,2} = \frac{-g_1 \pm \sqrt{g_1^2 - 4h_1}}{2},\tag{6.42a}$$ $$x_{3,4} = \frac{-g_2 \pm \sqrt{g_2^2 - 4h_2}}{2}. (6.42b)$$ A Matlab[®] code of this method can be downloaded from Matlab file exchange website https://www.mathworks.com/matlabcentral/fileexchange/54255-quartic-roots-m. #### 6.5.2 Numerical test The proposed analytic method and the QUEST method have been implemented in Matlab and tested against each other. **A simple problem:** The first simple test is the following problem. $$p(x) = x^4 + ax^3 + bx^2 + cx + d = 0, (6.43)$$ where a = 0, b = -2, c = 0, and d = 1. The problem has two positive solution of x = 1 and two negative solution of x = -1. The analytic method finds all solutions without numerical error. Starting from x = 1.1, the QUEST method finds the largest positive solution x = 1.00000001251746 after 23 iterations. **Randomly generated problems:** The simple problem shows that the analytic method may be promising, we conducted extensive numerical tests for tens of thousands of randomly generated problems. These test problems are generated as follows. First, Euler angles $\alpha \in [0, \pi]$, $\beta \in [0, \pi]$, and $\gamma \in [0, \pi]$ are randomly generated. This gives the true rotational matrix **A** which is converted as the true rotational quaternion $\bar{\mathbf{q}}_{t_i}$ for each randomly generated problem. Then three unit vectors representing the astronomic objectives \mathbf{r}_i , i = 1, 2, 3, are randomly generated. It is then assumed that the measurement vectors \mathbf{b}_i is the rotation of \mathbf{r}_i with measurement noise given by $$\mathbf{Ar}_i = \mathbf{b}_i + \mathbf{n}_i,$$ where $\mathbf{n}_i \in [0, N]$ are random noise whose maximum magnitude N varies in our test. The relative weight associated with each measurement is taken as $a_i = \frac{1}{n}$, where n is the total number of measurements. For each prescribed N, 1000 randomly generated Wahba's problems are solved by both analytic method and QUEST method, the results are denoted as $\bar{\mathbf{q}}_{a_i}$ and $\bar{\mathbf{q}}_{n_i}$ respectively. The cumulative errors between the true quaternions and estimated quaternions are | Noise size | analytic method E_a | QUEST method E_n | |----------------|-----------------------|---------------------| | N=0.01 | 4.50344692811497 | 4.50336882243908 | | N=0.001 | 0.46355508921313 | 0.46356102302689 | | N=0.0001 | 0.04633308474148 | 0.04636056974745 | | N=0.00001 | 0.00464952990550 | 0.00462173419676 | | N=0.000001 | 0.46855497718417E-3 | 0.45068048617712E-3 | | N=0.0000001 | 0.48374024654480E-4 | 0.46367084520959E-4 | | N=0.00000001 | 0.32071390174853E-4 | 0.04635740127652E-4 | | N=0.000000001 | 0.67150605970535E-5 | 0.04666503538671E-5 | | N=0.0000000001 | 0.93419725779054E-5 | 0.00465660360757E-5 | Table 6.1: Comparison of analytic method and QUEST method. calculated as $$E_a = \sum_{i=1}^{1000} \|\bar{\mathbf{q}}_{t_i} - \bar{\mathbf{q}}_{a_i}\|_2, \qquad E_n = \sum_{i=1}^{1000} \|\bar{\mathbf{q}}_{t_i} - \bar{\mathbf{q}}_{n_i}\|_2.$$ The results are given in Table 6.1. This test result shows that if the upper bound of the noise is greater than 10^{-8} , the estimation accuracies for both analytic method and QUEST method are very similar. For very small noise (the maximum magnitude is less than 10^{-8}), the QUEST method is slightly better. The Matlab code for calculating the roots of the quartic equation can be downloaded from [99]. #### 6.6 Riemann-Newton method For problems with more than two measurements, both the QUEST method and the analytic method described in the previous section solve Davenport's problem in two steps. First, find the largest eigenvalue of the \mathbf{K} matrix, and then find the quaternion using the analytic formula. It has been noticed that the second step is sensitive to the accuracy of the the largest eigenvalue of the \mathbf{K} -matrix but directly solving Davenport's method is much more robust, which was also observed in [161]. Since $\bar{\mathbf{q}}$ is a unit length vector, maximizing (6.11) is equivalent to solving *Rayleigh quotient problem* [95]: $$\lambda_{\text{max}} = \max_{\|\bar{\mathbf{q}}\| = 1} \frac{1}{2} \bar{\mathbf{q}}^{\text{T}} \mathbf{K} \bar{\mathbf{q}}, \tag{6.44}$$ where $\bar{\mathbf{q}}$ is also the eigenvector associated with the largest eigenvalue λ_{max} of the **K**-matrix. Problem (6.44) is an optimization problem with a sphere constraint $\|\bar{\mathbf{q}}\| = 1$ which is much simpler than Wahba's problem. As the size of the problem (6.44) is small, Newton's method should be considered. Noticing that both Euclidean space and smooth algebraic equation systems are Riemannian manifolds, Smith [242] extended unconstrained Newton's method in Euclidean space to include all Riemannian manifolds (smoothly constrained optimization problems). The method derived from the idea is not only mathematically elegant, but also turns out, for some cases including the unit sphere constraint in (6.44), to be extremely efficient [242, 305]. In the following discussion, a slightly different but more efficient method is proposed to solve the problem defined in (6.44). Instead of searching along straight lines, optimization on the sphere (or in general on manifolds) searches along geodesics on the sphere (or in general on manifolds). The first important result is therefore to find the geodesic defined by the current point on sphere and a descent direction. Let $\mathbf{B}\mathcal{S}^{n-1} := \{\bar{\mathbf{q}} \in \mathbf{R}^n : \|\bar{\mathbf{q}}\| = 1\}$ be a sphere in n-dimensional space, let \mathbf{y} be a descent direction and the tangent space of $\mathbf{B}\mathcal{S}^{n-1}$ at $\bar{\mathbf{q}}$ be denoted as $\mathcal{T}_{\bar{\mathbf{q}}}(\mathbf{B}\mathcal{S}^{n-1})$, then we have (see [306]) the following: #### Theorem 6.1 Let $\bar{\mathbf{q}} \in \mathbf{B}\mathcal{S}^3$, $\mathbf{y} \in \mathcal{T}_{\bar{\mathbf{q}}}(\mathbf{B}\mathcal{S}^3)$ be any tangent vector at $\bar{\mathbf{q}}$, and $\|\mathbf{y}\| = 1$. Then, the unique geodesic $\mathbf{g}(t)$ on $\mathbf{B}\mathcal{S}^3$ emanating from $\bar{\mathbf{q}}$ along the direction of \mathbf{y} is given by $$\mathbf{g}(t) = \bar{\mathbf{q}}\cos(t) + \mathbf{y}\sin(t). \tag{6.45}$$ where $t \in [0, \frac{\pi}{2}]$. The main steps of the original Riemann-Newton method in [242] are: (a) from current iterate $\bar{\bf q}$, calculate the Newton direction (a vector) in ${\bf R}^n$, (b) project the vector onto the tangent space ${\cal T}_{\bar{\bf q}}({\bf B}{\cal S}^{n-1})$, (c) normalize the vector in the tangent space to get ${\bf y}$, and (d) search the optimizer along the geodesic (6.45) to a new iterate $\bar{\bf q}$. Repeat Steps (a) to (d) until an optimal solution is obtained. Using the simple structure of spheres and fixed step size, steps (a) and (b) can be simplified as follows. Let ${\bf P}_{\bar{\bf q}_k}=({\bf I}-\bar{\bf q}_k\bar{\bf q}_k^T)$ be the orthogonal projection from ${\bf R}^4$ to ${\cal T}_{\bar{\bf q}}({\bf B}{\cal S}^3)$. Since the gradient of $\frac{1}{2}\bar{\bf q}^T{\bf K}\bar{\bf q}$ is ${\bf P}_{\bar{\bf q}_k}{\bf K}\bar{\bf q}$, and the Hessian of $\frac{1}{2}\bar{\bf q}^T{\bf K}\bar{\bf q}$ on the sphere manifold can be expressed as ${\bf P}_{\bar{\bf q}_k}{\bf K}{\bf P}_{\bar{\bf q}_k}-\bar{\bf q}_k^T{\bf K}\bar{\bf q}_k{\bf I}$. The Newton equation for (6.44) is given by $$(\mathbf{P}_{\bar{\mathbf{q}}_k} \mathbf{K} \mathbf{P}_{\bar{\mathbf{q}}_k} - \bar{\mathbf{q}}_k^{\mathrm{T}} \mathbf{K} \bar{\mathbf{q}}_k \mathbf{I}) \mathbf{y}_k = -\mathbf{P}_{\bar{\mathbf{q}}_k} \mathbf{K} \bar{\mathbf{q}}_k. \tag{6.46}$$ Steps (c) and (d) can be approximated in a much more efficient way described as follows. As \mathbf{y}_k must be on the tangent plane $\mathcal{T}_{\bar{\mathbf{q}}}(\mathbf{B}\mathcal{S}^{n-1})$, the Newton full size update on the tangent plane is $\bar{\mathbf{q}}_k + \mathbf{y}_k$. Because of the special structure of sphere, searching along geodesic can be replaced by $$\bar{\mathbf{q}}_{k+1}
= \frac{\bar{\mathbf{q}}_k + \mathbf{y}_k}{\|\bar{\mathbf{q}}_k + \mathbf{y}_k\|}.$$ (6.47) The algorithm is therefore given as follows. #### Algorithm 6.1 Select $$\bar{\mathbf{q}}_0 \in \mathbf{R}^4$$ such that $\|\bar{\mathbf{q}}_0\| = 1$. for $k = 0, 1, 2, ...$ Solve linear systems $\mathbf{P}_{\bar{\mathbf{q}}_k} \mathbf{K} \mathbf{P}_{\bar{\mathbf{q}}_k} \mathbf{y}_k - \mathbf{y}_k \bar{\mathbf{q}}_k^T \mathbf{K} \bar{\mathbf{q}}_k = -\mathbf{P}_{\bar{\mathbf{q}}_k} \mathbf{K} \bar{\mathbf{q}}_k \text{ and } \bar{\mathbf{q}}_k^T \mathbf{y}_k = 0$. Set $\bar{\mathbf{q}}_{k+1} = \frac{\bar{\mathbf{q}}_k + \mathbf{y}_k}{\|\bar{\mathbf{q}}_k + \mathbf{y}_k\|}$ and $k = k + 1$. end (for) For a general problem, the Riemann-Newton method in [242] does not have a useful rule to choose a good initial point. For attitude determination problem, however, Shuster observed [234] that the largest eigenvalue of **K**-matrix is very close to one. Therefore, the initial point $\bar{\mathbf{q}}_0$ can be determined as follows. Let $\bar{\mathbf{K}} = \mathbf{K} - \mathbf{I}$. Since $\mathbf{K}\bar{\mathbf{q}} \approx \bar{\mathbf{q}}$, or equivalently $\bar{\mathbf{K}}\bar{\mathbf{q}} \approx \mathbf{0}$, using Matlab notation, this gives $$\bar{\mathbf{K}}(:,2:4)\mathbf{q} = -\bar{\mathbf{K}}(:,1)$$ (6.48) and set $\bar{\mathbf{q}}_0 = \frac{[1,\mathbf{q}^T]^T}{\|[1,\mathbf{q}^T]\|}$. Numerical experience shows that this selection of $\bar{\mathbf{q}}_0$ is very close to the solution of (6.44). In many cases, there is no need for any iteration. Another possible way to select the initial point is to use (6.33) for two vector observations, which is slightly cheaper than the method of solving linear system equations (6.48). Numerical test in [315] demonstrated the efficiency and robustness of this method. The Matlab code of the method can be downloaded in [100]. #### 6.7 SVD method Although most popular methods are based on Davenport's q-method, Markley's *SVD method* [160] solves the *Wahba's problem* (6.3) directly by finding the rotational matrix **A**. Strictly speaking, the SVD method is not a quaternion based approach, but it has been demonstrated good numerical stability [165], therefore, we included it in this chapter. The SVD method uses a similar strategy that was used in [62] (which is the first solution to Wahba's problem) by considering the Frobenius norm in (6.3). The SVD method had been implicitly used for attitude determination in [18, 54] before Markley's SVD method is published, but the latter is significantly different from the ones in [18, 54] and becomes popular due to its numerical robustness. #### 6.7.1 The SVD-based attitude determination algorithm Let $\mathbf{B} = [\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_m]$ and $\mathbf{R} = [\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_m]$. Then, problem (6.3) becomes $$\min_{\mathbf{A}} \frac{1}{2} \sum_{i=1}^{m} \|\mathbf{B} - \mathbf{A}\mathbf{R}\|_{F}^{2}.$$ (6.49) For the orthogonal matrix **A**, since $\mathbf{A}^{T}\mathbf{A} = \mathbf{I}$, we have $$\frac{1}{2} \sum_{i=1}^{m} \|\mathbf{B} - \mathbf{A}\mathbf{R}\|_{F}^{2}$$ $$= Tr \left[(\mathbf{B} - \mathbf{A}\mathbf{R})^{\mathrm{T}} (\mathbf{B} - \mathbf{A}\mathbf{R}) \right]$$ $$= Tr(\mathbf{B}^{\mathrm{T}}\mathbf{B}) + Tr(\mathbf{R}^{\mathrm{T}}\mathbf{R}) - 2Tr(\mathbf{B}^{\mathrm{T}}\mathbf{A}\mathbf{R})$$ $$= 2 - 2Tr(\mathbf{A}\mathbf{R}\mathbf{B}^{\mathrm{T}}).$$ (6.50) The last equality holds because the columns of ${\bf B}$ and ${\bf R}$ are normalized. This shows that $$\frac{1}{2} \sum_{i=1}^{m} \|\mathbf{B} - \mathbf{A}\mathbf{R}\|_{F}^{2} = 1 - Tr(\mathbf{A}\mathbf{R}\mathbf{B}^{T}).$$ (6.51) Let $$\mathbf{C}^{\mathrm{T}} = \mathbf{R}\mathbf{B}^{\mathrm{T}}.\tag{6.52}$$ The singular value decomposition of C is given by $$\mathbf{C} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathrm{T}},\tag{6.53}$$ where U and V are orthogonal matrices, and $$\mathbf{D} = \operatorname{diag}(d_1, d_2, d_3) \tag{6.54}$$ with $$d_1 \ge d_2 \ge d_3 \ge 0. \tag{6.55}$$ Notice $det(\mathbf{U}) = \pm 1 = det(\mathbf{V})$. Define three orthogonal matrices as follows: $$\mathbf{U}_{+} = \mathbf{U}[\operatorname{diag}(1, 1, \operatorname{det}(\mathbf{U}))], \tag{6.56}$$ $$\mathbf{V}_{+} = \mathbf{V}[\operatorname{diag}(1, 1, \operatorname{det}(\mathbf{V}))], \tag{6.57}$$ $$\mathbf{W} = \mathbf{U}_{+}^{\mathrm{T}} \mathbf{A} \mathbf{V}_{+}. \tag{6.58}$$ Since **W** is an orthogonal matrix, it can be viewed as a rotational matrix with an unit length rotational axis $\hat{\mathbf{e}}$ and rotational angle ϕ . In view of (3.15), we can write **W** as follows: $$\mathbf{W} = \cos(\phi)\mathbf{I} + (1 - \cos(\phi))\hat{\mathbf{e}}\hat{\mathbf{e}}^{\mathrm{T}} - \sin(\phi)\mathbf{E}, \tag{6.59}$$ where $$\mathbf{E} = \begin{bmatrix} 0 & -e_3 & e_2 \\ e_3 & 0 & -e_1 \\ -e_2 & e_1 & 0 \end{bmatrix}. \tag{6.60}$$ Let $$d = \det(U)\det(V) = \pm 1,\tag{6.61}$$ and define $$\mathbf{D}_{+} = diag(d_1, d_2, d_3 d) \tag{6.62}$$ Then (6.53) can be written as $$\mathbf{C} = \mathbf{U}_{+} \mathbf{D}_{+} \mathbf{V}_{+}^{\mathrm{T}}.\tag{6.63}$$ Substituting this equation into equation (6.51), using the cyclic invariance of the trace and equation (6.59), and noticing $Tr[\mathbf{D}_{+}\mathbf{E}] = 0$ yield $$\frac{1}{2} \sum_{i=1}^{m} \|\mathbf{B} - \mathbf{A}\mathbf{R}\|_{F}^{2} = 1 - Tr(\mathbf{A}\mathbf{R}\mathbf{B}^{T}) = 1 - Tr(\mathbf{A}\mathbf{C}^{T}) = 1 - Tr(\mathbf{A}\mathbf{V}_{+}\mathbf{D}_{+}\mathbf{U}_{+}^{T}) = 1 - Tr(\mathbf{D}_{+}\mathbf{U}_{+}^{T}\mathbf{A}\mathbf{V}_{+}) = 1 - Tr(\mathbf{D}_{+}\mathbf{W}) = 1 - Tr[\mathbf{D}_{+}[\cos(\phi)\mathbf{I} + (1 - \cos(\phi))\hat{\mathbf{e}}\hat{\mathbf{e}}^{T} - \sin(\phi)\mathbf{E}] \} = 1 - Tr[\cos(\phi)\mathbf{D}_{+}] - Tr[(1 - \cos(\phi))\mathbf{D}_{+}\hat{\mathbf{e}}\hat{\mathbf{e}}^{T}] - Tr[\sin(\phi)\mathbf{D}_{+}\mathbf{E}] = 1 - Tr[\mathbf{D}_{+}] + Tr[(1 - \cos(\phi))\mathbf{D}_{+}] - Tr[(1 - \cos(\phi))\mathbf{D}_{+}\hat{\mathbf{e}}\hat{\mathbf{e}}^{T}] = 1 - Tr[\mathbf{D}_{+}] + Tr[(1 - \cos(\phi))(\mathbf{D}_{+} - \mathbf{D}_{+}\hat{\mathbf{e}}\hat{\mathbf{e}}^{T}] = 1 - Tr[\mathbf{D}_{+}] + (1 - \cos(\phi))[d_{1}(1 - e_{1}^{2}) + d_{2}(1 - e_{2}^{2}) + d_{3}d(1 - e_{3}^{2})].$$ (6.64) Since $e_1^2 = 1 - e_2^2 - e_3^2$, noticing $d_2 + d_3 d \ge 0$, $d_1 - d_2 \ge 0$, and $d_1 - d_3 d \ge 0$, we have $$d_{1}(1-e_{1}^{2}) + d_{2}(1-e_{2}^{2}) + d_{3}d(1-e_{3}^{2})$$ $$= d_{1}e_{2}^{2} + d_{1}e_{3}^{2} + d_{2} - d_{2}e_{2}^{2} + d_{3}d - d_{3}de_{3}^{2}$$ $$= d_{2} + d_{3}d + (d_{1} - d_{2})e_{2}^{2} + (d_{1} - d_{3}d)e_{3}^{2}$$ $$> 0$$ (6.65) Combining (6.64) and (6.65) yields $$\frac{1}{2}\sum_{i=1}^m \|\mathbf{B} - \mathbf{A}\mathbf{R}\|_F^2$$ $$= 1 - Tr[\mathbf{D}_{+}] + (1 - \cos(\phi))[d_2 + d_3d + (d_1 - d_2)e_2^2 + (d_1 - d_3d)e_3^2].$$ (6.66) which makes it clear that to minimize $\frac{1}{2}\sum_{i=1}^{m}\|\mathbf{B}-\mathbf{A}\mathbf{R}\|_{F}^{2}$, we should take $\phi=0$. In view of (6.59), it follows that $\mathbf{W}_{opt}=\mathbf{I}$. From (6.58), we obtain $$\mathbf{A}_{opt} = \mathbf{U}_{+} \mathbf{V}_{+}^{\mathrm{T}} = \mathbf{U}[\operatorname{diag}(1, 1, d)] \mathbf{V}^{\mathrm{T}}. \tag{6.67}$$ From (6.66), the optimal objective value is given by $$\min_{A} \frac{1}{2} \sum_{i=1}^{m} \|\mathbf{B} - \mathbf{A}\mathbf{R}\|_{F}^{2} = 1 - d_{1} - d_{2} - d_{3}d.$$ (6.68) The SVD-based attitude determination algorithm is summarized as follows: #### Algorithm 6.2 - 1. Compute C from equation (6.52). - 2. Find the SVD of C from equation (6.53). - 3. Compute **d** from equation (6.61). - 4. Compute \mathbf{A}_{opt} from equation (6.67). - 5. Compute the optimal objective value from equation (6.68) # 6.7.2 Uniqueness of the SVD solution First, If $$d_2 + d_3 d + (d_1 - d_2)e_2^2 + (d_1 - d_3 d)e_3^2 > 0, (6.69)$$ then we must take $\phi = 0$, which is the unique optimal solution. However, if $d_2 + d_3 d = 0$, then there may exist an rotational axis $\hat{\mathbf{e}} = (e_1, e_2, e_3) = (1, 0, 0)$ such that the left hand side of (6.69) equals to zero. Substituting these numbers into (6.59) yields $$\mathbf{W} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\phi) & \sin(\phi) \\ 0 & -\sin(\phi) & \cos(\phi) \end{bmatrix}, \tag{6.70}$$ i.e., there is a family of optimizers $\mathbf{W}(\phi)$ with any ϕ that minimizes the objective function. The uniqueness of the solution is closely related to the rank of the C matrix, which is equal to the number of non-zero singular values [77]. The rank of the C matrix is related to the number of independent attitude sensors. We have seen in Chapter 3 that it must have at least two independent attitude sensors to uniquely determine the spacecraft attitude. Therefore, we will consider only the cases where the rank of \mathbb{C} is two or three, therefore, $d_2 > 0$. If $d_2 > d_3$, it follows that $d_2 + d_3 d > 0$, the previous analysis shows that the optimal solution is unique. For a special case $d_3 = 0$, it can be show that this is a situation when the measurement errors are zero. Let ε_i be the measurement error of the *i*th-instrument. Then, the measurement equation can be modelled as $$\mathbf{b}_{i} = \mathbf{A}_{true}\mathbf{r}_{i} + \boldsymbol{\varepsilon}_{i},\tag{6.71}$$ where \mathbf{A}_{true} is the true attitude matrix. In the absence of errors, it follows from (6.71) that $\mathbf{B} = \mathbf{A}_{true}\mathbf{R}$, hence, $\mathbf{M} \equiv \mathbf{B}\mathbf{B}^{\mathrm{T}} = \mathbf{A}_{true}\mathbf{R}\mathbf{B}^{\mathrm{T}} = \mathbf{A}_{true}\mathbf{C}^{\mathrm{T}}$. This gives $\mathbf{B}\mathbf{B}^{\mathrm{T}} = \mathbf{C}\mathbf{A}_{true}^{\mathrm{T}}$ or $$\mathbf{M}\mathbf{A}_{true} = \mathbf{C},\tag{6.72}$$ and $$\det(\mathbf{C}) = \det \mathbf{M} = m_1 m_2 m_3. \tag{6.73}$$ where $m_1 \ge m_2 \ge m_3 \ge 0$ are non-negative eigenvalues of **M**, and $m_2 > 0$. Again, using the previous analysis, the optimal solution is unique. **Remark 6.1** Many
early solutions of Wahba's problem were to find the rotational matrix \mathbf{A}_{opt} , including the famous TRIAD method [31], among others [18, 10, 11, 12]. A comparison of these methods were performed in [173]. # 6.8 Rotation rate determination using vector measurements The information of the rotation rate of the spacecraft may be needed in the feedback controller design. Many spacecraft have been equipped with on-board three axis rate-gyros to measure the angular rate [71]. However, some spacecraft do not install the rate-gyros because of economic considerations. In this case, the angular rate can be estimated using vector measurements, for example, the method published in [244]. In this section, we present a very simple method. Let $$\mathbf{E} = \begin{bmatrix} -q_1 & q_0 & q_3 & -q_2 \\ -q_2 & -q_3 & q_0 & q_1 \\ -q_3 & q_2 & -q_1 & q_0 \end{bmatrix}. \tag{6.74}$$ Pre-multiplying 2E on both sides of (3.65) gives, $$\begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} = 2 \begin{bmatrix} -q_1 & q_0 & q_3 & -q_2 \\ -q_2 & -q_3 & q_0 & q_1 \\ -q_3 & q_2 & -q_1 & q_0 \end{bmatrix} \begin{bmatrix} \frac{dq_0}{dt} \\ \frac{dq_1}{dt} \\ \frac{dq_2}{dt} \\ \frac{dq}{dt} \\ \frac{dq}{dt} \end{bmatrix} = 2\mathbf{E} \frac{d\bar{\mathbf{q}}}{dt}.$$ (6.75) In theory, after getting the quaternion, then taking the differences $\Delta \bar{\mathbf{q}} = \bar{\mathbf{q}}(t_i) - \bar{\mathbf{q}}(t_{i-1})$, $\Delta t = t_i - t_{i-1}$, and the division of $\frac{\Delta \bar{\mathbf{q}}}{\Delta t}$, we can approximate $\frac{d\bar{\mathbf{q}}}{dt}$ and get the angular rate. However, in practical application, due to the measurement noise, this angular rate determination based on the differentiation may not be reliable because of the high frequency noise. A low pass Butterworth digital filter [190], whose input is the ω obtained from (6.75) and the output is the refined angular rate, will significantly suppress the noise thereby improving the angular rate determination. Furthermore, this angular rate can be further refined by a Kalman filter which will be discussed in Chapter 8. The next problem for spacecraft attitude determination is about how to get ephemeris and observation vectors. These vector pairs can be any astronomical vectors, such as the Sun vector pairs, the Earth vector pairs, the Earth's magnetic vector pairs, or any star vector pair. There is a lot of literature that discusses these topics. For example, for the sun direction measurement, one can read [144]. For the ephemeris sun direction, the formula is given in [268]. For geomagnetic vector measurement, a magnetometer can be used [101]. For the ephemeris geomagnetic vector, the formula is given in [283]. For star tracker and algorithms, one can read [105]. We will discuss these topics in the next chapter. # Chapter 7 # Astronomical Vector Measurements As we have seen in the previous chapter, the attitude determination depends primarily on the calculations of known reference vectors and the measurements of the astronomical vectors. The most frequently used astronomical vector measurements are the Sun vector, the Earth vector, the Earth magnetic vector, and stars' vectors. In this chapter, notations \mathbf{r}_i , i = o, m, s are used for reference vectors; subscript o for the astronomical object, m for geomagnetic field, and s for the Sun. Similarly we use \mathbf{b}_i , i = o, m, s, for measured vectors for the astronomical object, the geomagnetic field, and the Sun. We will discuss how these vectors are obtained in principle. ## 7.1 Stars' vectors and star trackers Using stars in navigation and attitude determination has a long history. On the *celestial sphere* (an imaginary sphere of arbitrarily large radius, concentric with the Earth, with the *celestial equator* in the same plane as Earth's equator and the *celestial poles* the same directions as Earth's poles), all objects in the sky can be projected upon the celestial sphere and they all have essentially fixed positions on the celestial sphere. Therefore, if a spacecraft attitude is perfectly aligned with the LVLH frame, the $-\mathbf{Z}$ direction will point to a certain astronomical object, a known direction vector $\mathbf{r_0}$ in the reference frame. If a *Charge Coupled Device* (CCD) camera mounted on the spacecraft with the *field of view* (FOV) in the $-\mathbf{Z}$ direction of the body detects some astronomical object, then a measured vector $\mathbf{b_0}$ is obtained. To make this idea work, several things are needed. First, we need a map that gives us information on what star is located in the celestial sphere (the spacecraft's position is determined by a GPS mounted on the spacecraft). Several requirements are needed for this map: (a) stars in this map should be bright enough for the CCD camera to see them, and (b) stars in this map should be uniformly distributed everywhere so that the CCD camera is always pointing to certain stars. This kind of map is called a *star catalog*. People have created many star catalogs for attitude determination, see for example, [223]. Second, after CCD detected some stars, we need to know where these stars are located in the star catalogs. There are numerous methods to use, see the survey paper by [246]. Based on the ideas described above, *star trackers* can be built (see [224]). Therefore, the observation vector and measurement vector are obtained as follows. Given the spacecraft position, the $\mathbf{r_0}$ is immediately available from the star catalog; using a CCD camera, stars are found, and using the star identification algorithm, stars observed on CCD are identified in the star catalog, thereby measured vector $\mathbf{b_0}$ is obtained. A typical autonomous star tracker operates in two modes: (a) the initial attitude acquisition, and (b) the tracking mode. The main difference between the two modes is whether the spacecraft attitude knowledge is approximately available or not. In the initial attitude acquisition mode, the task is, as described in the previous paragraph, to perform pattern recognition based on the observed star pattern in the field of view. Many algorithms have been developed for this purpose [141, 143, 168, 192, 211, 252, 266, 269]. In the tracking mode, the previous spacecraft attitude is available and the present spacecraft attitude is close to the last attitude updated less than a second ago. The task is much easier because the star tracker has only to track the identified stars at their known positions. This involves the calculation of the positions of the star centroids on the focal plane. Different algorithms have been used for this calculation [142, 222, 249]. # 7.2 Earth's magnetic field vectors and magnetometer To use the Earth's *magnetic field* vectors in attitude determination, given the spacecraft's position, we need to know the ephemeris Earth's magnetic field vector in the reference frame, for example, in the ECI frame or in the LVLH frame; and the measured Earth's magnetic field vector in the body frame. # 7.2.1 Ephemeris Earth's magnetic field vector The geomagnetic vector is based on the International Geomagnetic Reference Field (IGRF) model which is propagated by the flight software. Given the space-craft geocentric spherical polar coordinates (r, θ, ϕ) (spacecraft geocentric distance, co-elevation, and east longitude from Greenwich) provided by GPS, the ephemeris Earth's magnetic field vector \mathbf{r}_m is related to the scalar magnetic po- tential function V $$V(r,\theta,\phi) = a \sum_{n=1}^{\infty} \sum_{m=0}^{n} \left(\frac{a}{r}\right)^{n+1} P_n^m \cos(\theta) \left(g_n^m \cos(m\phi) + h_n^m \sin(m\phi)\right)$$ (7.1) and $\mathbf{r}_m = -\operatorname{grad}(V)$ is given in (5.16), this geomagnetic flux density should then be expressed in reference frame, i.e., ECI frame or LVLH frame. The transformations are discussed in Chapter 5 (see also [283, 187]). #### 7.2.2 Measured Earth's magnetic field vector There are many different magnetic sensors for various applications [135]. Among these sensors, a flux-gate type magnetometer is the most used for the spacecraft to measure the Earth's magnetic field vector. The sensor is installed on the spacecraft with the known orientation. The geomagnetic vector in the body frame $\mathbf{b_m}$ can be then obtained from the magnetometer (TAM) measurement. A digital filter may also be used to reduce the measurement noise, but that may introduce some signal delay. Since the measurement noise of TAM is relatively small, a digital filter is likely not used. For some recent development's in magnetometer design, readers are referred to [46] and the references therein. #### 7.3 Sun vectors and sun sensor To use the *sun vector* in attitude determination, given the spacecraft position, we need to know the sun vector in the reference frame, for example, in the ECI frame or in the LVLH frame; and the sun vector in the body frame. #### 7.3.1 Ephemeris sun vector The Sun vector in the ECI frame is the vector from the center of the ECI frame to the Sun, which is described in Figure 7.1. In this frame, we imagine that the Sun rotates around the Earth in the ecliptic plane which is tilted at an angle of ε to the plane of the celestial equator. In this figure, (x, y, z) is the coordinators of the ECI frame. (x', y', z') is the coordinators of a different frame in which x' coincides with x, and z' is perpendicular to the ecliptic plane, y' is in the ecliptic plane and completes the right-hand rule. The λ is the angle between the Sun vector and the x axis. Clearly, the angle is time-dependent. The ε is nearly a constant (≈ 23.44) but changes over time. The Sun vector is clearly determined by λ and ε and it can be expressed in ECI frame as follows $$\mathbf{r_s} = \begin{bmatrix} \cos(\lambda) \\ \cos(\varepsilon)\sin(\lambda) \\ \sin(\varepsilon)\sin(\lambda) \end{bmatrix}. \tag{7.2}$$
Figure 7.1: Sun vector represented in ECI frame. The λ and ε can be calculated based on the mathematic model described in [283, page 141], [267], or [268]. We provide the formulas of [268] as follows. First, given year, month, day (January first is the first day), hour, minute, and second, the *Julian date* JD is given as [268, page 186] $$JD = 367(year) - floor\left(\frac{7(year + floor(\frac{month + 9}{12}))}{4}\right) + floor\left(\frac{275month}{9}\right) + day + 1721013.5 + \frac{hour}{24} + \frac{minute}{1440} + \frac{second}{86400},$$ (7.3) where floor is the greatest integer smaller than its argument. From JD, we need to convert the date to J2000 which is given by [268, page 188] $$T_{UT1} = \frac{JD - 2541545.0}{36525}.$$ Then, the *mean longitude L of the Sun* is given by [268, pages 365-368] $$L = 280.4606184 + 36000.77005361 \times T_{UT1}. \tag{7.4}$$ Assume that *Barycentric dynamical time* $T_{TBD} = T_{UT1}$. The *mean anomaly g* of the Sun is given by $$g = 357.5277233 + 35999.05034 \times T_{TBD}. \tag{7.5}$$ The *ecliptic longitude* (λ) of the sun is given by $$\lambda = L + 1.914666471 \times \sin(g) + 0.019994643 \times \sin(2 \times g). \tag{7.6}$$ The tilted angle is given by $$\varepsilon = 23.439291^{\circ} - 0.0130042 \times T_{TBD}. \tag{7.7}$$ Substituting (7.6) and (7.7) into (7.2) gives the Sun vector in the ECI frame. The sun vector in a LVLH frame can be calculated by applying a rotational matrix that transforms the ECI frame to a LVLH frame, which has been discussed in Chapter 5. #### 7.3.2 Sun vector measurement Unlike geomagnetic vectors, the sun vector cannot be directly measured from the *Coarse Sun Sensors* (CSS) and some signal processing is necessary. Based on the specification of the *view angle* of the coarse sun sensor, a total of n CSS is needed to guarantee that at least two sun sensors are available at any orientation when the spacecraft is not in an *eclipse*. Each coarse sun sensor measures the current proportional to the projection of the Sun vector onto the sensor *bore-sight*. Let the measured current of the ith sun sensor $\mathbf{n_i}$ be $$b_i = I_i / I_0 = (\mathbf{n_i} \cdot \mathbf{b_s}), \tag{7.8}$$ where, i = 1, 2, ..., m < n, m is the number of Sun sensors that receive the Sun light at current spacecraft attitude, I_i is the measured current of the ith CSS, $\mathbf{n_i}$ is the known boresight unit vector of the ith CSS in body frame, $\mathbf{b_s}$ is the sun direction vector to be determined, and I_0 is the known maximum CSS current. There are two different cases that need two different methods to solve equation (7.8). In the first case, a valid current is measured from at least 3 of the n Sun Sensors. The CSS processing algorithm computes a measured sun vector by solving the system of equations (7.8) for \mathbf{b}_s using a pseudo-inverse. The unit sun vector $\hat{\mathbf{b}}_s$ is then obtained by normalizing \mathbf{b}_s . All vectors \mathbf{n}_i , \mathbf{b}_s , and $\hat{\mathbf{b}}_s$ are expressed in body frame. In the second case, a valid current is measured from only 2 of the n Sun Sensors. The resulting two linear system equations and quadratic constraint over the unit sphere has two possible solutions, and some extra information is needed to decide which solution is the true sun vector (a solution that is closer to the previous valid solution is a reasonable guess but it can be wrong). Clearly, the solution obtained in the first case gives a better estimation in general than the solution obtained in the second case. To avoid the second case, one needs more CSS. # Chapter 8 # **Spacecraft Attitude Estimation** In the previous two chapters, we have discussed spacecraft attitude determination methods based on the knowledge of astronomical object vectors \mathbf{r}_i at current time and the location of the spacecraft, and the vector measurements \mathbf{b}_i at current time. However, due to various reasons, these measurements are normally noise signals, which oftentimes result in an inaccurate attitude determination. In 1960, Kalman published his famous *Kalman filter* [111] and this technique quickly found its use in some high-profile missions in the aerospace industry, such as the Apollo project [175]. The success of the Apollo project made the Kalman filter a widely known method that has been used in many applications where measurement signals are noisy. Spacecraft attitude estimation has been a major research area since the Kalman filter was invented [134]. Because both quaternion kinematics and spacecraft dynamics are nonlinear, for spacecraft attitude estimation, an *extended Kalman filter* was developed by NASA engineers [15, 155, 240, 229, 239] and is now widely used in spacecraft attitude estimation. In 2000, Julier et al. [106] proposed a different filtering and estimation method, the *unscented Kalman filter*, for nonlinear system estimation problems. This estimation method has attracted a lot of attention. Many research papers, for example [44, 47, 48] and references therein, were published. Many reports claim that the unscented Kalman filter produces better estimation results than the extended Kalman filter. However, some simulation comparison between the two methods leads to different opinions about the potential advantages of the unscented Kalman filter [132]. We will not discuss the unscented Kalman filter method in this chapter. The readers interested in this method and its applica- tion to spacecraft attitude estimation are directed to [48] which includes a lot of references. In this chapter, we first present some basic concepts related to the estimation theory. Then, we discuss the linear Kalman filter. The extended Kalman filter is introduced here because spacecraft is intrinsically a nonlinear system. In the final part of this chapter, we apply the extended Kalman filter to the spacecraft quaternion model. # 8.1 A brief background review This section provides a brief background required for the chapter. ## 8.1.1 Probability and conditional probability Consider an experiment with a number of possible outcomes. A set of these outcomes is a sample space Ω . An *event A* is a subset of the sample space. A *probability* measure $p(\cdot)$ is a mapping: $A \to \mathbf{R}$ satisfying the axioms - (a) $p(A) \ge 0$. - (b) $p(\Omega) = 1$. - (c) If $A_i \cap A_j = \emptyset$, i.e., A_i and A_j are *disjoint*, for any i and j, then $p(\cup A_i) = \sum p(A_i)$. From these axioms, the following relations can be derived. $$p(\emptyset) = 0, \ p(\bar{A}) = 1 - p(A), \ p(\cup A_i) \le \sum p(A_i).$$ (8.1) where \bar{A} is the event in Ω but not in A. The *joint probability* of two events A and B is denoted by $p(A \cap B)$. Suppose an experiment event A is performed after the experiment event B occurred, and the probability that event A has also occurred, then the *conditional probability* of A given B is $$p(A|B) = \frac{p(A \cap B)}{p(B)}.$$ (8.2) One of the most important concepts in probability theory is the *mutually inde*pendent events. The m events of A_1, A_2, \dots, A_m is mutually independent if $$p(A_1 \cap A_2 \dots \cap A_m) = p(A_1)p(A_2) \dots p(A_m).$$ (8.3) For an experiment, if a variable's outcome is one of possible real numbers but it is not predictable which number will occur, then the variable X is a *random variable*. A random variable is *discrete* if it has only countable outcome numbers. A random variable is *continuous* if its outcome values is in some interval [a,b]. #### 8.1.2 One dimensional random variable For a random variable, although we cannot predict what number it will take, but we assume that we know its cumulative distribution. Given a random variable X, the *cumulative distribution function* F_x is a mapping: $\mathbf{R} \to [0,1]$ such that $$F(x) = p(X \le x). \tag{8.4}$$ The cumulative distribution function is monotonic increasing and satisfying $\lim_{x\to-\infty}=0$ and $\lim_{x\to\infty}=1$. For continuous random variables, we assume the corresponding cumulative distribution function F(x) is differentiable everywhere. Then we can define the *density function* of the random variable X as $$f(x) = \frac{dF(x)}{dx} \tag{8.5}$$ and f(x)dx to the first order is $f(x < X \le x + dx)$. # 8.1.3 Higher dimensional random variables We discuss only two dimensional random variables as the extension to the higher dimensional random variables is straightforward but with more complex notations. For a two dimensional random variable, its cumulative distribution function F(x,y) is a mapping: $\mathbf{R}^2 \to [0,1]$ such that $$F(x,y) = p(X \le x, Y \le y).$$ (8.6) The following properties hold for any two dimensional random variable: $$F(x,\infty) = F_1(x), \ F(\infty,y) = F_2(y), \ F(\infty,\infty) = 1.$$ (8.7) Assume that the two dimensional cumulative distribution function is continuously differentiable, then its density function is given by $$f(x,y) = \frac{\partial F(x,y)}{\partial x \partial y}.$$ (8.8) Therefore, $$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(x,y)dxdy.$$ (8.9) This yields $$F_1(x) = F_1(x, \infty) = \int_{-\infty}^{x} \int_{-\infty}^{\infty} f(x, y) dx dy,$$ (8.10) and $$F_2(y) = F_1(\infty, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{y} f(x, y) dx dy.$$ (8.11) Furthermore, we have $$f_1(x) = \frac{\partial F_1(x, \infty)}{\partial x} = \int_{-\infty}^{\infty} f(x, y) dy,$$ (8.12) and $$f_2(y) = \frac{\partial F_2(\infty, y)}{\partial y} = \int_{-\infty}^{\infty} f(x, y) dx.$$ (8.13) #### 8.1.4 Conditional distribution From (8.2), we have $$p(X \le x \mid y - \Delta y \le Y \le y + \Delta y) = \frac{\int_{-\infty}^{x} \int_{y - \Delta y}^{y + \Delta y} f(x, y) dx dy}{\int_{y - \Delta y}^{y + \Delta y} f_2(y) dy},$$ (8.14) where $f_2(y)$ is given in (8.13). Applying the mean value theorem for integrals $$\int_{a}^{b} f(x)dx = f(c)(b-a), \text{ where } c \in [a,b],$$ (8.15) to (8.14) and letting
$\Delta y \rightarrow 0$ yield $$p(X \le x \mid Y = y) = \frac{\int_{-\infty}^{x} f(x, y) dx}{f_2(y)}.$$ (8.16) Similar to (8.4), we may define the *conditional cumulative distribution* as $$F(x \mid y) = p(X \le x \mid Y = y).$$ (8.17) Then, similar to (8.5), The *conditional density function* of the random variable X given Y = y is defined as $$f(x \mid Y = y) = \frac{dF(x \mid y)}{dx} = \frac{f(x,y)}{f_2(y)}.$$ (8.18) Similarly, we can obtain $$f(y \mid X = x) = \frac{dF(y \mid x)}{dy} = \frac{f(x,y)}{f_1(x)}.$$ (8.19) From the above two formulas, it follows the *Bayes' theorem*: $$f(x,y) = f(x \mid Y = y)f_2(y) = f(y \mid X = x)f_1(x).$$ (8.20) #### 8.1.5 Independent random variables Two random variables X and Y are *independent* if one variable's conditional density function does not depend on the given condition of the other random variable, i.e., $$f(x \mid Y = y) = f_1(x), \quad f(y \mid X = x) = f_2(y).$$ (8.21) In view of the Bayes' theorem, the necessary and sufficient condition for the two random variables to be independent is $$f(x,y) = f_1(x)f_2(y).$$ (8.22) This is true if X and Y are two random vectors. ## 8.1.6 Mean, variance, and covariance For a discrete random variable X, its *mean* is given by $$E(X) = \sum_{i=1}^{n} x_i p_i,$$ (8.23) where x_i is one of all possible values, p_i is the probability of $X = x_i$, and n is all possible outcomes. Some times, we denote E(X) by \bar{X} . For continuous random variable X, its mean is given by $$E(X) = \int_{-\infty}^{\infty} x f(x) dx,$$ (8.24) which is also known as *expectation*. For a continuous random vector **X** whose elements are random variables, i.e., $\mathbf{X} = (X_1, \dots, X_n)$. Since **X** is random, it may take value $\mathbf{x} = (x_1, \dots, x_n)$ and $x_i \in (-\infty, \infty)$. We denote its mean as $$E(\mathbf{X}) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \mathbf{x} f(x_1, x_2, \dots, x_n) dx_1 \cdots dx_n = \int_{-\infty}^{\infty} \mathbf{x} f(\mathbf{x}) d\mathbf{x}. \quad (8.25)$$ For a constant matrix $C \in \mathbb{R}^{m \times n}$, it is easy to see that $$E(\mathbf{CX}) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \mathbf{Cx} f(x_1, x_2, \dots, x_n) dx_1 \cdots dx_n = \int_{-\infty}^{\infty} \mathbf{x} f(\mathbf{x}) d\mathbf{x} = \mathbf{C} E(\mathbf{X}).$$ (8.26) Let **X** be an n-dimensional *random vector* whose elements are random variables, its *variance matrix Var* is given by $$Var(\mathbf{X}) = E[(\mathbf{X} - E(\mathbf{X}))(\mathbf{X} - E(\mathbf{X}))^{\mathrm{T}}]$$ $$= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} (\mathbf{x} - E(\mathbf{X}))(\mathbf{x} - E(\mathbf{X}))^{\mathrm{T}} f(x_1, x_2, \dots, x_n) dx_1 \cdots dx_n$$ $$= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} (\mathbf{x} - E(\mathbf{X})) (\mathbf{x} - E(\mathbf{X}))^{\mathrm{T}} f(\mathbf{x}) d\mathbf{x}, \tag{8.27}$$ Let **Y** be a p-dimensional random vector whose elements are random variables, then the *covariance matrix* is defined by $$Cov(\mathbf{X}, \mathbf{Y}) = E[(\mathbf{X} - E(\mathbf{X}))(\mathbf{Y} - E(\mathbf{Y}))^{\mathrm{T}}]$$ $$= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} (\mathbf{x} - E(\mathbf{X}))(\mathbf{y} - E(\mathbf{Y}))^{\mathrm{T}} f(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}. \quad (8.28)$$ For a constant matrix $C \in \mathbb{R}^{m \times n}$, it is easy to see that $$Cov(\mathbf{CX}, \mathbf{Y}) = \mathbf{C}Cov(\mathbf{X}, \mathbf{Y}).$$ (8.29) #### 8.1.7 Conditional expectation and conditional variance matrix Let X and Y be two random vectors. Given the condition of Y = y, the *conditional expectation* of X for the given Y = y is defined as $$E(\mathbf{X} \mid \mathbf{y}) = \int_{-\infty}^{\infty} \mathbf{x} f(\mathbf{x} \mid \mathbf{y}) d\mathbf{x}, \tag{8.30}$$ Then, we can define the conditional variance matrix as $$Var(\mathbf{X} \mid \mathbf{y}) = E[(\mathbf{X} - E(\mathbf{X} \mid \mathbf{y}))(\mathbf{X} - E(\mathbf{X} \mid \mathbf{y}))^{\mathrm{T}}]$$ $$= \int_{-\infty}^{\infty} (\mathbf{x} - E(\mathbf{X} \mid \mathbf{y}))(\mathbf{x} - E(\mathbf{X} \mid \mathbf{y}))^{\mathrm{T}} f(\mathbf{x} \mid \mathbf{y}) d\mathbf{x},$$ (8.31) # 8.1.8 Discrete time stochastic processes A discrete-time *random process* is a sequence of random variables (random vectors) that is also a function of discrete-time. Let $\{X_1, X_2, ..., X_n\}$ be a discrete-time stochastic processes. Its probabilistic properties are described by the *joint cumulative distribution function* $$F(\mathbf{x}_1,\ldots,\mathbf{x}_n)=p(\mathbf{X}_1\leq\mathbf{x}_1,\ldots,\mathbf{X}_n\leq\mathbf{x}_n), \tag{8.32}$$ or by the joint density distribution function $$f(\mathbf{x}_1, \dots, \mathbf{x}_n) = \frac{\partial F(\mathbf{x}_1, \dots, \mathbf{x}_n)}{\partial \mathbf{x}_1, \dots, \partial \mathbf{x}_n}.$$ (8.33) Similar to the previous sections, we can define the *expectation* of the random process at time k by $$E(\mathbf{X}_k) = \int_{-\infty}^{\infty} \mathbf{x}_k f_k(\mathbf{x}_k) d\mathbf{x}_k, \tag{8.34}$$ where f_k is defined similar to the ones in (8.12) and (8.13). Consider a discrete-time random process $\mathbf{X} = \{\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n\}$ whose elements are random vectors, its variant matrix Var is given by $$Var(\mathbf{X}) = E[(\mathbf{X} - E(\mathbf{X}))(\mathbf{X} - E(\mathbf{X}))^{\mathrm{T}}]$$ $$= \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} (\mathbf{x} - E(\mathbf{X}))(\mathbf{x} - E(\mathbf{X}))^{\mathrm{T}} f(\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{n}) d\mathbf{x}_{1} \dots d\mathbf{x}_{n}$$ $$= \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} (\mathbf{x} - E(\mathbf{X}))(\mathbf{x} - E(\mathbf{X}))^{\mathrm{T}} f(\mathbf{x}) d\mathbf{x}. \tag{8.35}$$ For two discrete-time random processes $\{\mathbf{X}_1, \mathbf{X}_2, ..., \mathbf{X}_n\}$ and $\{\mathbf{Y}_1, \mathbf{Y}_2, ..., \mathbf{Y}_n\}$, where $\mathbf{x}_1, ..., \mathbf{x}_n$ are *m* dimensional vectors and $\mathbf{y}_1, ..., \mathbf{y}_n$ are *s* dimensional vectors, the *joint cumulative distribution* is given by $$F(\mathbf{x}_1, \dots, \mathbf{x}_n) = p(\mathbf{X}_1 \le \mathbf{x}_1, \dots, \mathbf{X}_n \le \mathbf{x}_n, \mathbf{Y}_1 \le \mathbf{y}_1, \dots, \mathbf{Y}_n \le \mathbf{y}_n).$$ (8.36) Similarly, we can define the joint density distribution $$f(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{y}_1, \dots, \mathbf{y}_n) = \frac{\partial F(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{y}_1, \dots, \mathbf{y}_n)}{\partial \mathbf{x}_1, \dots \partial \mathbf{x}_n, \partial \mathbf{y}_1, \dots \partial \mathbf{y}_n}.$$ (8.37) Moreover, similar to the ones in in (8.12) and (8.13), we can define $$f_x(\mathbf{x}_1,\ldots,\mathbf{x}_n), \quad f_y(\mathbf{y}_1,\ldots,\mathbf{y}_n).$$ (8.38) We say the two discrete-time random processes $\{X_1, X_2, ..., X_n\}$ and $\{Y_1, Y_2, ..., Y_n\}$ are independent if $$f(\mathbf{x}_1,\ldots,\mathbf{x}_n,\mathbf{y}_1,\ldots,\mathbf{y}_n) = f_x(\mathbf{x}_1,\ldots,\mathbf{x}_n)f_y(\mathbf{y}_1,\ldots,\mathbf{y}_n). \tag{8.39}$$ For a discrete-time random processes $\{\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n\}$, if $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ is taken at times $\{t_1, t_2, \dots, t_n\}$, we denote the cumulative distribution as $$F(\mathbf{x}_1,t_1,\mathbf{x}_2,t_2\ldots,\mathbf{x}_n,t_n). \tag{8.40}$$ For any time τ , if $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ is taken at times $\{t_1 + \tau, t_2 + \tau, \dots, t_n + \tau\}$, we denote the cumulative distribution as $$F(\mathbf{x}_1, t_1 + \tau, \mathbf{x}_2, t_2 + \tau, \dots, \mathbf{x}_n, t_n + \tau).$$ (8.41) We say a discrete-time random processes $\{X_1, X_2, ..., X_n\}$ is strictly stationary if $$F(\mathbf{x}_1, t_1 + \tau, \mathbf{x}_2, t_2 + \tau, \dots, \mathbf{x}_n, t_n + \tau) = F(\mathbf{x}_1, t_1, \mathbf{x}_2, t_2, \dots, \mathbf{x}_n, t_n).$$ (8.42) #### 8.1.9 Markov processes A process is *Markov* if, given that the present is known, the past has no influence on the future, i.e., for any discrete-times $k_1 < k_2 ... < k_n$ and the corresponding n vectors $\mathbf{x}_1, \mathbf{x}_1, ..., \mathbf{x}_n$ of dimension m, $$p(\mathbf{X}_n \le \mathbf{x}_n \mid \mathbf{X}_{n-1} = \mathbf{x}_{n-1}, \dots, \mathbf{X}_1 = \mathbf{X}_1) = p(\mathbf{X}_n \le \mathbf{x}_n \mid \mathbf{X}_{n-1} = \mathbf{x}_{n-1}).$$ (8.43) From Bayes' theorem, it is easy to derive the following formula. $$f(\mathbf{x}_n, \dots, \mathbf{x}_1) = f(\mathbf{x}_n \mid x_{n-1}) f(\mathbf{x}_{n-1} \mid \mathbf{x}_{n-2}) \cdots f(\mathbf{x}_2 \mid \mathbf{x}_1) f(\mathbf{x}_1). \tag{8.44}$$ Sometimes, we refer a discrete-time random process to as a random sequence. We say a random sequency $\{X_k, k = 0, 1, 2, ...\}$ is a *white noise* sequence if $$E(\mathbf{X}_k) = \mathbf{0}, \quad k = 0, 1, 2, \dots$$ (8.45) and $$Var(\mathbf{X}_i, \mathbf{X}_j) = \mathbf{R}_i \delta_{i,j}, \tag{8.46}$$ where $$\delta_{i,j} = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$ $$(8.47)$$ is the Kronecker delta function. # 8.1.10 Gaussian-Markov processes Let *X* be a *Gaussian* or *normal* random variable, then its density function is of the form $$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$ (8.48) where $\mu = E(X)$ and $\sigma^2 = Var(X) = E[(X - \mu)^2]$. Let **X** be a *m*-dimensional gaussian or normal random vector, then its density function is of the form $$p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{m}{2}} |\mathbf{R}|^{-1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mu)^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{x} - \mu)},$$ (8.49) where $\mu = E(\mathbf{X}) \in \mathbf{R}^m$, and $\mathbf{R} = Var(\mathbf{X}) = E[(\mathbf{X} - \mu)(\mathbf{X} - \mu)^T] \in \mathbf{R}^{m \times m}$. Let $\mathbf{X} = (\mathbf{X}_k, k = 0, 1, 2, ..., n)$ be a discrete-time random process and \mathbf{X}_k be an *m*-dimensional gaussian vector, then its density function is of the form
$$p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{mm}{2}} |\mathbf{R}|^{-1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mu)^{\mathsf{T}} \mathbf{R}^{-1}(\mathbf{x} - \mu)},$$ (8.50) where $\mu = E(\mathbf{X}) \in \mathbf{R}^{mn}$, $\mathbf{R} = Var(\mathbf{X}) = E[(\mathbf{X} - \mu)(\mathbf{X} - \mu)^{\mathrm{T}}] \in \mathbf{R}^{mn \times mn}$, $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in \mathbf{R}^{mn}$, and $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n) \in \mathbf{R}^{mn}$ is an mn-dimensional random vector. If a Markov random process has Gaussian density function of the form (8.50), we say it is a *Gaussian-Markov random process*. **Remark 8.1** Gaussian-Markov processes are assumed for Kalman filter by many books, such as [5, 238], which makes the treatment easier to follow. However, Gaussian-Markov processes are not required and Kalman's original proofs [111] were based on the orthogonal properties, which makes the result applicable to more general problems. #### 8.2 Discrete time linear Kalman filter In Chapter 4, we discussed spacecraft model. Although, both the inertial pointing and nadir pointing spacecraft are intrinsically nonlinear, we may linearize the model and the simplified model can be written as $$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u},\tag{8.51}$$ where $\mathbf{x} \in \mathbf{R}^n$ is the state variable, $\mathbf{A} \in \mathbf{R}^{n \times n}$, $\mathbf{B} \in \mathbf{R}^{n \times m}$ are the system matrices, and $\mathbf{u} \in \mathbf{R}^m$ is the control vector. From Chapter 5, we know that the spacecraft always experiences disturbance torques, which can be modeled as a n-dimensional random process w. Therefore, the simplified model (8.51) should be written as $$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} + \mathbf{w}. \tag{8.52}$$ In Chapters 6 and 7, we discussed how to use sensors to measure the space-craft attitude and this information can be used to control the spacecraft to achieve the desired attitude. Since all measurements have noise, the measurement can be modeled as $$\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{v} \tag{8.53}$$ where $\mathbf{y} \in \mathbf{R}^p$ is the measurement vector, $\mathbf{C} \in \mathbf{R}^{p \times n}$ observation matrix, and \mathbf{v} is a p-dimensional measurement random noise vector. Since computer is used in all spacecraft control system, instead of the continuous model (8.52) and (8.53), we will consider the discrete spacecraft model given as follows. $$\mathbf{x}_{k+1} = \mathbf{A}_k \mathbf{x}_k + \mathbf{B}_k \mathbf{u}_k + \mathbf{w}_k, \tag{8.54a}$$ $$\mathbf{v}_k = \mathbf{C}_k \mathbf{x}_k + \mathbf{v}_k. \tag{8.54b}$$ There are many different methods to convert the continuous model (8.52) and (8.53) into a discrete model (8.54). Readers who are interested in this material are directed to reference [8, 72, 129, 241]. But we would like to point out that a MATLAB® function c2d can be applied to the continuous model to get the discrete model (8.54). Finally, we assume in the remainder of this chapter that all random processes have the first order and second order statistics (mean and covariance matrix). #### 8.2.1 Assumptions on the stochastic linear system To derive the *linear Kalman filter*, the following assumptions are made [111]: For any k and j, the dynamical noise and measurement noise are zero mean white noise that satisfy the following relations. $$E(\mathbf{w}_k) = 0$$, $Cov(\mathbf{w}_k, \mathbf{w}_j) = E(\mathbf{w}_k \mathbf{w}_j^{\mathrm{T}}) = \mathbf{Q}_k \delta_{kj}$, (8.55a) $$E(\mathbf{v}_k) = 0$$, $Cov(\mathbf{v}_k, \mathbf{v}_i) = E(\mathbf{v}_k \mathbf{v}_i^{\mathrm{T}}) = \mathbf{R}_k \delta_{ki}$, (8.55b) $$Cov(\mathbf{w}_k, \mathbf{v}_j) = E(\mathbf{w}_k \mathbf{v}_j^{\mathrm{T}}) = \mathbf{0},$$ (8.55c) where δ_{kj} is the *Kronecker delta function* defined in (8.47). Moreover, the initial state satisfies the following conditions. $$E(\mathbf{x}_0) = \mu_0, \quad Cov(\mathbf{x}_0, \mathbf{x}_0) = E\left[(\mathbf{x}_0 - \mu_0)(\mathbf{x}_0 - \mu_0)^{\mathrm{T}} \right] = \mathbf{P}_0,$$ (8.56a) $$Cov(\mathbf{x}_0, \mathbf{w}_k) = \mathbf{0},\tag{8.56b}$$ $$Cov(\mathbf{x}_0, \mathbf{v}_k) = \mathbf{0},\tag{8.56c}$$ ## 8.2.2 Orthogonal projection Let \mathbf{x} be the *n*-dimensional dynamic random vector, \mathbf{y} be the *m*-dimensional measurement random vector, and \mathbf{x}^* be a *n*-dimensional random vector that satisfies the following three conditions: - 1. There is a constant vector of $\mathbf{a} \in \mathbf{R}^n$, and a constant matrix $\mathbf{D} \in \mathbf{R}^{n \times m}$ such that \mathbf{x}^* can be expressed as $\mathbf{x}^* = \mathbf{a} + \mathbf{D}\mathbf{y}$. - 2. $E(\mathbf{x}) = E(\mathbf{x}^*)$, i.e., the orthogonal projection is unbiased. - 3. $E[(\mathbf{x} \mathbf{x}^*)\mathbf{y}^{\mathrm{T}}] = \mathbf{0}.$ Then, we say \mathbf{x}^* is the *orthogonal projection* of \mathbf{x} on \mathbf{y} , and denote $\mathbf{x}^* \equiv \hat{E}(\mathbf{x} \mid \mathbf{y})$. **Remark 8.2** If \mathbf{x} and \mathbf{x}^* meet the second condition, we say \mathbf{x}^* is a unbiased estimation of \mathbf{x} . If \mathbf{x} , \mathbf{x}^* , and \mathbf{y} meet the third estimation, we say $\tilde{\mathbf{x}} = \mathbf{x} - \mathbf{x}^*$ and \mathbf{y} are orthogonal. #### 8.2.3 Minimal linear covariance estimation For an n-dimensional dynamic random vector \mathbf{x} , given an m-dimensional measurement random vector \mathbf{y} , we would like to estimate \mathbf{x} based on the measurement \mathbf{y} . In this section, we restrict that the estimator is linear: $$\hat{\mathbf{x}} = \mathbf{a} + \mathbf{D}\mathbf{y} \equiv \hat{E}(\mathbf{x} \mid \mathbf{y}), \tag{8.57}$$ where \mathbf{a} is a constant vector and \mathbf{D} is a constant matrix, i.e., the estimator is a linear function of the measurement random vector \mathbf{y} . Therefore, the estimator satisfies the first condition of orthogonal projection. Denote the error of the estimation as $$\mathbf{b} = E(\hat{\mathbf{x}}) - E(\mathbf{x}) = \mathbf{a} + \mathbf{D}E(\mathbf{y}) - E(\mathbf{x}). \tag{8.58}$$ We want to minimize $$E[(\mathbf{x} - \hat{\mathbf{x}}(\mathbf{y}))(\mathbf{x} - \hat{\mathbf{x}}(\mathbf{y}))^{\mathrm{T}}]$$ $$= E[(\mathbf{x} - \mathbf{a} - \mathbf{D}\mathbf{y})(\mathbf{x} - \mathbf{a} - \mathbf{D}\mathbf{y})^{\mathrm{T}}]$$ $$= E[(\mathbf{x} - \mathbf{b} + \mathbf{D}E(\mathbf{y}) - E(\mathbf{x}) - \mathbf{D}\mathbf{y})(\mathbf{x} - \mathbf{b} + \mathbf{D}E(\mathbf{x}) - E(\mathbf{x}) - \mathbf{D}\mathbf{y})^{\mathrm{T}}]$$ $$= E\{[(\mathbf{x} - E(\mathbf{x})) - \mathbf{b} - \mathbf{D}(\mathbf{y} - E(\mathbf{y}))][(\mathbf{x} - E(\mathbf{x})) - \mathbf{b} - \mathbf{D}(\mathbf{y} - E(\mathbf{y}))]^{\mathrm{T}}\}$$ $$= Var(\mathbf{x}) + \mathbf{b}\mathbf{b}^{\mathrm{T}} + \mathbf{D}Var(\mathbf{y})\mathbf{D}^{\mathrm{T}} - Cov(\mathbf{x}, \mathbf{y})\mathbf{D}^{\mathrm{T}} - \mathbf{D}Cov(\mathbf{y}, \mathbf{x})$$ $$= \mathbf{b}\mathbf{b}^{\mathrm{T}} + [\mathbf{D} - Cov(\mathbf{x}, \mathbf{y})(Var(\mathbf{y}))^{-1}](Var(\mathbf{y}))[\mathbf{D} - Cov(\mathbf{x}, \mathbf{y})(Var(\mathbf{y}))^{-1}]^{\mathrm{T}}$$ $$+ [Var(\mathbf{x}) - Cov(\mathbf{x}, \mathbf{y})(Var(\mathbf{y}))^{-1}Cov(\mathbf{y}, \mathbf{x})]. \tag{8.59}$$ The first two items in (8.59) are positive semi-definite matrices and last item in (8.59) is independent to **b** and **D**. Therefore, to minimize (8.59), we must take $$\mathbf{b} = \mathbf{0},\tag{8.60a}$$ $$\mathbf{D} = Cov(\mathbf{x}, \mathbf{y})(Var(\mathbf{y}))^{-1}.$$ (8.60b) Substituting (8.60) into (8.58) yields $$\mathbf{a} = E(\mathbf{x}) - Cov(\mathbf{x}, \mathbf{y})(Var(\mathbf{y}))^{-1}E(\mathbf{y}). \tag{8.61}$$ Substituting (8.60) and (8.61) into (8.57) yields the *minimal linear covariance* estimation: $$\hat{\mathbf{x}} = E(\mathbf{x}) - Cov(\mathbf{x}, \mathbf{y})(Var(\mathbf{y}))^{-1}E(\mathbf{y}) + Cov(\mathbf{x}, \mathbf{y})(Var(\mathbf{y}))^{-1}\mathbf{y} = E(\mathbf{x}) + Cov(\mathbf{x}, \mathbf{y})(Var(\mathbf{y}))^{-1}(\mathbf{y} - E(\mathbf{y})).$$ (8.62) In view of (8.59), we obtain the estimation covariance matrix as follows. $$E[(\mathbf{x} - \hat{\mathbf{x}}(\mathbf{y}))(\mathbf{x} - \hat{\mathbf{x}}(\mathbf{y}))^{\mathrm{T}}]$$ $$= Var(\mathbf{x}) - Cov(\mathbf{x}, \mathbf{y})(Var(\mathbf{x}))^{-1}Cov(\mathbf{y}, \mathbf{x}).$$ (8.63) From (8.62), it follows $$E(\hat{\mathbf{x}}) = E(\mathbf{x}) + Cov(\mathbf{x}, \mathbf{y})(Var(\mathbf{y}))^{-1}(E(\mathbf{y}) - E(\mathbf{y})) = E(\mathbf{x}). \tag{8.64}$$ Therefore, the estimation is unbiased, which satisfies the second condition of orthogonal projection. Now we show that the estimate satisfies the third condition of orthogonal projection. In view of (8.64), we have $$E[(\mathbf{x} - \hat{\mathbf{x}})E(\mathbf{y})^{\mathrm{T}}] = E(\mathbf{x} - \hat{\mathbf{x}})E(\mathbf{y})^{\mathrm{T}} = \mathbf{0}.$$ (8.65) Using this formula and (8.62) yields $$E[(\mathbf{x} - \hat{\mathbf{x}}(\mathbf{y}))\mathbf{y}^{\mathrm{T}}] = E[(\mathbf{x} - \hat{\mathbf{x}}(\mathbf{y}))(\mathbf{y} - E(\mathbf{y}))^{\mathrm{T}}]$$ $$= E\{[\mathbf{x} - E(\mathbf{x}) - Cov(\mathbf{x}, \mathbf{y})(Var(\mathbf{y}))^{-1}(\mathbf{y} - E(\mathbf{y}))](\mathbf{y} - E(\mathbf{y}))^{\mathrm{T}}\}$$ $$= Cov(\mathbf{x}, \mathbf{y}) - Cov(\mathbf{x}, \mathbf{y})(Var(\mathbf{y}))^{-1}Var(\mathbf{y}) = \mathbf{0}.$$ (8.66) Therefore, we have shown that the minimal linear covariance estimation is an orthogonal projection of \mathbf{x} on \mathbf{y} . #### 8.2.4 Three lemmas First, we show that the orthogonal projection is unique. #### Lemma 8.1 Let \mathbf{x} and \mathbf{y} be n-dimensional and m-dimensional random vectors, the orthogonal projection of \mathbf{x} on \mathbf{y} is unique and is given by $$\hat{E}(\mathbf{x} \mid \mathbf{y}) = E(\mathbf{x}) + Cov(\mathbf{x}, \mathbf{y})(Var(\mathbf{y}))^{-1}(\mathbf{y} - E(\mathbf{y})). \tag{8.67}$$
Proof 8.1 From the orthogonal projection conditions 1 and 2, we have $$E(\mathbf{x}) = E(\hat{\mathbf{x}}) = E(\mathbf{a} + \mathbf{D}\mathbf{y}) = \mathbf{a} + \mathbf{D}E(\mathbf{y})$$ $$\iff \mathbf{a} = E(\mathbf{x}) - \mathbf{D}E(\mathbf{y})$$ $$\iff \hat{E}(\mathbf{x} \mid \mathbf{y}) = \mathbf{a} + \mathbf{D}\mathbf{y} = E(\mathbf{x}) + \mathbf{D}(\mathbf{y} - E(\mathbf{y})). \tag{8.68}$$ Then, from the orthogonal projection condition 3, (8.65), and (8.62), we have $$\mathbf{0} = E(\mathbf{x} - \hat{\mathbf{x}})\mathbf{y}^{\mathrm{T}} = E(\mathbf{x} - \hat{\mathbf{x}})(\mathbf{y} - \mathbf{E}(\mathbf{y}))^{\mathrm{T}}$$ $$= E\{[(\mathbf{x} - E(\mathbf{x})) - \mathbf{D}(\mathbf{y} - E(\mathbf{y}))](\mathbf{y} - \mathbf{E}(\mathbf{y}))^{\mathrm{T}}\}$$ $$= Cov(\mathbf{x}, \mathbf{y}) - \mathbf{D}Var(\mathbf{y}). \tag{8.69}$$ This shows that $\mathbf{D} = Cov(\mathbf{x}, \mathbf{y})(Var(\mathbf{y}))^{-1}$. Substituting this formula into (8.68) gives (8.67). This completes the proof. #### Lemma 8.2 Let $C \in \mathbf{R}^{m \times n}$ be constant matrix, and $\mathbf{x} \in \mathbf{R}^n$ and $\mathbf{y} \in \mathbf{R}^m$ be two random vectors. Then, $$\hat{E}(\mathbf{C}\mathbf{x} \mid \mathbf{y}) = \mathbf{C}\hat{E}(\mathbf{x} \mid \mathbf{y}). \tag{8.70}$$ **Proof 8.2** In view of Lemma 8.1, (8.26), and (8.29), it follows $$\hat{E}(\mathbf{C}\mathbf{x} \mid \mathbf{y}) = E(\mathbf{C}\mathbf{x}) + Cov(\mathbf{C}\mathbf{x}, \mathbf{y})(Var(\mathbf{y}))^{-1}(\mathbf{y} - E(\mathbf{y})) = \mathbf{C}E(\mathbf{x}) + \mathbf{C}Cov(\mathbf{x}, \mathbf{y})(Var(\mathbf{y}))^{-1}(\mathbf{y} - E(\mathbf{y})) = \mathbf{C}\hat{E}(\mathbf{x} \mid \mathbf{y}).$$ (8.71) This completes the proof. #### Lemma 8.3 Let $\mathbf{x} \in \mathbf{R}^n$, $\mathbf{y} \in \mathbf{R}^m$, and $\mathbf{z} \in \mathbf{R}^p$ be three random vectors. Let $\mathbf{s} = (\mathbf{y}, \mathbf{z}) \in \mathbf{R}^{m+p}$. Then, $$\hat{E}(\mathbf{x} \mid \mathbf{s}) = \hat{E}(\mathbf{x} \mid \mathbf{y}) + \hat{E}(\tilde{\mathbf{x}} \mid \tilde{\mathbf{z}}) = \hat{E}(\mathbf{x} \mid \mathbf{y}) + E(\tilde{\mathbf{x}}\tilde{\mathbf{z}}^{\mathrm{T}})(E(\tilde{\mathbf{z}}\tilde{\mathbf{z}}^{\mathrm{T}}))^{-1}\tilde{\mathbf{z}}, \tag{8.72}$$ where $$\tilde{\mathbf{x}} = \mathbf{x} - \hat{E}(\mathbf{x} \mid \mathbf{y}), \quad \tilde{\mathbf{z}} = \mathbf{z} - \hat{E}(\mathbf{z} \mid \mathbf{y}).$$ (8.73) **Proof 8.3** From Lemma 8.1, and since orthogonal projection is unbiased, we have $$E(\tilde{\mathbf{x}}) = E[\mathbf{x} - \hat{E}(\mathbf{x} \mid \mathbf{y})]$$ = $E[\mathbf{x} - E(\mathbf{x}) - Cov(\mathbf{x}, \mathbf{y})(Var(\mathbf{y}))^{-1}(\mathbf{y} - E(\mathbf{y}))] = \mathbf{0},$ (8.74) and $$E(\tilde{\mathbf{z}}) = E[\mathbf{z} - \hat{E}(\mathbf{z} \mid \mathbf{y})]$$ = $E[\mathbf{z} - E(\mathbf{z}) - Cov(\mathbf{z}, \mathbf{y})(Var(\mathbf{y}))^{-1}(\mathbf{y} - E(\mathbf{y}))] = \mathbf{0},$ (8.75) Using (8.74), (8.75), and Lemma 8.1 again, we have $$\hat{E}(\tilde{\mathbf{x}} \mid \tilde{\mathbf{z}}) = E(\tilde{\mathbf{x}}) + Cov(\tilde{\mathbf{x}}, \tilde{\mathbf{z}})(Var(\tilde{\mathbf{z}}))^{-1}(\tilde{\mathbf{z}} - E(\tilde{\mathbf{z}})) = E(\tilde{\mathbf{x}}) + \hat{E}(\tilde{\mathbf{x}}\tilde{\mathbf{z}}^{T})(\hat{E}(\tilde{\mathbf{z}}\tilde{\mathbf{z}}^{T}))^{-1}\tilde{\mathbf{z}}.$$ (8.76) This proves the second equality of (8.72). To prove the first equality of (8.72), using the uniqueness of the orthogonal projection, we just need to verify that $$x^* \equiv \hat{E}(\mathbf{x} \mid \mathbf{y}) + E(\tilde{\mathbf{x}}\tilde{\mathbf{z}}^{\mathrm{T}})(E(\tilde{\mathbf{z}}\tilde{\mathbf{z}}^{\mathrm{T}}))^{-1}\tilde{\mathbf{z}}$$ (8.77) is the orthogonal projection of \mathbf{x} on $\mathbf{s} = (\mathbf{y}, \mathbf{z})$, i.e., it satisfies the three conditions for orthogonal projection. First, since $\hat{E}(\mathbf{x} \mid \mathbf{y})$ and $\hat{E}(\mathbf{z} \mid \mathbf{y})$ are linear function of \mathbf{y} , and $\tilde{\mathbf{z}} = \mathbf{z} - \hat{E}(\mathbf{z} \mid \mathbf{y})$ is a linear function of $\mathbf{s} = (\mathbf{y}, \mathbf{z})$, we conclude that $\hat{E}(\mathbf{x} \mid \mathbf{y}) + \hat{E}(\tilde{\mathbf{x}} \mid \tilde{\mathbf{z}})$ is a linear function of $\mathbf{s} = (\mathbf{y}, \mathbf{z})$, so is \mathbf{x}^* . Second, using (8.75) and (8.67), we have $$E[\hat{E}(\mathbf{x} \mid \mathbf{y}) + E(\tilde{\mathbf{x}}\tilde{\mathbf{z}}^{T})(E(\tilde{\mathbf{z}}\tilde{\mathbf{z}}^{T}))^{-1}\tilde{\mathbf{z}}]$$ $$= E[\hat{E}(\mathbf{x} \mid \mathbf{y})] + E(\tilde{\mathbf{x}}\tilde{\mathbf{z}}^{T})(E(\tilde{\mathbf{z}}\tilde{\mathbf{z}}^{T}))^{-1}E[\tilde{\mathbf{z}}]$$ $$= E[\hat{E}(\mathbf{x} \mid \mathbf{y})]$$ $$= E(\mathbf{x}). \tag{8.78}$$ This shows that \mathbf{x}^* is unbiased. Finally, since $\hat{E}(\mathbf{z} \mid \mathbf{y})$ is a linear function of \mathbf{y} and is unbiased, from condition 3 of orthogonal projection, we know that $\tilde{\mathbf{x}}$ and $\tilde{\mathbf{z}}$ are orthogonal to \mathbf{y} , therefore, we have $$E[\tilde{\mathbf{x}}\hat{E}(\mathbf{z}\mid\mathbf{y})] = \mathbf{0},\tag{8.79a}$$ $$E[\tilde{\mathbf{z}}\hat{E}(\mathbf{z}\mid\mathbf{y})] = \mathbf{0}.\tag{8.79b}$$ In view of (8.73), this implies $$E(\tilde{\mathbf{x}}\mathbf{z}^{\mathrm{T}}) = E(\tilde{\mathbf{x}}\tilde{\mathbf{z}}^{\mathrm{T}}) + E[\tilde{\mathbf{x}}\hat{E}(\mathbf{z} \mid \mathbf{y})] = E(\tilde{\mathbf{x}}\tilde{\mathbf{z}}^{\mathrm{T}}), \tag{8.80a}$$ $$E(\tilde{\mathbf{z}}\mathbf{z}^{\mathrm{T}}) = E(\tilde{\mathbf{z}}\tilde{\mathbf{z}}^{\mathrm{T}}) + E[\tilde{\mathbf{z}}\hat{E}(\mathbf{z} \mid \mathbf{y})] = E(\tilde{\mathbf{z}}\tilde{\mathbf{z}}^{\mathrm{T}}). \tag{8.80b}$$ Using (8.77), (8.80), $\mathbf{s} = (\mathbf{y}, \mathbf{z})$, and $E(\tilde{\mathbf{z}}\mathbf{y}^{\mathrm{T}}) = \mathbf{0}$, we have $$E[(\mathbf{x} - \mathbf{x}^*)\mathbf{s}^T] = E\{[(\mathbf{x} - \hat{E}(\mathbf{x} \mid \mathbf{y}) - E(\tilde{\mathbf{x}}\tilde{\mathbf{z}}^T)(E(\tilde{\mathbf{z}}\tilde{\mathbf{z}}^T))^{-1}\tilde{\mathbf{z}}]\mathbf{s}^T\}$$ $$= E[(\tilde{\mathbf{x}}\mathbf{s}^T) - E(\tilde{\mathbf{x}}\tilde{\mathbf{z}}^T)(E(\tilde{\mathbf{z}}\tilde{\mathbf{z}}^T))^{-1}E(\tilde{\mathbf{z}}\mathbf{s}^T)$$ $$= (E(\tilde{\mathbf{x}}\mathbf{y}^T), E(\tilde{\mathbf{x}}\mathbf{z}^T)) - E(\tilde{\mathbf{x}}\tilde{\mathbf{z}}^T)(E(\tilde{\mathbf{z}}\tilde{\mathbf{z}}^T))^{-1}(E(\tilde{\mathbf{z}}\mathbf{y}^T), E(\tilde{\mathbf{z}}\mathbf{z}^T))$$ $$= (\mathbf{0}, E(\tilde{\mathbf{x}}\tilde{\mathbf{z}}^T)) - (\mathbf{0}, E(\tilde{\mathbf{x}}\tilde{\mathbf{z}}^T)(E(\tilde{\mathbf{z}}\tilde{\mathbf{z}}^T))^{-1}E(\tilde{\mathbf{z}}\tilde{\mathbf{z}}^T))$$ $$= (\mathbf{0}, E(\tilde{\mathbf{x}}\tilde{\mathbf{z}}^T)) - (\mathbf{0}, E(\tilde{\mathbf{x}}\tilde{\mathbf{z}}^T)(E(\tilde{\mathbf{z}}\tilde{\mathbf{z}}^T))^{-1}E(\tilde{\mathbf{z}}\tilde{\mathbf{z}}^T))$$ $$= (\mathbf{0}, \mathbf{0})$$ (8.81) This proves that $\mathbf{x} - \mathbf{x}^*$ and \mathbf{s} are orthogonal. Since the orthogonal project is unique, \mathbf{x}^* is the projection of \mathbf{x} on \mathbf{s} . This proves (8.72). #### 8.2.5 Discrete-time linear Kalman filter Let the first k measurement be $\mathbf{s}_k = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_k)$ and denote the estimation of \mathbf{x}_k based on the measurement is $\hat{\mathbf{x}}_{k|k} = \hat{E}(\mathbf{x}_k \mid \mathbf{s}_k)$. Then we have the one-step state prediction: $$\hat{E}(\mathbf{x}_{k+1} \mid \mathbf{s}_k) = \hat{\mathbf{x}}_{k+1|k}$$ $$= \hat{E}(\mathbf{A}_k \mathbf{x}_k + \mathbf{B}_k \mathbf{u}_k + \mathbf{w}_k \mid \mathbf{s}_k)$$ $$= \mathbf{A}_k \hat{\mathbf{x}}_{k|k} + \mathbf{B}_k \mathbf{u}_k + E(\mathbf{w}_k \mid \mathbf{s}_k). \tag{8.82}$$ Since $\mathbf{s}_k = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_k)$ is a linear combination of $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$ and $E(\mathbf{w}_k) = \mathbf{0}$, according to (8.55), \mathbf{w}_k is orthogonal to $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$. Therefore, $$E(\mathbf{w}_k \mid \mathbf{s}_k) = E(\mathbf{w}_k \mid \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k) = \mathbf{0}, \tag{8.83}$$ and $$\hat{\mathbf{x}}_{k+1|k} = \mathbf{A}_k \hat{\mathbf{x}}_{k|k} + \mathbf{B}_k \mathbf{u}_k. \tag{8.84}$$ For one-step measurement prediction, we have $$\hat{\mathbf{y}}_{k+1|k} = \hat{E}(\mathbf{C}_{k+1}\mathbf{x}_{k+1} + \mathbf{v}_{k+1} \mid \mathbf{s}_k) = \mathbf{C}_{k+1}\hat{\mathbf{x}}_{k+1|k} + E(\mathbf{v}_{k+1} \mid \mathbf{s}_k)$$ (8.85) Since $\mathbf{s}_k = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_k)$ is a linear combination of $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$ and $E(\mathbf{v}_{k+1}) = \mathbf{0}$, according to (8.55b), \mathbf{v}_{k+1} is orthogonal to $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$. Therefore, $$E(\mathbf{v}_{k+1} \mid \mathbf{s}_k) = E(\mathbf{v}_{k+1} \mid \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k) = \mathbf{0},$$ (8.86) and $$\hat{\mathbf{y}}_{k+1|k} = \mathbf{C}_{k+1} \hat{\mathbf{x}}_{k+1|k}. \tag{8.87}$$ Note that $\hat{\mathbf{y}}_{k+1|k}$ is an orthogonal projection of \mathbf{y}_{k+1} on \mathbf{s}_k , i.e., $$E[(\mathbf{y}_{k+1} - \hat{\mathbf{y}}_{k+1|k})\mathbf{s}_k] = \mathbf{0}.$$ (8.88) Let $\tilde{\mathbf{y}}_{k+1|k} = \mathbf{y}_{k+1} - \hat{\mathbf{y}}_{k+1|k}$ and be termed as the innovation $(\tilde{\mathbf{y}}_{k+1|k}$ includes new information \mathbf{y}_{k+1}). In view of Lemma 8.3, the updated state estimation is given by $$\hat{\mathbf{x}}_{k+1|k+1} = \hat{E}[\mathbf{x}_{k+1}|\mathbf{s}_{k}] + \hat{E}[\tilde{\mathbf{x}}_{k+1}|\tilde{\mathbf{y}}_{k+1|k}] = \hat{E}[\mathbf{x}_{k+1}|\mathbf{s}_{k}] + E[\tilde{\mathbf{x}}_{k+1|k}\tilde{\mathbf{y}}_{k+1|k}^{\mathsf{T}}](E[\tilde{\mathbf{y}}_{k+1|k}\tilde{\mathbf{y}}_{k+1|k}^{\mathsf{T}}])^{-1}\tilde{\mathbf{y}}_{k+1|k}^{\mathsf{T}}. (8.89)$$ Denote $\tilde{\mathbf{x}}_{k+1|k} = \mathbf{x}_{k+1} -
\hat{\mathbf{x}}_{k+1|k}$ and $\mathbf{P}_{k+1|k} = E(\tilde{\mathbf{x}}_{k+1|k}\tilde{\mathbf{x}}_{k+1|k})^{\mathrm{T}}$. Since $\tilde{\mathbf{x}}_{k+1|k}$ is a linear combination of $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$ and is unbiased (see (8.55)), it follows that $E(\tilde{\mathbf{x}}_{k+1|k}\mathbf{v}_{k+1}^{\mathrm{T}}) = \mathbf{0}$. Therefore, using (8.87), we have $$E[\tilde{\mathbf{y}}_{k+1|k}\tilde{\mathbf{y}}_{k+1|k}^{T}]$$ $$= E[(\mathbf{y}_{k+1} - \hat{\mathbf{y}}_{k+1|k})(\mathbf{y}_{k+1} - \hat{\mathbf{y}}_{k+1|k})^{T}]$$ $$= E[(\mathbf{C}_{k+1}\mathbf{x}_{k+1} + \mathbf{v}_{k+1} - \mathbf{C}_{k+1}\hat{\mathbf{x}}_{k+1|k})(\mathbf{C}_{k+1}\mathbf{x}_{k+1} + \mathbf{v}_{k+1} - \mathbf{C}_{k+1}\hat{\mathbf{x}}_{k+1|k})^{T}]$$ $$= E[(\mathbf{C}_{k+1}\tilde{\mathbf{x}}_{k+1|k} + \mathbf{v}_{k+1})(\mathbf{C}_{k+1}\tilde{\mathbf{x}}_{k+1|k} + \mathbf{v}_{k+1})^{T}]$$ $$= \mathbf{C}_{k+1}\mathbf{P}_{k+1|k}\mathbf{C}_{k+1}^{T} + \mathbf{R}_{k+1}, \tag{8.90}$$ and $$E[\tilde{\mathbf{x}}_{k+1|k}\tilde{\mathbf{y}}_{k+1|k}^{\mathrm{T}}] = E[\tilde{\mathbf{x}}_{k+1|k}(\mathbf{y}_{k+1} - \hat{\mathbf{y}}_{k+1|k})^{\mathrm{T}}]$$ $$= E[\tilde{\mathbf{x}}_{k+1|k}(\mathbf{C}_{k+1}\tilde{\mathbf{x}}_{k+1|k} + \mathbf{v}_{k+1})^{\mathrm{T}}] = \mathbf{P}_{k+1|k}\mathbf{C}_{k+1}^{\mathrm{T}}.$$ (8.91) Let $\mathbf{K}_{k+1} = \mathbf{P}_{k+1|k} \mathbf{C}_{k+1}^{\mathrm{T}} (\mathbf{C}_{k+1} \mathbf{P}_{k+1|k} \mathbf{C}_{k+1}^{\mathrm{T}} + \mathbf{R}_{k+1})^{-1}$. Substituting (8.82), (8.90), and (8.91) into (8.89) yields $$\hat{\mathbf{x}}_{k+1|k+1} = \hat{\mathbf{x}}_{k+1|k} + \mathbf{K}_{k+1} (\mathbf{y}_{k+1} - \hat{\mathbf{y}}_{k+1|k}) = \hat{\mathbf{x}}_{k+1|k} + \mathbf{K}_{k+1} [\mathbf{y}_{k+1} - \mathbf{C}_{k+1} \hat{\mathbf{x}}_{k+1|k}].$$ (8.92) Now, we derive the one-step update formula for covariance $\mathbf{P}_{k+1|k}$. From (8.54) and (8.84), we have $$\mathbf{x}_{k+1} - \hat{\mathbf{x}}_{k+1|k} = \mathbf{A}_k(\mathbf{x}_k - \hat{\mathbf{x}}_{k|k}) + \mathbf{w}_k = \mathbf{A}_k \tilde{\mathbf{x}}_{k|k} + \mathbf{w}_k.$$ (8.93) In view of item 3 in Section 8.2.2, it follows $E[(\mathbf{x}_k - \hat{\mathbf{x}}_{k|k})\mathbf{w}_k^{\mathrm{T}}] = E[\tilde{\mathbf{x}}_{k|k}\mathbf{w}_k^{\mathrm{T}}] = \mathbf{0}$. Using (8.55), we have $$\mathbf{P}_{k+1|k} = E[(\mathbf{A}_k \tilde{\mathbf{x}}_{k|k} + \mathbf{w}_k)(\mathbf{A}_k \tilde{\mathbf{x}}_{k|k} + \mathbf{w}_k)^{\mathrm{T}}] = \mathbf{A}_k \mathbf{P}_{k|k} \mathbf{A}_k^{\mathrm{T}} + \mathbf{Q}_k.$$ (8.94) Finally, we can update covariance $P_{k+1|k+1}$. From (8.92), (8.87), and (8.54), we have $$\mathbf{x}_{k+1} - \hat{\mathbf{x}}_{k+1|k+1} = \mathbf{x}_{k+1} - \hat{\mathbf{x}}_{k+1|k} - \mathbf{K}_{k+1} [\mathbf{y}_{k+1} - \mathbf{C}_{k+1} \hat{\mathbf{x}}_{k+1|k}]$$ $$= \mathbf{x}_{k+1} - \hat{\mathbf{x}}_{k+1|k} - \mathbf{K}_{k+1} [\mathbf{C}_{k+1} \mathbf{x}_{k+1} + \mathbf{v}_{k+1} - \mathbf{C}_{k+1} \hat{\mathbf{x}}_{k+1|k}]$$ $$= \tilde{\mathbf{x}}_{k+1|k} - \mathbf{K}_{k+1} [\mathbf{C}_{k+1} \tilde{\mathbf{x}}_{k+1|k} + \mathbf{v}_{k+1}]$$ $$= (\mathbf{I} - \mathbf{K}_{k+1} \mathbf{C}_{k+1}) \tilde{\mathbf{x}}_{k+1|k} - \mathbf{K}_{k+1} \mathbf{v}_{k+1}. \tag{8.95}$$ Noticing that $E[\tilde{\mathbf{x}}_{k+1|k}\mathbf{v}_{k+1}^{\mathrm{T}}] = \mathbf{0}$, this gives $$\mathbf{P}_{k+1|k+1} = E[(\mathbf{x}_{k+1} - \hat{\mathbf{x}}_{k+1|k+1})(\mathbf{x}_{k+1} - \hat{\mathbf{x}}_{k+1|k+1})^{\mathrm{T}}] = E[(\mathbf{I} - \mathbf{K}_{k+1} \mathbf{C}_{k+1}) \tilde{\mathbf{x}}_{k+1|k} - \mathbf{K}_{k+1} \mathbf{v}_{k+1}][(\mathbf{I} - \mathbf{K}_{k+1} \mathbf{C}_{k+1}) \tilde{\mathbf{x}}_{k+1|k} - \mathbf{K}_{k+1} \mathbf{v}_{k+1}]^{\mathrm{T}} = (\mathbf{I} - \mathbf{K}_{k+1} \mathbf{C}_{k+1}) \mathbf{P}_{k+1|k} (\mathbf{I} - \mathbf{K}_{k+1} \mathbf{C}_{k+1})^{\mathrm{T}} + \mathbf{K}_{k+1} \mathbf{R}_{k+1} \mathbf{K}_{k+1}^{\mathrm{T}}.$$ (8.96) Summarizing the results in this section gives the following theorem. #### Theorem 8.1 For dynamical system with the measurement (8.54), assume the measurement noises satisfy the condition (8.55), and initial conditions are given by $$\hat{\mathbf{x}}_{0|0} = \mathbf{x}_0 = \mu_0, \quad \mathbf{P}_{0|0} = \mathbf{P}_0.$$ (8.97) Then, the optimal filtering $\hat{\mathbf{x}}_{k+1 \mid k+1}$ of \mathbf{x}_{k+1} can be calculated iteratively $$\hat{\mathbf{x}}_{k+1 \mid k} = \mathbf{A}_k \hat{\mathbf{x}}_{k|k} + \mathbf{B}_k \mathbf{u}_k. \tag{8.98a}$$ $$\mathbf{P}_{k+1|k} = \mathbf{A}_k \mathbf{P}_{k|k} \mathbf{A}_k^{\mathrm{T}} + \mathbf{Q}_k. \tag{8.98b}$$ $$\mathbf{K}_{k+1} = \mathbf{P}_{k+1|k} \mathbf{C}_{k+1}^{\mathrm{T}} (\mathbf{C}_{k+1} \mathbf{P}_{k+1|k} \mathbf{C}_{k+1}^{\mathrm{T}} + \mathbf{R}_{k+1})^{-1}. \tag{8.98c}$$ $$\mathbf{P}_{k+1|k+1} = (\mathbf{I} - \mathbf{K}_{k+1} \mathbf{C}_{k+1}) \mathbf{P}_{k+1|k} (\mathbf{I} - \mathbf{K}_{k+1} \mathbf{C}_{k+1})^{\mathrm{T}} + \mathbf{K}_{k+1} \mathbf{R}_{k+1} \mathbf{K}_{k+1}^{\mathrm{T}}.$$ (8.98d) $$\hat{\mathbf{x}}_{k+1|k+1} = \hat{\mathbf{x}}_{k+1|k} + \mathbf{K}_{k+1}[\mathbf{y}_{k+1} - \mathbf{C}_{k+1}\hat{\mathbf{x}}_{k+1|k}]. \tag{8.98e}$$ ### 8.3 Discrete-time extended Kalman filter Since most real world systems are nonlinear, to use the linear Kalman filter, one has to first linearize the nonlinear system before applying the linear Kalman filter. Modeling error is introduced during the linearization process. For this reason, NASA engineers and researchers at MIT worked on the *extended Kalman filter* right after Kalman filter was developed. According to Stanley F. Schmidt [229], the authors of the following papers [15, 16, 155, 156, 239, 240] should be credited for the development of the extended Kalman filter. Consider the nonlinear system model: $$\mathbf{x}_{k} = \mathbf{f}_{k-1}(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}, \phi_{k-1}), \tag{8.99a}$$ $$\mathbf{y}_k = \mathbf{h}_k(\mathbf{x}_k, \boldsymbol{\psi}_k), \tag{8.99b}$$ $$E[\phi_k] = \mathbf{0}, \quad E[\phi_k \phi_i^{\mathrm{T}}] = \delta_{kj} \mathbf{Q}_k,$$ (8.99c) $$E[\psi_k] = \mathbf{0}, \quad E[\psi_k \psi_i^{\mathrm{T}}] = \delta_{kj} \mathbf{R}_k,$$ (8.99d) $$E[\mathbf{x}_{0|0}] = E(\mathbf{x}_0), \quad \mathbf{P}_{0|0} = \mathbf{P}_0, \quad E[\phi_k \psi_i^{\mathrm{T}}] = \mathbf{0},$$ (8.99e) To save space, in this section, we use $\hat{\mathbf{x}}_k^- = \hat{\mathbf{x}}_{k|k-1}$ and $\hat{\mathbf{x}}_k^+ = \hat{\mathbf{x}}_{k|k}$. Taking Taylor expansion of the state equation at $\mathbf{x}_{k-1} = \hat{\mathbf{x}}_{k-1}^+$ and $\phi_{k-1} = \mathbf{0}$ yields $$\mathbf{x}_{k} = \mathbf{f}_{k-1}(\hat{\mathbf{x}}_{k-1}^{+}, \mathbf{u}_{k-1}, \mathbf{0}) + \frac{\partial \mathbf{f}_{k-1}}{\partial \mathbf{x}} \Big|_{\hat{\mathbf{x}}_{k-1}^{+}} (\mathbf{x}_{k-1} - \hat{\mathbf{x}}_{k-1}^{+}) + \frac{\partial \mathbf{f}_{k-1}}{\partial \phi} \Big|_{\hat{\mathbf{x}}_{k-1}^{+}} \phi_{k-1} \\ = \mathbf{f}_{k-1}(\hat{\mathbf{x}}_{k-1}^{+}, \mathbf{u}_{k-1}, \mathbf{0}) + \mathbf{F}_{k-1}(\mathbf{x}_{k-1} - \hat{\mathbf{x}}_{k-1}^{+}) + \mathbf{L}_{k-1}\phi_{k-1} \\ = \mathbf{F}_{k-1}\mathbf{x}_{k-1} + [\mathbf{f}_{k-1}(\hat{\mathbf{x}}_{k-1}^{+}, \mathbf{u}_{k-1}, \mathbf{0}) - \mathbf{F}_{k-1}\hat{\mathbf{x}}_{k-1}^{+}] + \mathbf{L}_{k-1}\phi_{k-1} \\ = \mathbf{F}_{k-1}\mathbf{x}_{k-1} - \tilde{\mathbf{u}}_{k-1} + \tilde{\phi}_{k-1}, \tag{8.100}$$ where $$\mathbf{F}_{k-1} = \frac{\partial \mathbf{f}_{k-1}}{\partial \mathbf{x}} \bigg|_{\hat{\mathbf{x}}_{k-1}^+}, \quad \mathbf{L}_{k-1} = \frac{\partial \mathbf{f}_{k-1}}{\partial \phi} \bigg|_{\hat{\mathbf{x}}_{k-1}^+}$$ (8.101a) $$\tilde{\mathbf{u}}_{k-1} = \mathbf{f}_{k-1}(\hat{\mathbf{x}}_{k-1}^+, \mathbf{u}_{k-1}, \mathbf{0}) - \mathbf{F}_{k-1}\hat{\mathbf{x}}_{k-1}^+, \tag{8.101b}$$ $$\tilde{\phi}_{k-1} = \mathbf{L}_{k-1} \phi_{k-1}, \quad E(\tilde{\phi}_{k-1}) = \mathbf{0},$$ (8.101c) $$E(\tilde{\phi}_{k-1}\tilde{\phi}_{k-1}^{\mathrm{T}}) = \mathbf{L}_{k-1}\mathbf{Q}_{k-1}\mathbf{L}_{k-1}^{\mathrm{T}}.$$ (8.101d) Taking Taylor expansion of the measurement equation at $\mathbf{x}_{k-1} = \hat{\mathbf{x}}_k^-$ and $\psi_k = \mathbf{0}$ yields $$\mathbf{y}_{k} = \mathbf{h}_{k}(\hat{\mathbf{x}}_{k}^{-}, \mathbf{0}) + \frac{\partial \mathbf{h}_{k}}{\partial \mathbf{x}} \Big|_{\hat{\mathbf{x}}_{k}^{-}} (\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{-}) + \frac{\partial \mathbf{h}_{k}}{\partial \psi} \Big|_{\hat{\mathbf{x}}_{k}^{-}} \psi_{k}$$ $$= \mathbf{h}_{k}(\hat{\mathbf{x}}_{k}^{-}, \mathbf{0}) + \mathbf{H}_{k}(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{-}) + \mathbf{M}_{k}\psi_{k}$$ $$= \mathbf{H}_{k}\mathbf{x}_{k} + [\mathbf{h}_{k}(\hat{\mathbf{x}}_{k}^{-}, \mathbf{0}) - \mathbf{H}_{k}\hat{\mathbf{x}}_{k}^{-}] + \mathbf{M}_{k}\psi_{k}$$ $$= \mathbf{H}_{k}\mathbf{x}_{k} + \mathbf{z}_{k} + \tilde{\psi}_{k}, \qquad (8.102)$$ where $$\mathbf{H}_{k} = \frac{\partial \mathbf{h}_{k}}{\partial \mathbf{x}} \bigg|_{\hat{\mathbf{x}}_{-}}, \quad \mathbf{M}_{k} = \frac{\partial \mathbf{h}_{k}}{\partial \psi} \bigg|_{\hat{\mathbf{x}}_{-}}$$ (8.103a) $$\mathbf{z}_k = \mathbf{h}_k(\hat{\mathbf{x}}_k^-, \mathbf{0}) - \mathbf{H}_k \hat{\mathbf{x}}_k^-, \tag{8.103b}$$ $$\tilde{\boldsymbol{\psi}}_k = \mathbf{M}_k \boldsymbol{\psi}_k, \quad E(\tilde{\boldsymbol{\psi}}_k) = \mathbf{0}, \tag{8.103c}$$ $$E(\tilde{\boldsymbol{\psi}}_k \tilde{\boldsymbol{\psi}}_k^{\mathrm{T}}) = \mathbf{M}_k \mathbf{R}_k \mathbf{M}_k^{\mathrm{T}}. \tag{8.103d}$$ We have a linear state-space system of equation (8.100) and a linear measurement equation (8.102). Therefore, we can use the linear Kalman filter equations to estimate the state. This gives the discrete-time extended Kalman filter: $$\hat{\mathbf{x}}_{k}^{-} = \hat{\mathbf{x}}_{k+1 \mid k} = \mathbf{f}_{k-1}(\hat{\mathbf{x}}_{k-1}^{+}, \mathbf{u}_{k-1}, \mathbf{0}) = \mathbf{f}_{k-1}(\hat{\mathbf{x}}_{k-1 \mid k-1}, \mathbf{u}_{k-1}, \mathbf{0}).$$ (8.104a) $$\mathbf{P}_{k|k-1} = \mathbf{F}_{k-1} \mathbf{P}_{k-1|k-1} \mathbf{F}_{k-1}^{\mathrm{T}} + \mathbf{L}_{k-1} \mathbf{Q}_{k-1}
\mathbf{L}_{k-1}^{\mathrm{T}}.$$ (8.104b) $$\mathbf{K}_{k} = \mathbf{P}_{k|k-1} \mathbf{H}_{k}^{\mathrm{T}} (\mathbf{H}_{k} \mathbf{P}_{k|k-1} \mathbf{H}_{k}^{\mathrm{T}} + \mathbf{M}_{k} \mathbf{R}_{k} \mathbf{M}_{k}^{\mathrm{T}})^{-1}. \tag{8.104c}$$ $$\mathbf{P}_{k|k} = (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k) \mathbf{P}_{k|k-1} (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k)^{\mathrm{T}} + \mathbf{K}_k \mathbf{R}_k \mathbf{K}_k^{\mathrm{T}}.$$ (8.104d) $$\hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k[\mathbf{y}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1} - \mathbf{z}_k].$$ (8.104e) # **8.4** Extended Kalman filter for spacecraft state estimation Although many different methods have been proposed, most models suggest using only quaternion kinematics equations of motion for the attitude estimation without considering spacecraft dynamics, see for example, some widely cited survey papers [48, 134] and references therein. This model reduces the problem size but discards useful spacecraft attitude information available in the spacecraft dynamics equation. The drawbacks of this simplified model are (a) when gyros measurements have significant noise, the spacecraft dynamics information is not used to prevent the degradation of the attitude estimation, and (b) when gyro measurements are not available (as a matter of fact, gyros are not used in most small spacecraft for economical consideration), the simplified model cannot be used to estimate the spacecraft attitude. Some papers consider models including the spacecraft dynamics in Kalman filter designs, for example, [120, 151], but a comparison about which model is a better fit for the application of spacecraft attitude estimation was not carried out for a long time. In a recent research [330], the performance comparison for Kalman filters using the two different models was performed. The result shows that the Kalman filter should include spacecraft dynamics. This section is based on the [330]. The spacecraft model with Gaussian noise considered in this section can be expressed as follows [307, 313]: $$\dot{\boldsymbol{\omega}} = -\mathbf{J}^{-1}\boldsymbol{\omega} \times (\mathbf{J}\boldsymbol{\omega}) + \mathbf{J}^{-1}\mathbf{u} + \boldsymbol{\phi}_{1}, \tag{8.105a}$$ $$\dot{\mathbf{q}} = \frac{1}{2}\Omega(\omega + \phi_2),\tag{8.105b}$$ where \mathbf{q} is the vector part of the quaternion (\mathbf{q} is referred as the reduced quaternion in this book), $\boldsymbol{\omega}$ is the spacecraft rotational rate with respect to the inertial frame, $\boldsymbol{\phi} = [\phi_1, \phi_2]^T$ is the process Gaussian noise, \mathbf{J} is the inertia matrix of the spacecraft, and Ω is a matrix given by $$\Omega = \begin{bmatrix} g(\mathbf{q}) & -q_3 & q_2 \\ q_3 & g(\mathbf{q}) & -q_1 \\ -q_2 & q_1 & g(\mathbf{q}) \end{bmatrix},$$ (8.106) with $$g(\mathbf{q}) = \sqrt{1 - q_1^2 - q_2^2 - q_3^2}$$. It is worthwhile to note that unlike ϕ_1 , the noise ϕ_2 is added to ω so that the kinematic equations are consistent with the form of (4.8). Depending on the design, we may have angular rate measurements ω_y and quaternion measurement \mathbf{q}_y ; or we may have only quaternion measurement \mathbf{q}_y . Assuming that three gyros and quaternion measurement sensors are installed on board, then the measurement equation can be written as [47] $$\dot{\beta} = \phi_3, \tag{8.107a}$$ $$\omega_{v} = \omega + \beta + \psi_{1}, \tag{8.107b}$$ $$\mathbf{q}_{v} = \mathbf{q} + \boldsymbol{\psi}_{2},\tag{8.107c}$$ where β is a drift in the angular rate measurement, ϕ_3 is the process noise, ω_y is the angular rate measurement, \mathbf{q}_y is the quaternion measurement, and ψ_1 and ψ_2 are measurement noise. The overall system equations are given as follows: $$\dot{\boldsymbol{\omega}} = -\mathbf{J}^{-1}\boldsymbol{\omega} \times (\mathbf{J}\boldsymbol{\omega}) + \mathbf{J}^{-1}\mathbf{u} + \boldsymbol{\phi}_{1}, \tag{8.108a}$$ $$\dot{\mathbf{q}} = \frac{1}{2}\Omega(\omega + \phi_2),\tag{8.108b}$$ $$\dot{\beta} = \phi_3, \tag{8.108c}$$ $$\omega_{y} = \omega + \beta + \psi_{1}, \tag{8.108d}$$ $$\mathbf{q}_{y} = \mathbf{q} + \boldsymbol{\psi}_{2}, \tag{8.108e}$$ which can be rewritten as a standard state space model as follows: $$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, \boldsymbol{\phi}), \tag{8.109a}$$ $$\mathbf{y} = \mathbf{H}\mathbf{x} + \boldsymbol{\psi},\tag{8.109b}$$ where $$\mathbf{x} = [\boldsymbol{\omega}^T, \mathbf{q}^T, \boldsymbol{\beta}^T]^T$$, $\mathbf{y} = [\boldsymbol{\omega}_y^T, \mathbf{q}_y^T]^T$, $\phi = [\phi_1^T, \phi_2^T, \phi_3^T]^T$, $\psi = [\psi_1^T, \psi_2^T]^T$, and $$\mathbf{H} = \begin{bmatrix} \mathbf{I}_3 & \mathbf{0}_3 & \mathbf{I}_3 \\ \mathbf{0}_3 & \mathbf{I}_3 & \mathbf{0}_3 \end{bmatrix}.$$ Some noticeable differences between this model and other popular models are (a) it is a reduced quaternion model rather than a full quaternion model and (b) it uses the additive noise rather than the multiplicative noise expression. The reduced quaternion geometry of \mathbf{q}_y can be seen from the following argument. First, the noise ψ_2 can be viewed as a reduced rotational quaternion whose rotational axis is $\frac{\psi_2}{\|\psi_2\|}$ and rotational angle δ meets the condition $\sin\left(\frac{\delta}{2}\right) = \|\psi_2\|$. For small noise ψ_2 and the quaternion $\mathbf{q} = \hat{\mathbf{e}}\sin\left(\frac{\alpha}{2}\right)$ which is bounded away from a singular point ($\|\mathbf{q}\| < 1$), we can see that $\mathbf{q}_y = \mathbf{q} + \psi_2 = \frac{\mathbf{q}_y}{\|\mathbf{q}_y\|}\sin\left(\frac{\alpha+\Delta}{2}\right)$ is a reduced quaternion whose rotational axis is a perturbation of \mathbf{q} satisfying $\|\mathbf{q}_y\| \leq \|\mathbf{q}\| + \|\psi_2\|$ and $\|\mathbf{q}_y\| \leq 1$ (where $\|\psi_2\|$ is small), and the rotational angle around \mathbf{q}_y is $\alpha + \Delta$ and Δ is small. Therefore, the mathematical treatment for this model is much easier than the multiplicative perturbation model. Let dt be the sampling time period. The discrete version of (8.108) is given by $$\begin{bmatrix} \boldsymbol{\omega}_{k+1} \\ \mathbf{q}_{k+1} \\ \boldsymbol{\beta}_{k+1} \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} \boldsymbol{\omega}_{k} \\ \mathbf{q}_{k} \\ \boldsymbol{\beta}_{k} \end{bmatrix} + \begin{bmatrix} -\mathbf{J}^{-1}\boldsymbol{\omega}_{k} \times (\mathbf{J}\boldsymbol{\omega}_{k}) + \mathbf{J}^{-1}\mathbf{u}_{k} \\ \frac{1}{2}\Omega_{k}\boldsymbol{\omega}_{k} \\ 0 \end{bmatrix} dt + \begin{bmatrix} \boldsymbol{\phi}_{1_{k}} \\ \frac{1}{2}\Omega_{k}\boldsymbol{\phi}_{2_{k}} \\ \boldsymbol{\phi}_{3_{k}} \end{bmatrix} dt$$ $$= \mathbf{F}(\mathbf{x}_{k}, \mathbf{u}_{k}) + \mathbf{G}(\mathbf{x}_{k}, \mathbf{u}_{k})\boldsymbol{\phi}_{k}, \qquad (8.110a)$$ $$\begin{bmatrix} \boldsymbol{\omega}_{\mathbf{y}_{k}} \\ \mathbf{q}_{y_{k}} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{3} & \mathbf{0}_{3} & \mathbf{I}_{3} \\ \mathbf{0}_{3} & \mathbf{I}_{3} & \mathbf{0}_{3} \end{bmatrix} \begin{bmatrix} \boldsymbol{\omega}_{k} \\ \mathbf{q}_{k} \\ \boldsymbol{\beta}_{k} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\psi}_{1_{k}} \\ \boldsymbol{\psi}_{2_{k}} \end{bmatrix} = \mathbf{H}\mathbf{x}_{k} + \boldsymbol{\psi}_{k}, \qquad (8.110b)$$ where $$\Omega_k = \left[egin{array}{cccc} \sqrt{1-q_{1_k}^2-q_{2_k}^2-q_{3_k}^2} & -q_{3_k} & q_{2_k} \ q_{3_k} & \sqrt{1-q_{1_k}^2-q_{2_k}^2-q_{3_k}^2} & -q_{1_k} \ -q_{2_k} & q_{1_k} & \sqrt{1-q_{1_k}^2-q_{2_k}^2-q_{3_k}^2} \end{array} ight]. \ (8.111)$$ Note that for two vectors $\mathbf{w} = [w_1, w_2, w_3]^T$ and $\mathbf{v} = [v_1, v_2, v_3]^T$, the cross product of $\mathbf{w} \times \mathbf{v}$ can be written as the product of matrix \mathbf{w}^{\times} and vector \mathbf{v} where $$\mathbf{w}^{\times} = \left[\begin{array}{ccc} 0 & -w_3 & w_2 \\ w_3 & 0 & -w_1 \\ -w_2 & w_1 & 0 \end{array} \right].$$ We also assume ϕ_k and ψ_k are white noise signals satisfying the following equations $$E(\phi_k) = 0, \quad E(\psi_k) = 0, \quad \forall k,$$ (8.112a) $$E(\phi_k \phi_k^{\mathrm{T}}) = \mathbf{Q}_k, \quad E(\psi_k \psi_k^{\mathrm{T}}) = \mathbf{R}_k, \quad E(\psi_i \phi_i^{\mathrm{T}}) = 0, \quad \forall i, j, k,$$ (8.112b) $$E(\phi_i \phi_i^{\mathrm{T}}) = 0, \quad E(\psi_i \psi_i^{\mathrm{T}}) = 0, \quad \forall i \neq j.$$ (8.112c) For $$\mathbf{F}_1(\mathbf{x}, \mathbf{u}) = (-\mathbf{J}^{-1}\boldsymbol{\omega}_k \times (\mathbf{J}\boldsymbol{\omega}_k) + \mathbf{J}^{-1}\mathbf{u}_k) dt + \boldsymbol{\omega}_k,$$ we have $$\frac{\partial \mathbf{F}_1}{\partial \mathbf{x}} = \begin{bmatrix} \mathbf{I} - \mathbf{J}^{-1} (\boldsymbol{\omega}_k^{\times} \mathbf{J} - (\mathbf{J} \boldsymbol{\omega}_k)^{\times}) dt & \mathbf{0}_3 & \mathbf{0}_3 \end{bmatrix}.$$ For $\mathbf{F}_2(\mathbf{x}, \mathbf{u}) = \frac{1}{2} \Omega_k \omega_k dt + \mathbf{q}_k$, we have $$\frac{\partial \mathbf{F}_2}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{F}_2}{\partial \boldsymbol{\omega}} & \frac{\partial \mathbf{F}_2}{\partial \mathbf{q}} & \mathbf{0}_3 \end{bmatrix},$$ with $$\frac{\partial \mathbf{F}_{2}}{\partial \boldsymbol{\omega}} = \begin{bmatrix} \frac{g}{2} & -\frac{q_{3}}{2} & \frac{q_{2}}{2} \\ \frac{q_{3}}{2} & \frac{g}{2} & -\frac{q_{1}}{2} \\ -\frac{q_{2}}{2} & \frac{q_{1}}{2} & \frac{g}{2} \end{bmatrix} dt = \frac{1}{2} \Omega dt, \tag{8.113}$$ and $$\frac{\partial \mathbf{F}_{2}}{\partial \mathbf{q}} = \begin{bmatrix} \frac{1}{dt} - \frac{q_{1}\omega_{1}}{2g(q)} & \frac{\omega_{3}}{2} - \frac{q_{2}\omega_{1}}{2g(q)} & -\frac{\omega_{2}}{2} - \frac{q_{3}\omega_{1}}{2g(q)} \\ -\frac{\omega_{3}}{2} - \frac{q_{1}\omega_{2}}{2g(q)} & \frac{1}{dt} - \frac{q_{2}\omega_{1}}{2g(q)} & \frac{\omega_{1}}{2} - \frac{q_{3}\omega_{2}}{2g(q)} \\ \frac{\omega_{2}}{2} - \frac{q_{1}\omega_{3}}{2g(q)} & -\frac{\omega_{1}}{2} - \frac{q_{2}\omega_{3}}{2g(q)} &
\frac{1}{dt} - \frac{q_{3}\omega_{3}}{2g(q)} \end{bmatrix} dt.$$ (8.114) For $\mathbf{F}_3(\mathbf{x}, \mathbf{u}) = \boldsymbol{\beta}_k$, we have $$\frac{\partial \mathbf{F}_3}{\partial \mathbf{x}} = \begin{bmatrix} \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{I}_3 \end{bmatrix}.$$ Therefore, $$\mathbf{F}_{k-1} := \frac{\partial \mathbf{F}}{\partial \mathbf{x}} \Big|_{\hat{\mathbf{x}}_{k-1|k-1}, \mathbf{u}_{k-1}}$$ $$= \begin{bmatrix} \mathbf{I} - \mathbf{J}^{-1} (\boldsymbol{\omega}^{\times} J - (\mathbf{J} \boldsymbol{\omega})^{\times}) dt & \mathbf{0}_{3} & \mathbf{0}_{3} \\ \frac{\partial \mathbf{F}_{2}}{\partial \boldsymbol{\omega}} & \frac{\partial \mathbf{F}_{2}}{\partial \mathbf{q}} & \mathbf{0}_{3} \\ \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{I}_{3} \end{bmatrix}_{\hat{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}}. \quad (8.115)$$ Similarly $$\mathbf{L}_{k-1} = \frac{\partial \mathbf{G}}{\partial \phi_k} \Big|_{\hat{\mathbf{x}}_{k-1|k-1}, \mathbf{u}_{k-1}} = \begin{bmatrix} \mathbf{I}_3 & \mathbf{0}_3 & \mathbf{0}_3 \\ \mathbf{0}_3 & \frac{1}{2} \Omega_{k-1} & \mathbf{0}_3 \\ \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{I}_3 \end{bmatrix} dt.$$ (8.116) The extended Kalman filter iteration (8.104) can be applied to solve the problem. The beauty of the Kalman filter using spacecraft dynamics can be seen from (8.104e). The best estimation is composed of two parts. The first part is a prediction $\hat{\mathbf{x}}_{k|k-1}$ which includes the spacecraft dynamics and the inertia matrix information for the specific spacecraft. The second part is a correction $\tilde{\mathbf{y}}_k$ which is based on observations. The filter gain \mathbf{K}_k is constantly adjusted such that (a) if the noise is higher, the gain is reduced so that the estimation depends more on the information of the system dynamics, and (b) if the noise is lower, the gain is increased so that the estimation depends more on the measurement. That is the reason why spacecraft dynamics should be included in the attitude estimation problem even if angular rate measurements are available. The simulation test in [330] shows that the extended Kalman filter is robust to the modeling errors, in particular, when the spacecraft inertia matrix is not accurate, the estimation is still accurate enough for practical application. As mentioned before, the Kalman filter with spacecraft dynamics works without the (gyro) measurement of spacecraft angular velocity vector with respect to the inertial frame. In this case, gyro measurement drift β does not exist. Therefore, the continuous system (8.108) is reduced to $$\dot{\boldsymbol{\omega}} = -\mathbf{J}^{-1}\boldsymbol{\omega} \times (\mathbf{J}\boldsymbol{\omega}) + \mathbf{J}^{-1}\mathbf{u} + \boldsymbol{\phi}_{1}, \tag{8.117a}$$ $$\dot{\mathbf{q}} = \frac{1}{2}\Omega(\omega + \phi_2),\tag{8.117b}$$ $$\mathbf{q}_{y} = \mathbf{q} + \boldsymbol{\psi}. \tag{8.117c}$$ We still use (8.109) for this system but $\mathbf{x} = [\boldsymbol{\omega}^T, \mathbf{q}^T]^T$, $\mathbf{y} = \mathbf{q}_y$, $\phi = [\phi_1^T, \phi_2^T]^T$, and $\mathbf{C} = [\begin{array}{cc} \mathbf{0}_3 & \mathbf{I}_3 \end{array}]$. The discrete version of (8.117) is given by $$\begin{bmatrix} \boldsymbol{\omega}_{k+1} \\ \mathbf{q}_{k+1} \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} \boldsymbol{\omega}_{k} \\ \mathbf{q}_{k} \end{bmatrix} + \begin{bmatrix} -\mathbf{J}^{-1}\boldsymbol{\omega}_{k} \times (\mathbf{J}\boldsymbol{\omega}_{k}) + \mathbf{J}^{-1}\mathbf{u}_{k} \\ \frac{1}{2}\Omega_{k}\boldsymbol{\omega}_{k} \end{bmatrix} dt + \begin{bmatrix} \boldsymbol{\phi}_{1_{k}} \\ \frac{1}{2}\Omega_{k}\boldsymbol{\phi}_{2_{k}} \end{bmatrix} dt$$ $$= \mathbf{F}(\mathbf{x}_{k}, \mathbf{u}_{k}) + \mathbf{G}(\mathbf{x}_{k}, \mathbf{u}_{k})\boldsymbol{\phi}_{k}, \tag{8.118a}$$ $$\mathbf{q}_{y_k} = \begin{bmatrix} \mathbf{0}_3 & \mathbf{I}_3 \end{bmatrix} \begin{bmatrix} \boldsymbol{\omega}_k \\ \mathbf{q}_k \end{bmatrix} + \boldsymbol{\psi}_k = \mathbf{H}\mathbf{x}_k + \boldsymbol{\psi}_k, \tag{8.118b}$$ where Ω_k is the same as in (8.111). We also assume that ϕ_k and ψ_k are white noise signals satisfying equations (8.112). For $$\mathbf{F}_1(\mathbf{x},\mathbf{u}) = \left(-\mathbf{J}^{-1}\boldsymbol{\omega}_k \times (\mathbf{J}\boldsymbol{\omega}_k) + \mathbf{J}^{-1}\mathbf{u}_k\right)dt + \boldsymbol{\omega}_k,$$ we have $$\frac{\partial \mathbf{F}_1}{\partial \mathbf{x}} = \begin{bmatrix} \mathbf{I} - \mathbf{J}^{-1} (\boldsymbol{\omega}^{\times} J - (\mathbf{J} \boldsymbol{\omega})^{\times}) dt & \mathbf{0}_3 \end{bmatrix}.$$ For $\mathbf{F}_2(\mathbf{x}, \mathbf{u}) = \frac{1}{2} \Omega_k \omega_k dt + \mathbf{q}_k$, we have $$\frac{\partial \mathbf{F}_2}{\partial \mathbf{x}} = \left[\begin{array}{cc} \frac{\partial \mathbf{F}_2}{\partial \boldsymbol{\omega}} & \frac{\partial \mathbf{F}_2}{\partial \mathbf{q}} \end{array} \right],$$ with $\frac{\partial \mathbf{F}_2}{\partial \omega}$ and $\frac{\partial \mathbf{F}_2}{\partial \mathbf{q}}$ the same as (8.113) and (8.114). Therefore, $$\mathbf{F}_{k-1} := \frac{\partial \mathbf{F}}{\partial \mathbf{x}} \Big|_{\hat{\mathbf{x}}_{k-1|k-1}, \mathbf{u}_{k-1}} = \begin{bmatrix} \mathbf{I} - \mathbf{J}^{-1} (\boldsymbol{\omega}^{\times} J - (\mathbf{J}\boldsymbol{\omega})^{\times}) dt & \mathbf{0}_{3} \\ \frac{\partial \mathbf{F}_{2}}{\partial \boldsymbol{\omega}} & \frac{\partial \mathbf{F}_{2}}{\partial \mathbf{q}} \end{bmatrix}_{\hat{\mathbf{x}}_{k-1|k-1}} (8.119)$$ Let $$\mathbf{L}_{k-1} = \frac{\partial \mathbf{G}}{\partial \phi_k} \Big|_{\hat{\mathbf{x}}_{k-1|k-1}, \mathbf{u}_{k-1}} = \begin{bmatrix} \mathbf{I}_3 & \mathbf{0}_3 \\ \mathbf{0}_3 & \frac{1}{2} \Omega_{k-1} \end{bmatrix} dt.$$ (8.120) The extended Kalman filter will be a special form of (8.104). # 8.5 Linear Kalman filter for spacecraft state estimation The idea of the extended Kalman filter is to use as much (nonlinear) information as possible and hopefully improve the estimation performance. Therefore, part of the iteration uses the nonlinear equation (8.104a). But linearization has to be done in (8.115) and (8.116) and the linear approximation is used in (8.104b). The drawbacks of this method are (a) in general, the extended Kalman filter is not an optimal estimator [5], (b) if the initial estimate of the state is wrong, the filter may diverge [89, 201], and (c) the estimated covariance matrix tends to underestimate the true covariance matrix and therefore risks becoming inconsistent in the statistical sense [201]. On the other hand, if the nonlinear spacecraft system equations are linearized and the Kalman filter for the linear system is used, the accuracy in state prediction may be lost. In exchange, some benefits will be gained: (a) the estimate is optimal for the linearized system, (b) the initial guess is not as crucial as the extended Kalman filter, (c) the numerically stable algorithms have been fully investigated, and (d) Kalman filter design and linear quadratic optimal control system design can be separated [294]. Therefore, in this section, we will briefly discuss a Kalman filter implementation for the spacecraft estimation problem using a reduced quaternion model proposed in [307]. Unlike most models [48] used in the spacecraft attitude estimation problem, we will include the spacecraft dynamics discussed in the previous section to make full use of the available information. We also adopt a simple additive noise model as suggested in the previous section rather than a more complex multiplicative noise model used in [47, 48, 134, 163, 164, 202]. Another benefit of using the reduced model is that the unit norm constraint for quaternion is not required as in [44, 67, 336], which greatly simplifies the problem and reduces the cost of computation. Other merits of using the reduced quaternion model can be found in [309, 314]. As discussed in the previous sections, we can first linearize the nonlinear system equation and then use a (linear) Kalman filter for the attitude estimation problem. Using exactly the same method in previous section, to simplify the discussion, assuming that there is no measurement drafting, we have the linearized system given as follows. $$\begin{bmatrix} \dot{\boldsymbol{\omega}} \\ \dot{\mathbf{q}} \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{3} & \mathbf{0}_{3} \\ \frac{1}{2}\mathbf{I}_{3} & \mathbf{0}_{3} \end{bmatrix} \begin{bmatrix} \boldsymbol{\omega} \\ \mathbf{q} \end{bmatrix} + \begin{bmatrix} \mathbf{J}^{-1} \\ \mathbf{0}_{3} \end{bmatrix} \mathbf{u}$$ (8.121a) $$\begin{bmatrix} \boldsymbol{\omega}_{y} \\ \mathbf{q}_{y} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{3} & \mathbf{0}_{3} \\ \mathbf{0}_{3} & \mathbf{I}_{3} \end{bmatrix} \begin{bmatrix} \boldsymbol{\omega} \\ \mathbf{q} \end{bmatrix},$$ (8.121b) The corresponding discrete system with added noise is therefore as follows. $$\mathbf{x}_{k+1} = \begin{bmatrix} \boldsymbol{\omega}_{k+1} \\ \mathbf{q}_{k+1} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{3} & \mathbf{0}_{3} \\ \frac{1}{2}\mathbf{I}_{3}dt & \mathbf{I}_{3} \end{bmatrix} \begin{bmatrix} \boldsymbol{\omega}_{k} \\ \mathbf{q}_{k} \end{bmatrix} + \begin{bmatrix} \mathbf{J}^{-1}dt \\ \mathbf{0}_{3} \end{bmatrix} \mathbf{u}_{k} + \begin{bmatrix} \boldsymbol{\phi}_{1_{k}} \\ \boldsymbol{\phi}_{2_{k}} \end{bmatrix}$$ $$= \mathbf{A}\mathbf{x}_{k} + \mathbf{B}\mathbf{u}_{k} + \boldsymbol{\phi}_{k}, \qquad (8.122a)$$ $$\mathbf{y}_{k+1} = \begin{bmatrix} \boldsymbol{\omega}_{y_{k}} \\ \mathbf{q}_{y_{k}} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{3} & \mathbf{0}_{3} \\ \mathbf{0}_{3} & \mathbf{I}_{3} \end{bmatrix} \begin{bmatrix} \boldsymbol{\omega}_{k} \\ \mathbf{q}_{k} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\psi}_{1_{k}} \\ \boldsymbol{\psi}_{2_{k}} \end{bmatrix}$$ $$= \mathbf{C}\mathbf{x}_{k} + \boldsymbol{\psi}_{k}, \qquad (8.122b)$$ Assume $\hat{\mathbf{x}}_{0|0} = E(\mathbf{x}_0)$ and $\mathbf{P}_0 = E([\mathbf{x}_0 - E(\mathbf{x}_0)]^T[\mathbf{x}_0 -
E(\mathbf{x}_0)])$, the update process described in Theorem 8.1 can be used to solve the problem. There are alternative schemes to update $\mathbf{P}_{k|k}$. What we described in this chapter is *Joseph-form stabilized Kalman filter*, which is computationally slightly more expensive than others but numerically more stable because $\mathbf{P}_{k|k}$ is guaranteed to be positive semidefinite [74]. Other schemes exist, such as *root square filter* proposed by Potter, Stern, and Carlson in [36, 207], and *Chandrasekhar square root filter* introduced by Morf and Kailath in [167]. Some detailed numerical analysis and test were conducted by Verhaegen and Van Dooren [273] in which a root square fitler algorithm described in [5] was recommended because of its overall performance and robustness. When \mathbf{R}_k matrix is diagonal, Bierman [27] suggested U-D factorization method which sequentially calculates the Kalman gain matrix \mathbf{K}_k and covariance matrix $\mathbf{P}_{k|k}$ (one observation at a time). ## 8.6 A short comment In this Chapter, we presented two Kalman filters to estimate the spacecraft attitude and body rate. In the aerospace industry, the extended Kalman filter is widely used. But we have seen pros and cons from a theoretical point of view for both methods. However, to the best knowledge of this author, it is not clear which one is the best fit for a specific application and no one has done an extensive test comparison. # Chapter 9 # Spacecraft Attitude Control Control design methods based on the quaternion spacecraft model have been investigated for decades. Most quaternion based design methods use Lyapunov functions and focus on the global stability; these methods pay little attention to the control system performance which is important in practical system design. Not many researchers considered the performance of the quaternion based control systems. Using the classical frequency domain method, Paielli and Bach [194] adopted quaternion based linear error dynamics to get the desired performance for the attitude control system; Wie, Weiss, and Arapostathis [288] showed that there exists some state feedback that globally stabilizes the nonlinear spacecraft system and the feedback matrix assigns the closed loop poles for the dynamics described by the rotational angle about the rotational axis. These methods are in the classical domain and they are not easy to extend to modern designs. Zhou, and Colgren [344] obtained a linearized state space model with all components of the quaternion in the state variables. However, this linearized state space model is not fully controllable. This explains why many powerful design methods in linear control system theory such as pole assignment, linear quadratic regulator (LQR) control, and \mathbf{H}_{∞} control were not directly applied to the spacecraft control system design if a full quaternion based linearized model is used. On the other hand, although the Euler angle representation has a singular point and the representation depend on the rotational sequential, the linearized Euler angle based spacecraft model has been proved to be fully controllable. Therefore, all linear system design methods can be directly applied to spacecraft control system design for the Euler angle model and these methods are described in many standard text books, for example [235, 283, 284]. More importantly, there are many successful applications of using these powerful control design methods, for example [248, 293]. It is shown in Chapter 4 that the reduced quaternion model that uses only vector components of the quaternion is fully controllable. Also, the linearized reduced quaternion models have some simple and special structure, we will consider the design methods based on the reduced quaternion models in the rest of the book. For the nadir pointing spacecraft, one can directly use standard linear control system design methods, such as LQR design [9], robust pole assignment design [117, 263, 305], \mathbf{H}_{∞} design [57], for the linearized system. The designed controller can then be checked by simulation with the original nonlinear spacecraft system in the space environment discussed in Chapter 5. For inertial pointing spacecraft, since the linearized system has a very simple structure, using this linearized reduced quaternion model, one can derive an analytical formula for LQR optimal control that is explicitly related to the cost matrices Q and R. Moreover, it can be shown that under some mild restrictions, the LOR feedback controller globally stabilizes the original nonlinear spacecraft. In addition, the LQR controller has a diagonal structure in the state feedback matrices **D** and **K**. Using this structure, it can be proved that the LQR design is actually a robust pole assignment design. The main results presented here are based on [9, 309, 313]. # 9.1 LQR design for nadir pointing spacecraft We first consider the general linear system described as follows. $$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \\ \mathbf{v} = \mathbf{C}\mathbf{x}.$$ (9.1) The LQR design is to find a state feedback matrix $$u = -[D,K]x = -Gx$$ to minimize the following cost function $$L = \frac{1}{2} \int_0^\infty \left(\mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{x} + \mathbf{u}^{\mathsf{T}} \mathbf{R} \mathbf{u} \right) dt. \tag{9.2}$$ where \mathbf{Q} and \mathbf{R} are positive definite matrices, $\mathbf{x}^T\mathbf{Q}\mathbf{x}$ represents the cost of the deviation from desired equilibrium point, $\mathbf{u}^T\mathbf{R}\mathbf{u}$ represents the cost of the energy consumption. The LQR control problem was first considered by Hall [83] and Wiener [289], but Kalman [112] provided a much better solution and popularized the design. If Kalman filter [111] is used as part of the feedback loop, then the control design method is the LQG control. Surprisingly, the Kalman filter and the LQR control law can be designed separately because of the *separation theorem* obtained by Wonham [294]. For the nadir pointing spacecraft system given by (4.36), the optimal control of LQR design is uniquely given by (see Appendix B or a comprehensive treatment of [9]) $$\mathbf{u}(t) = -\mathbf{R}^{-1}\mathbf{B}^{\mathrm{T}}\mathbf{F}\mathbf{x}(t) = -\mathbf{G}\mathbf{x}, \tag{9.3}$$ where **F** is a constant positive definite matrix which is the solution of the *algebraic Riccati matrix equation* $$-\mathbf{F}\mathbf{A} - \mathbf{A}^{\mathrm{T}}\mathbf{F} + \mathbf{F}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{\mathrm{T}}\mathbf{F} - \mathbf{Q} = \mathbf{0}.$$ (9.4) This control law can be directly used for the nadir pointing spacecraft without any modification. For the inertial pointing spacecraft, due to the simple structure of the linearized reduced quaternion model, analytic solution to the LQR design can be obtained. In the remainder of this chapter, we will focus on the controller design for inertial pointing spacecraft. ### 9.2 The LQR design for inertial pointing spacecraft In this section, we consider the LQR design for the inertial pointing spacecraft for which $\bf A$ and $\bf B$ are defined in (4.13). We assume further that the constant inertia matrix of the spacecraft $\bf J$ defined in (4.1) is diagonal. This assumption is reasonable because in practical spacecraft design, $\bf J$ is always designed close to a diagonal matrix. In the rest of the discussion of this subsection, we assume further that $\bf Q$, and $\bf R$ are diagonal matrices because $\bf Q$ and $\bf R$ are oftentimes selected to be diagonal in engineering design practice. With these assumptions, the problem can greatly be simplified. ### 9.2.1 The analytic solution It is well known that the LQR feedback based on (9.3) and (9.4) guarantees the *stability* of the linearized closed loop system and minimizes the cost function of (9.2) that is a combined cost of cumulative control system error and cumulative energy consumption. First, we derive the analytical solution for the spacecraft model (4.12). Let $$\mathbf{F} = \begin{bmatrix} \mathbf{F}_{11} & \mathbf{F}_{12} \\ \mathbf{F}_{21} & \mathbf{F}_{22} \end{bmatrix}, \quad \mathbf{Q} = \begin{bmatrix} \mathbf{Q}_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_{22} \end{bmatrix}, \tag{9.5}$$ where the elements of \mathbf{F} and \mathbf{Q} in (9.5) are all 3 by 3 matrices. Substituting \mathbf{A} and \mathbf{B} defined in (4.13), \mathbf{F} and \mathbf{Q} defined in (9.5) into (9.4), after simple manip- ulations, we get $$\begin{bmatrix} \mathbf{F}_{11}J^{-1}\mathbf{R}^{-1}\mathbf{J}^{-1}\mathbf{F}_{11} & \mathbf{F}_{11}\mathbf{J}^{-1}\mathbf{R}^{-1}\mathbf{J}^{-1}\mathbf{F}_{12} \\ \mathbf{F}_{12}^{-1}\mathbf{J}^{-1}\mathbf{R}^{-1}\mathbf{J}^{-1}\mathbf{F}_{11} & \mathbf{F}_{12}^{T}\mathbf{J}^{-1}\mathbf{R}^{-1}\mathbf{J}^{-1}\mathbf{F}_{12} \end{bmatrix} = \begin{bmatrix} \frac{1}{2}(\mathbf{F}_{12}^{T} + \mathbf{F}_{12}) + \mathbf{Q}_{11} & \frac{1}{2}\mathbf{F}_{22} \\ \frac{1}{2}\mathbf{F}_{22} & \mathbf{Q}_{22} \end{bmatrix}.$$ (9.6) Since **J**, **Q** and **R** are positive definite, noticing that $\mathbf{F}_{21}^{T} = \mathbf{F}_{12}$, comparing the (2,2) block on both sides of (9.6) yields, $$\mathbf{F}_{12} = \mathbf{J} \mathbf{R}^{\frac{1}{2}} \mathbf{Q}_{22}^{\frac{1}{2}}. \tag{9.7}$$ Since **J**, $\mathbf{Q}_{11} = \operatorname{diag}(q_{1i})$, $\mathbf{Q}_{22} = \operatorname{diag}(q_{2i})$, and $\mathbf{R} = \operatorname{diag}(r_i)$ are diagonal, we conclude that \mathbf{F}_{12} is diagonal. Substituting (9.7) into the (1,1) block of (9.6) gives, $$\mathbf{F}_{11} = \mathbf{J}\mathbf{R}^{\frac{1}{2}} \left(\mathbf{Q}_{11} + \frac{1}{2} \left(\mathbf{J}\mathbf{R}^{\frac{1}{2}} \mathbf{Q}_{22}^{\frac{1}{2}} + \mathbf{Q}_{22}^{\frac{1}{2}} \mathbf{R}^{\frac{1}{2}} \mathbf{J} \right) \right)^{\frac{1}{2}}.$$ (9.8) Therefore, \mathbf{F}_{11} is diagonal. Substituting (9.7) and (9.8) into the (2,1) block of (9.6)
gives $$\mathbf{F}_{22} = 2\mathbf{Q}_{22}^{\frac{1}{2}} \left(\mathbf{Q}_{11} + \mathbf{J} \mathbf{R}^{\frac{1}{2}} \mathbf{Q}_{22}^{\frac{1}{2}} \right)^{\frac{1}{2}}.$$ (9.9) which is also diagonal. Equations (9.7), (9.8), and (9.9) give a complete solution of Riccati matrix equation (9.4). Therefore, (9.3) can be rewritten as $$\mathbf{u}(t) = -\mathbf{R}^{-1}\mathbf{B}^{\mathsf{T}}\mathbf{F}\mathbf{x}(t) = -[\mathbf{R}^{-1}\mathbf{J}^{-1}\mathbf{F}_{11}, \mathbf{R}^{-1}\mathbf{J}^{-1}\mathbf{F}_{12}]\mathbf{x} = -[\mathbf{D}, \mathbf{K}]\mathbf{x}.$$ (9.10) Clearly, matrices **D** and **K** are diagonal. ### 9.2.2 The global stability of the design To show the global stability of the design, we first review the definition of global stability for nonlinear systems [119, page 111]. **Definition 9.1** Let $\mathbf{x}(t)$ be the solution of the nonlinear inertial pointing spacecraft system defined by (4.11) and (4.9). If for any initial state $\mathbf{x}(0)$, the trajectory $\mathbf{x}(t)$ approaches the origin as $t \to \infty$, no matter how large $\|\mathbf{x}(0)\|$ is, then the region of attraction (also called region of asymptotic stability) is the entire space \mathbf{R}^n . If an asymptotically stable equilibrium point at the origin has this property, it is said to be globally asymptotically stable. A theorem on *globally asymptotically stable* is given in [119, Corollary 3.2]¹, which is restated below. ¹The original result is applicable to a much more general case. #### Theorem 9.1 Let $\mathbf{x} = \mathbf{0}$ be an equilibrium point for the system defined by (4.11) and (4.9). Let a Lyapunov function $V : \mathbf{R}^n \to \mathbf{R}$ be a continuously differentiable, radially unbounded, positive definite function such that $\dot{V}(\mathbf{x}) \leq 0$ for all $\mathbf{x} \in \mathbf{R}^n$. Let $S = \{\mathbf{x} \in \mathbf{R}^n | \dot{V}(\mathbf{x}) = 0\}$, and suppose that no solution can stay forever in S, other than the trivial solution (equilibrium). Then, the origin is globally asymptotically stable. Next, we show that under some additional conditions, the LQR optimal control given by (9.10) globally stabilizes the nonlinear system described by (4.11) and (4.8). Let $\mathbf{P} = \mathbf{Q}_{22}^{-\frac{1}{2}} \mathbf{R}^{\frac{1}{2}} \mathbf{J}$, and the Lyapunov function be $$V = \frac{1}{2}\omega_I^{\mathrm{T}}\mathbf{P}\omega_I + q_1^2 + q_2^2 + q_3^2 + (1 - q_0)^2.$$ (9.11) It is easy to check, in view of (4.8), that $$\frac{d}{dt} \left(q_1^2 + q_2^2 + q_3^2 + (1 - q_0)^2 \right) = 2\mathbf{q}^{\mathrm{T}} \dot{\mathbf{q}} - 2(1 - q_0) \dot{q}_0 = 2\mathbf{q} \cdot \left(-\frac{1}{2} \omega_I \times \mathbf{q} + \frac{1}{2} q_0 \omega_I \right) + 2(1 - q_0) \left(\frac{1}{2} \mathbf{q}^{\mathrm{T}} \omega_I \right) = q_0 \mathbf{q}^{\mathrm{T}} \omega_I + (1 - q_0) \mathbf{q}^{\mathrm{T}} \omega_I = \mathbf{q}^{\mathrm{T}} \omega_I.$$ (9.12) Using definition of \mathbf{P} and (9.7), it is easy to see that $$\omega_{I}^{\mathrm{T}}\mathbf{P}\mathbf{J}^{-1}\mathbf{R}^{-1}\mathbf{J}^{-1}\mathbf{F}_{12}\mathbf{q}$$ $$= \omega_{I}^{\mathrm{T}}(\mathbf{Q}_{22}^{-\frac{1}{2}}\mathbf{R}^{\frac{1}{2}}\mathbf{J})\mathbf{J}^{-1}\mathbf{R}^{-1}\mathbf{J}^{-1}(\mathbf{J}\mathbf{R}^{\frac{1}{2}}\mathbf{Q}_{22}^{\frac{1}{2}})\mathbf{q}$$ $$= \omega_{I}^{\mathrm{T}}\mathbf{q}. \tag{9.13}$$ Therefore, using (9.12), (9.13), (9.3), and (4.13), the derivative of the Lyapunov function along the trajectory described by the nonlinear system equations (4.11) and (4.8) is given by $$\frac{dV}{dt} = \frac{d}{dt} \left(\frac{1}{2} \boldsymbol{\omega}_{I}^{\mathsf{T}} \mathbf{P} \boldsymbol{\omega}_{I} + q_{1}^{2} + q_{2}^{2} + q_{3}^{2} + (1 - q_{0})^{2} \right)$$ $$= \boldsymbol{\omega}_{I}^{\mathsf{T}} \mathbf{P} \left(-\mathbf{J}^{-1} \boldsymbol{\omega}_{I} \times \mathbf{J} \boldsymbol{\omega}_{I} - \mathbf{J}^{-1} \mathbf{R}^{-1} \begin{bmatrix} \mathbf{J}^{-1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{11} & \mathbf{F}_{12} \\ \mathbf{F}_{12}^{\mathsf{T}} & \mathbf{F}_{22} \end{bmatrix} \begin{bmatrix} \boldsymbol{\omega}_{I} \\ \mathbf{q} \end{bmatrix} \right)$$ $$+ \boldsymbol{\omega}_{I}^{\mathsf{T}} \mathbf{q}$$ $$= -\boldsymbol{\omega}_{I}^{\mathsf{T}} \mathbf{P} \mathbf{J}^{-1} \boldsymbol{\omega}_{I} \times \mathbf{J} \boldsymbol{\omega}_{I} - \boldsymbol{\omega}_{I}^{\mathsf{T}} \mathbf{P} \mathbf{J}^{-1} \mathbf{R}^{-1} \mathbf{J}^{-1} \mathbf{F}_{11} \boldsymbol{\omega}_{I} - \boldsymbol{\omega}_{I}^{\mathsf{T}} \mathbf{P} \mathbf{J}^{-1} \mathbf{R}^{-1} \mathbf{J}^{-1} \mathbf{F}_{12} \mathbf{q}$$ $$+ \boldsymbol{\omega}_{I}^{\mathsf{T}} \mathbf{q}$$ $$= -\boldsymbol{\omega}_{I}^{\mathsf{T}} \mathbf{P} \mathbf{J}^{-1} \boldsymbol{\omega}_{I} \times \mathbf{J} \boldsymbol{\omega}_{I} - \boldsymbol{\omega}_{I}^{\mathsf{T}} \mathbf{Q}_{22}^{-\frac{1}{2}} \left(\mathbf{Q}_{11} + \frac{1}{2} \left(\mathbf{J} \mathbf{R}^{\frac{1}{2}} \mathbf{Q}_{22}^{\frac{1}{2}} + \mathbf{Q}_{22}^{\frac{1}{2}} \mathbf{R}^{\frac{1}{2}} \mathbf{J} \right) \right)^{\frac{1}{2}} \boldsymbol{\omega}_{I}$$ $$= -\omega_{I}^{\mathrm{T}} \mathbf{Q}_{22}^{-\frac{1}{2}} \mathbf{R}^{\frac{1}{2}} \omega_{I} \times \mathbf{J} \omega_{I} - \omega_{I}^{\mathrm{T}} \mathbf{Q}_{22}^{-\frac{1}{2}} \left(\mathbf{Q}_{11} + \frac{1}{2} \left(\mathbf{J} \mathbf{R}^{\frac{1}{2}} \mathbf{Q}_{22}^{\frac{1}{2}} + \mathbf{Q}_{22}^{\frac{1}{2}} \mathbf{R}^{\frac{1}{2}} \mathbf{J} \right) \right)^{\frac{1}{2}} \omega_{I}$$ (9.14) Since **P**, **Q**, **R**, and **J** are all diagonal positive definite matrices, the second term of the last expression is negative definite. If $\mathbf{Q}_{22}^{-1}\mathbf{R} = c\mathbf{I}$, i.e., $$\mathbf{R} = c\mathbf{Q}_{22} \tag{9.15}$$ or $$\mathbf{Q}_{22}^{-1}\mathbf{R} = c\mathbf{J}$$, i.e., $$\mathbf{R} = c\mathbf{Q}_{22}\mathbf{J}, \tag{9.16}$$ where c is a constant, then the first term vanishes; therefore $\frac{dV}{dt}$ is negative semidefinite, and the nonlinear system described by (4.11) and (4.8) is globally stable with the optimal controller given by (9.10). To show that the closed loop nonlinear system is asymptotically stable, we define $S = \{\mathbf{x} | \dot{V}(\mathbf{x}) = \mathbf{0}\}$. Since \mathbf{J} , \mathbf{Q} , and \mathbf{R} are positive definite matrices, clearly, equation (9.14) indicates that $S = \{\mathbf{x} | \mathbf{x} = (\omega_I, \mathbf{q}) = (\mathbf{0}, \mathbf{q})\}$. From (4.11), since \mathbf{D} and \mathbf{K} are full rank matrices and $\mathbf{u} = -\mathbf{D}\omega_I - \mathbf{K}\mathbf{q} \neq \mathbf{0}$ if $\mathbf{q} \neq \mathbf{0}$, no solution can always stay in S except a subset $S_1 = \{\mathbf{x} = (\omega_I, \mathbf{q}) = (\mathbf{0}, \mathbf{0})\} \subset S$. Using Theorem 9.1, the origin is globally asymptotically stable. Therefore, the region of attraction (see [119]) of the nonlinear system is the whole space spanned by \mathbf{R}^n . **Remark 9.1** Spacecraft rotation is a special case of the attitude motion of a rigid body which can be expressed mathematically by SO(3), the group of rotational matrices. Bhat and Bernstein [26] showed that there is an intrinsic windup problem associated with the attitude motion of a rigid body when $q_0 < 0$. But many researchers realize that there are designs that eventually stabilize the system at $\bar{q} = [1,0,0,0]$. Tayebi in his paper [260] referred this type of designs as to "almost global asymptotic stability" design. In system design practice, if the performance and the local stability are the only design considerations, \mathbf{Q} and \mathbf{R} can be chosen without any restriction; if the global stability is also required for the nonlinear spacecraft system, some restriction, though mild, should be placed on \mathbf{Q} and \mathbf{R} , i.e., either $\mathbf{R} = c\mathbf{Q}_{22}$ or $\mathbf{R} = c\mathbf{Q}_{22}\mathbf{J}$, where c is any positive constant. ### 9.2.3 The closed-loop poles To establish the relationship between the closed loop poles and the design matrices \mathbf{Q} and \mathbf{R} , we can simplify (9.10) further as follows. $$\mathbf{D} = \mathbf{R}^{-\frac{1}{2}} \left(\mathbf{Q}_{11} + \frac{1}{2} \left(\mathbf{J} \mathbf{R}^{\frac{1}{2}} \mathbf{Q}_{22}^{\frac{1}{2}} + \mathbf{Q}_{22}^{\frac{1}{2}} \mathbf{R}^{\frac{1}{2}} \mathbf{J} \right) \right)^{\frac{1}{2}}$$ $$= \operatorname{diag}(d_i) = \operatorname{diag}\left(\sqrt{\frac{q_{1i}}{r_i} + J_{ii}\sqrt{\frac{q_{2i}}{r_i}}}\right) \tag{9.17}$$ with $$d_i = \sqrt{ rac{q_{1i}}{r_i} + J_{ii}\sqrt{ rac{q_{2i}}{r_i}}},$$ and $$\mathbf{K} = \mathbf{R}^{-\frac{1}{2}} \mathbf{Q}_{22}^{\frac{1}{2}} = \operatorname{diag}(k_i) = \operatorname{diag}\left(\sqrt{\frac{q_{2i}}{r_i}}\right)$$ (9.18) with $$k_i = \sqrt{\frac{q_{2i}}{r_i}}.$$ Therefore, (9.10) becomes $$\mathbf{u}(x) = -[\mathbf{D}, \mathbf{K}]\mathbf{x}$$ $$= -\begin{bmatrix} d_1 & 0 & 0 & k_1 & 0 & 0\\ 0 & d_2 & 0 & 0 & k_2 & 0\\ 0 & 0 & d_3 & 0 & 0 & k_3 \end{bmatrix} \begin{bmatrix} \omega_{I1} \\ \omega_{I2} \\ \omega_{I3} \\ q_1 \\ q_2 \\ q_3 \end{bmatrix}.$$ (9.19) From (4.12), it is straightforward to write the closed loop system as follows: $$\begin{bmatrix} \frac{d\omega_{l}}{dt} \\ \frac{d\mathbf{q}}{dt} \end{bmatrix}$$ $$= \begin{bmatrix} -\mathbf{J}^{-1}\mathbf{R}^{-\frac{1}{2}} \left(\mathbf{Q}_{11} + \frac{1}{2} \left(\mathbf{J}\mathbf{R}^{\frac{1}{2}}\mathbf{Q}_{22}^{\frac{1}{2}} + \mathbf{Q}_{22}^{\frac{1}{2}}\mathbf{R}^{\frac{1}{2}}\mathbf{J} \right) \right)^{\frac{1}{2}} - \mathbf{J}^{-1}\mathbf{R}^{-\frac{1}{2}}\mathbf{Q}_{22}^{\frac{1}{2}} \end{bmatrix} \begin{bmatrix} \omega_{l} \\ \mathbf{q} \end{bmatrix}$$ $$= \begin{bmatrix} -\frac{d_{1}}{J_{11}} & 0 & 0 & -\frac{k_{1}}{J_{11}} & 0 & 0 \\ 0 & -\frac{d_{2}}{J_{22}} & 0 & 0 & -\frac{k_{2}}{J_{22}} & 0 \\ 0 & 0 & -\frac{d_{3}}{J_{33}} & 0 & 0 & -\frac{k_{3}}{J_{33}} \\ 0.5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0 & 0 & 0
& 0 \end{bmatrix} \begin{bmatrix} \omega_{l1} \\ \omega_{l2} \\ \omega_{l3} \\ q_{1} \\ q_{2} \\ q_{3} \end{bmatrix}$$ $$= \bar{\mathbf{A}}\mathbf{x}. \tag{9.20}$$ For i=1, 2, and 3, let $s_i = \frac{d_i}{J_{ii}}$, $t_i = \frac{k_i}{J_{ii}}$, and $$C_{i} = \frac{\frac{d_{i}}{J_{ii}} + \sqrt{\left(\frac{d_{i}}{J_{ii}}\right)^{2} - 2\frac{k_{i}}{J_{ii}}}}{2\frac{k_{i}}{J_{ii}}} = \frac{s_{i} + \sqrt{s_{i}^{2} - 2t_{i}}}{2t_{i}}.$$ (9.21) Then, we have $$\bar{\mathbf{A}} = \begin{bmatrix} -s_1 & 0 & 0 & -t_1 & 0 & 0 \\ 0 & -s_2 & 0 & 0 & -t_2 & 0 \\ 0 & 0 & -s_3 & 0 & 0 & -t_3 \\ 0.5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0 & 0 & 0 & 0 \end{bmatrix}. \tag{9.22}$$ Let the linear matrix transformation $\mathbf{T}_{ij}(C)$ be a matrix with the following properties: (a) the (i,j) element of $\mathbf{T}_{ij}(C)$ is C, (b) the diagonal elements are ones, (c) all the remaining elements are zeros. It is well known that the inverse of $\mathbf{T}_{ij}(C)$ is $\mathbf{T}_{ij}^{-1}(C) = \mathbf{T}_{ij}(-C)$. Pre-multiplying $\mathbf{T}_{41}(C_1)$ to $\bar{\mathbf{A}}$ is equivalent to multiply the first row of $\bar{\mathbf{A}}$ by C_1 and add this result to the 4th row of the matrix. This gives $$\mathbf{T}_{41}(C_1)\bar{\mathbf{A}} = \begin{bmatrix} -s_1 & 0 & 0 & -t_1 & 0 & 0\\ 0 & -s_2 & 0 & 0 & -t_2 & 0\\ 0 & 0 & -s_3 & 0 & 0 & -t_3\\ -\frac{s_1^2 + s_1\sqrt{s_1^2 - 2t_1}}{2t_1} + 0.5 & 0 & 0 & -\frac{s_1 + \sqrt{s_1^2 - 2t_1}}{2} & 0 & 0\\ 0 & 0.5 & 0 & 0 & 0 & 0\\ 0 & 0 & 0.5 & 0 & 0 & 0 \end{bmatrix}.$$ $$(9.23)$$ Post-multiplying $\mathbf{T}_{41}(-C_1)$ to this matrix is equivalent to multiply the 4th column by $-C_1$ and add this result to the first column of the matrix. Since $$-s_1 + \frac{t_1\left(s_1 + \sqrt{s_1^2 - 2t_1}\right)}{2t_1} = \frac{-s_1 + \sqrt{s_1^2 - 2t_1}}{2},$$ and $$\frac{s_1 + \sqrt{s_1^2 - 2t_1}}{2} \frac{s_1 + \sqrt{s_1^2 - 2t_1}}{2t_1} = \frac{s_1^2 + s_1 \sqrt{s_1^2 - 2t_1}}{2t_1} - 0.5,$$ this gives, $$\mathbf{T}_{41}(C_1)\bar{\mathbf{A}}\mathbf{T}_{41}(-C_1) = \begin{bmatrix} \frac{-s_1 + \sqrt{s_1^2 - 2t_1}}{2} & 0 & 0 & -t_1 & 0 & 0\\ 0 & -s_2 & 0 & 0 & -t_2 & 0\\ 0 & 0 & -s_3 & 0 & 0 & -t_3\\ 0 & 0 & 0 & \frac{-s_1 - \sqrt{s_1^2 - 2t_1}}{2} & 0 & 0\\ 0 & 0.5 & 0 & 0 & 0 & 0\\ 0 & 0 & 0.5 & 0 & 0 & 0 & 0 \end{bmatrix}.$$ $$(9.24)$$ Repeating the similar manipulation, we have $$=\begin{bmatrix} \mathbf{T}_{63}(C_3)\mathbf{T}_{52}(C_2)\mathbf{T}_{41}(C_1)\bar{\mathbf{A}}\mathbf{T}_{41}(-C_1)\mathbf{T}_{52}(-C_2)\mathbf{T}_{63}(-C_3) \\ \operatorname{diag}\left(\frac{-s_i+\sqrt{s_i^2-2t_i}}{2}\right) & \operatorname{diag}\left(-t_i\right) \\ \mathbf{0} & \operatorname{diag}\left(\frac{-s_i-\sqrt{s_i^2-2t_i}}{2}\right) \end{bmatrix}. \tag{9.25}$$ Since $$s_i = \frac{d_i}{J_{ii}} = \frac{1}{J_{ii}} \sqrt{\frac{q_{1i}}{r_i} + J_{ii}} \sqrt{\frac{q_{2i}}{r_i}} = \sqrt{\frac{q_{1i}}{J_{ii}^2 r_i} + \frac{1}{J_{ii}}} \sqrt{\frac{q_{2i}}{r_i}},$$ and $$s_{i}^{2} - 2t_{i} = \frac{q_{1i}}{J_{ii}^{2}r_{i}} + \frac{1}{J_{ii}}\sqrt{\frac{q_{2i}}{r_{i}}} - 2\frac{k_{i}}{J_{ii}} = \frac{q_{1i}}{J_{ii}^{2}r_{i}} + \frac{1}{J_{ii}}\sqrt{\frac{q_{2i}}{r_{i}}} - \frac{2}{J_{ii}}\sqrt{\frac{q_{2i}}{r_{i}}}$$ $$= \frac{q_{1i}}{J_{ii}^{2}r_{i}} - \frac{1}{J_{ii}}\sqrt{\frac{q_{2i}}{r_{i}}},$$ (9.26) the closed loop eigenvalues of the linear system (9.20) using LQR design are given by, for i=1, 2, and 3, $$\lambda_{i}, \lambda_{i+3} = \frac{-s_{i} \pm \sqrt{s_{i}^{2} - 2t_{i}}}{2} = \frac{-\sqrt{\frac{1}{J_{ii}}\sqrt{\frac{q_{2i}}{r_{i}}} + \frac{q_{1i}}{J_{ii}^{2}r_{i}}} \pm \sqrt{\frac{q_{1i}}{J_{ii}^{2}r_{i}} - \frac{1}{J_{ii}}\sqrt{\frac{q_{2i}}{r_{i}}}}}{2}.$$ (9.27) Equation (9.27) provides a lot of useful information for the LQR design. First, as $r_i \to 0$, the corresponding pair of eigenvalues go to minus infinity of the complex plane; as $r_i \to \infty$, the corresponding pair of eigenvalues go to origin of the complex plane. Second, As long as $q_{1i} > \sqrt{q_{2i}r_i}J_{ii}$, the corresponding pair of eigenvalues are real and unequal; since $\frac{d_i}{J_{ii}} > \sqrt{\left(\frac{d_i}{J_{ii}}\right)^2 - 2\frac{k_i}{J_{ii}}}$, these two eigenvalues are always negative. Third, if $q_{1i} = \sqrt{q_{2i}r_i}J_{ii}$, there are two equal real negative eigenvalues. Fourth, if $q_{1i} < \sqrt{q_{2i}r_i}J_{ii}$, there is a pair of complex eigenvalues with negative real part. Therefore increasing q_{1i} and decreasing q_{2i} will increase the dumping ratio; otherwise, it will decrease the dumping ratio. Finally, increasing q_{2i} and decreasing r_i will increase the natural frequency; otherwise, it will decrease the natural frequency. This information can be useful in spacecraft system design. Using the LQR design, we implicitly assign the closed loop poles as defined by (9.20) and we can balance the requirements on accumulative control error and power consumption (both are important in practical design). Table 9.1: Required closed-loop poles. -0.01273212110421 +/- 0.01272387326295i; -0.00798572833825 +/- 0.00798369205833i; -0.00947996395486 +/- 0.00947655794419i. ### 9.2.4 The simulation result We use an example in [344] to illustrate the design procedure. The spacecraft inertia matrix is give by $$\mathbf{J} = \begin{bmatrix} 1200 & 100 & -200 \\ 100 & 2200 & 300 \\ -200 & 300 & 3100 \end{bmatrix}$$ (9.28) It is clear that the diagonal elements of the matrix are significantly larger than offdiagonal elements. Assume that the spacecraft inertia matrix can be approximate by a diagonal matrix whose diagonal elements are equal to these of $\bf J$, let $\bf Q =$ diag(5,5,5,5,5,5) and $\bf R =$ diag(8,8,8), the closed loop poles are then given as in Table 9.1 and the feedback matrix $\bf D$ and $\bf K$ are as follows $$\mathbf{D} = \begin{bmatrix} 31.06637549427606 & 0 & 0 \\ 0 & 41.71184140316478 & 0 \\ 0 & 0 & 49.51151569716377 \end{bmatrix}$$ (9.29) $$\mathbf{K} = \begin{bmatrix} 0.7905694150429 & 0 & 0\\ 0 & 0.7905694150429 & 0\\ 0 & 0 & 0.7905694150429 \end{bmatrix}$$ (9.30) We apply the designed feedback controller to the nonlinear spacecraft system described by (4.5) and (4.8) with the full Monte Carlo perturbation model described as follows: (a) in inertia matrix J, the off-diagonal elements are randomly selected between [0,310], (b) the initial Euler angle errors of the nonlinear spacecraft system are randomly selected between $[0,\pi]$ and these initial Euler angles are converted into quaternion, and (c) the initial angular rates are randomly selected between [0,0.1] deg/second, and we conduct 300 Monte Carlo simulation runs; the simulated runs are all asymptotically stable. This result is shown in Figure 9.1. Figure 9.1: Monte Carlo simulation for the nonlinear spacecraft model with perturbation. # 9.3 LQR and robust pole assignment for inertial point spacecraft ### 9.3.1 Robustness of the closed-loop poles In the previous section, we derived a simple analytic LQR control design method. The closed loop eigenvalues are explicitly related to the spacecraft inertia matrix and the selected $\bf Q$ and $\bf R$ matrices. Therefore, the LQR design is equivalent to the pole assignment design. In this section, we will show that the pole assignment design is a robust pole assignment design which is insensitive to the modeling error. First, we have seen that the closed-loop system eigenvalues for the LQR design are $$\lambda_{i}, \lambda_{i+3} = \frac{-\frac{d_{i}}{J_{ii}} \pm \sqrt{\left(\frac{d_{i}}{J_{ii}}\right)^{2} - 2\frac{k_{i}}{J_{ii}}}}{2}.$$ (9.31) Let the desired spacecraft closed-loop eigenvalues be expressed as $$\lambda_i, \lambda_{i+3} = -\zeta_i \omega_{in} \pm j \omega_{in} \sqrt{1 - \zeta_i^2} = -\zeta_i \omega_{in} \pm j \omega_{id}. \tag{9.32}$$ Comparing (9.31) and (9.32) yields the analytic feedback controller $$k_i = 2\omega_{in}^2 J_{ii}, \tag{9.33}$$ $$d_i = 2\zeta_i \omega_{in} J_{ii}. \tag{9.34}$$ Therefore, for any LQR design which minimizes (9.2), there is an implicit set of desired spacecraft closed-loop eigenvalues defined by (9.27) or (9.31) or (9.32), the diagonal feedback matrices \mathbf{D} and \mathbf{K} with diagonal elements given by (9.33) and (9.34) assign the prescribed closed-loop eigenvalues. It is shown in the previous section that the closed-loop nonlinear system is globally asymptotically stable if some additional condition holds. It is well known that for any controllable linear system and for any prescribed closed-loop pole location, one can always find a state feedback controller such that the closed-loop system has the prescribed pole locations. For multi-input systems, the solution that achieves the closed-loop pole positions is not unique. As an example, let (\mathbf{A}, \mathbf{B}) be a linear system with $$\mathbf{A} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$ The open-loop system has two eigenvalues (0, 1) and the system is not stable. Assuming that the desired close-loop eigenvalues are (-1,-1), one may select two different feedback matrices $$\mathbf{G}_1 = \left[\begin{array}{cc} -1 & 0 \\ 0 & -2 \end{array} \right], \quad \mathbf{G}_2 = \left[\begin{array}{cc} 1 & 4*10^{10} \\ -10^{-10} & -4 \end{array} \right]$$ such that $$\mathbf{A} + \mathbf{B}\mathbf{G}_1 = \left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array} \right], \ \mathbf{A} + \mathbf{B}\mathbf{G}_2 = \left[\begin{array}{cc} 1 & 4*10^{10} \\ -10^{-10} & -3 \end{array} \right].$$ It is easy to verify that $\det(\lambda \mathbf{I} - (\mathbf{A} + \mathbf{B}\mathbf{G}_1)) = \det(\lambda \mathbf{I} - (\mathbf{A} + \mathbf{B}\mathbf{G}_2)) = (\lambda + 1)^2$. Both feedbacks achieve the desired closed-loop poles. The first system is robust because any small perturbation will not destabilize the system. However, the second system is not robust as a small perturbation of 10^{-10} in the left low corner of the matrix $\mathbf{A} + \mathbf{B}\mathbf{G}_2$ will change the
closed-loop eigenvalues to (1, -3). We show that the LQR defined pole assignment is a robust pole assignment. ### 9.3.2 The robust pole assignment For readers who are not familiar with the robust pole assignment, we refer them to Appendix C. The robust pole assignment design makes full use of the extra degrees of freedom in a multi-input system to find the most robust controller from indefinitely many solutions of the pole assignment feedback matrices. Since the spacecraft attitude control system is a typical multi-input system that has three control torque inputs (roll, pitch, and yaw), getting a robust pole assignment design that is insensitive to the modeling error is very attractive and desirable. We will show that the controller with diagonal $\bf D$ and $\bf K$ proposed in the previous subsection is a robust pole assignment design. Several different robust metrics can be used in robust pole assignment (see Appendix C or [291, 117]. We will adopt the robust measurement proposed in [303] as the design criterion because some algorithms based on this robust measurement lead to some efficient and effective designs [237]. These design algorithms extend a well-known algorithm proposed by Kautsky, Nichols, and Van Dooren (KNV) [117], in which the angles of closed loop eigenvectors are intuitively maximized one by one in a cyclic manner. Let X be the matrix whose columns are the unit length closed-loop eigenvectors. The robustness of the closed-loop eigenvalues (poles) can be measured by the absolute value of the determinant of X. Geometrically, this determinant measures how close the matrix X is to an orthogonal matrix. Yang and Tits [328] showed that one of the KNV algorithm is equivalent to maximizing the absolute value of the determinant of X. The greater the absolute value of the determinant, the more robust the closed-loop eigenvalues will be (see detailed discussions in Appendix C or [303, 305]). By maximizing the absolute value of the determinant under some constraints, we are guaranteed that the closed-loop poles obtained by the robust pole assignment design are insensitive to the modeling errors [313]. For a controllable linear system (A, B), where B is full column rank, and any given set of desired closed-loop eigenvalues λ_i , the corresponding closed-loop eigenvectors \mathbf{x}_i must be in the subspace (see Appendix C) $$S_i = \{ \mathbf{x} : (\mathbf{A} - \lambda \mathbf{I}) \mathbf{x} \in \mathbf{R}_c(\mathbf{B}) \}, \tag{9.35}$$ where $$\mathbf{R}_c(\mathbf{B}) = \{\mathbf{B}\mathbf{y} : \mathbf{y} \in \mathbf{C}^m\},\$$ m is the rank of **B**, and \mathbb{C}^m is a m-dimensional complex space. First, using QR decomposition on **B**, we have $$\boldsymbol{B} = \left[\begin{array}{cc} \boldsymbol{U}_0 & \boldsymbol{U}_1 \end{array} \right] \left[\begin{array}{c} \boldsymbol{V} \\ \boldsymbol{0} \end{array} \right].$$ Let Λ be the diagonal matrix whose diagonal elements are the desired closed-loop eigenvalues, and X be the matrix whose columns are composed of the eigenvectors corresponding to the desired eigenvalues. Then, $$\mathbf{BG} = \mathbf{U}_0 \mathbf{VG} = \mathbf{X} \Lambda \mathbf{X}^{-1} - \mathbf{A}. \tag{9.36}$$ Pre-multiplication of $\mathbf{U}_0^{\mathrm{T}}$ and $\mathbf{U}_1^{\mathrm{T}}$ gives $$\mathbf{VG} = \mathbf{U}_0^{\mathrm{T}} (\mathbf{X} \Lambda \mathbf{X}^{-1} - \mathbf{A}) \tag{9.37a}$$ $$\mathbf{0} = \mathbf{U}_1^{\mathrm{T}} (\mathbf{X} \Lambda \mathbf{X}^{-1} - \mathbf{A}) \tag{9.37b}$$ The first relation gives the closed-loop feedback matrix as $$\mathbf{G} = \mathbf{V}^{-1} \mathbf{U}_0^{\mathrm{T}} (\mathbf{A} - \mathbf{X} \Lambda \mathbf{X}^{-1}). \tag{9.38}$$ The second relation shows that \mathbf{x}_i must be in the subspace S_i , or $$\mathbf{U}_1^{\mathrm{T}}(\mathbf{A} - \lambda_i \mathbf{I})\mathbf{x}_i = \mathbf{0}.$$ Therefore, \mathbf{x}_i must be in the null space of $(\mathbf{A}^T - \lambda_i \mathbf{I})\mathbf{U}_1$. Using QR decomposition again on $(\mathbf{A}^T - \lambda_i \mathbf{I})\mathbf{U}_1$ gives $$(\mathbf{A}^{\mathrm{T}} - \lambda_{i} \mathbf{I}) \mathbf{U}_{1} = \left[\begin{array}{cc} \mathbf{W}_{1i} & \mathbf{W}_{2i} \end{array} \right] \left[\begin{array}{c} \mathbf{R} \\ \mathbf{0} \end{array} \right].$$ \mathbf{W}_{2i} forms the basis of \mathcal{S}_i . We now apply the similar procedure to the linearized spacecraft system (4.12). Since \mathbf{B} can be written as $$\mathbf{B} = \left[\begin{array}{cc} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{array} \right] \left[\begin{array}{c} \mathbf{J}^{-1} \\ \mathbf{0} \end{array} \right],$$ therefore and $$\mathbf{U}_0 = \begin{bmatrix} \mathbf{I} \\ \mathbf{0} \end{bmatrix}, \quad \mathbf{U}_1 = \begin{bmatrix} \mathbf{0} \\ \mathbf{I} \end{bmatrix}, \quad \mathbf{V} = \mathbf{J}^{-1}. \tag{9.39}$$ Since **A** is defined as in (4.13), we can write a similar decomposition of $(\mathbf{A}^T - \lambda_i \mathbf{I})\mathbf{U}_1$ as $$(\mathbf{A}^{\mathrm{T}} - \lambda_{i} \mathbf{I}) \mathbf{U}_{1} = \begin{bmatrix} -\lambda_{i} \mathbf{I} & \frac{1}{2} \mathbf{I} \\ \mathbf{0} & -\lambda_{i} \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{I} \end{bmatrix}$$ $$= \begin{bmatrix} \frac{1}{2} \mathbf{I} \\ -\lambda_{i} \mathbf{I} \end{bmatrix} = \begin{bmatrix} 0.5 \mathbf{I} & -\lambda_{i} \mathbf{I} \\ -\lambda_{i} \mathbf{I} & -0.5 \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{I} \\ \mathbf{0} \end{bmatrix}, \quad (9.40)$$ therefore, $$\mathbf{W}_{1i} = \left[\begin{array}{c} 0.5\mathbf{I} \\ -\lambda_i \mathbf{I} \end{array} \right],$$ which is orthogonal to the subspace $$\mathbf{W}_{2i} = \left[\begin{array}{c} -\lambda_i \mathbf{I} \\ -0.5 \mathbf{I} \end{array} \right].$$ Though $[\mathbf{W}_{1i} \ \mathbf{W}_{2i}]$ may not be a unitary matrix, it is clear that \mathbf{W}_{2i} forms the basis of S_i (and we can always normalize \mathbf{W}_{2i} to make it orthonormal). For the sake of simplicity, we prove, only for the case where all eigenvalues are real, that the design given by (9.19) is a robust pole assignment. For robust pole assignment design, since $\mathbf{x}_i \in S_i$, we can write $\mathbf{x}_i = \mathbf{W}_{2i}\mathbf{p}_i$, where $\mathbf{p}_i = [p_{i1}, p_{i2}, p_{i3}]^T$, therefore, the closed-loop eigenvector matrix must have the form, $$\mathbf{X} = \begin{bmatrix} \lambda_1 p_{11} & \lambda_2 p_{21} & \lambda_3 p_{31} & \lambda_4 p_{41} & \lambda_5 p_{51} & \lambda_6 p_{61} \\ \lambda_1 p_{12} & \lambda_2 p_{22} & \lambda_3 p_{32} & \lambda_4 p_{42} & \lambda_5 p_{52} & \lambda_6 p_{62} \\ \lambda_1 p_{13} & \lambda_2 p_{23} & \lambda_3 p_{33} & \lambda_4 p_{43} & \lambda_5 p_{53} & \lambda_6 p_{63} \\ 0.5 p_{11} & 0.5 p_{21} & 0.5 p_{31} & 0.5 p_{41} & 0.5 p_{51} & 0.5 p_{61} \\ 0.5 p_{12} & 0.5 p_{22} & 0.5 p_{32} & 0.5 p_{42} & 0.5 p_{52} & 0.5 p_{62} \\ 0.5 p_{13} & 0.5 p_{23} & 0.5 p_{33} & 0.5 p_{43} & 0.5 p_{53} & 0.5 p_{63} \end{bmatrix},$$ where p_{ij} , i = 1,2,3,4,5,6 and j = 1,2,3, are the real parameters that will be used to optimize the objective function. Therefore, the robust pole assignment design for linearized spacecraft system (11) becomes² max $$\det(\mathbf{X})$$ s.t. $\sum_{j=1}^{3} (|\lambda_i|^2 + 0.5^2) p_{ij}^2 = 1, \quad i = 1, 2, 3, 4, 5, 6.$ (9.41) It is well-known that an optimal solution for a general optimization problem has to satisfy the KKT conditions (see Appendix A). For (9.41), let the μ_i i = 1,2,3,4,5,6 be the Lagrangian multipliers, the Lagrangian function of (9.41) is given by $$\mathcal{L} = \det(\mathbf{X}) - \mu_1 \left(\sum_{j=1}^{3} \left(|\lambda_1|^2 + 0.5^2 \right) p_{1j}^2 - 1 \right) - \mu_2 \left(\sum_{j=1}^{3} \left(|\lambda_2|^2 + 0.5^2 \right) p_{2j}^2 - 1 \right)$$ $$- \mu_3 \left(\sum_{j=1}^{3} \left(|\lambda_3|^2 + 0.5^2 \right) p_{3j}^2 - 1 \right) - \mu_4 \left(\sum_{j=1}^{3} \left(|\lambda_4|^2 + 0.5^2 \right) p_{4j}^2 - 1 \right)$$ $$- \mu_5 \left(\sum_{j=1}^{3} \left(|\lambda_5|^2 + 0.5^2 \right) p_{5j}^2 - 1 \right) - \mu_6 \left(\sum_{j=1}^{3} \left(|\lambda_6|^2 + 0.5^2 \right) p_{6j}^2 - 1 \right).$$ The corresponding KKT conditions are as follows (see Appendix A): $$\frac{\partial \mathcal{L}}{\partial p_{ij}} = 0, \quad i = 1, 2, 3, 4, 5, 6, \quad j = 1, 2, 3,$$ (9.42a) $$-\frac{\partial \mathcal{L}}{\partial \mu_1} = \sum_{j=1}^{3} (|\lambda_1|^2 + 0.5^2) p_{1j}^2 - 1 = 0, \tag{9.42b}$$ $$-\frac{\partial \mathcal{L}}{\partial \mu_2} = \sum_{i=1}^{3} (|\lambda_2|^2 + 0.5^2) p_{2j}^2 - 1 = 0, \tag{9.42c}$$ $$-\frac{\partial \mathcal{L}}{\partial \mu_3} = \sum_{i=1}^3 (|\lambda_3|^2 + 0.5^2) p_{3j}^2 - 1 = 0.$$ (9.42d) $$-\frac{\partial \mathcal{L}}{\partial \mu_4} = \sum_{j=1}^{3} (|\lambda_4|^2 + 0.5^2) p_{4j}^2 - 1 = 0, \tag{9.42e}$$ $$-\frac{\partial \mathcal{L}}{\partial \mu_5} = \sum_{j=1}^{3} (|\lambda_5|^2 + 0.5^2) p_{5j}^2 - 1 = 0, \tag{9.42f}$$ $^{^2}$ In [305], $|\det(\mathbf{X})|$ is used as the measurement of the robustness. If the maximum of $|\det(\mathbf{X})|$ is achieved at $-\det(\mathbf{X}^*)$, let \mathbf{X}^0 be the matrix obtained by changing the sign of some column of \mathbf{X}^* , $|\det(\mathbf{X})|$ is also achieved at \mathbf{X}^0 . Therefore, we can simply use $\det(\mathbf{X})$ here as the objective function in our problem. $$-\frac{\partial \mathcal{L}}{\partial \mu_6} = \sum_{j=1}^{3} (|\lambda_6|^2 + 0.5^2) p_{6j}^2 - 1 = 0.$$ (9.42g) It is tedious but straightforward to verify that the following solution satisfies the KKT conditions: $$\begin{cases} p_{i,i} = \sqrt{\frac{1}{|\lambda_i|^2 + 0.5^2}}, & i = j, i = 1,2,3, j = 1,2,3 \\ p_{i+3,j} = \sqrt{\frac{1}{|\lambda_{i+3}|^2 + 0.5^2}}, & i = j, i = 1,2,3, j = 1,2,3 \\ p_{i,j} = 0, & i \neq j, i \neq j+3, i = 1,2,3,4,5,6, j = 1,2,3. \end{cases}$$ $$(9.43)$$ Clearly, this set of $p_{i,j}$ meets (9.42b), (9.42c), (9.42d), (9.42e), (9.42f), and (9.42g). To show that the set of $p_{i,i}$ satisfies (9.42a), we use the
observation that $\frac{\partial \det(\mathbf{X})}{\partial p_{i,j}} = 0$ for all p_{ij} defined in (9.43) except p_{11} , p_{22} , p_{33} , p_{41} , p_{52} , p_{63} ; therefore, $\frac{\partial \mathcal{L}}{\partial p_{i,j}} = 0$ for all $p_{ij} \notin \{p_{11}, p_{22}, p_{33}, p_{41}, p_{52}, p_{63}\}$. As an example, let us consider $\frac{\partial \mathcal{L}}{\partial p_{i,j}}$, since $$\frac{\partial \det(\mathbf{X})}{\partial p_{12}} = \lambda_{1} \begin{vmatrix} 0 & 0 & \lambda_{4}p_{41} & 0 & 0 \\ 0 & \lambda_{3}p_{33} & 0 & 0 & \lambda_{6}p_{63} \\ 0 & 0 & 0.5p_{41} & 0 & 0 \\ 0.5p_{22} & 0 & 0 & 0.5p_{52} & 0 \\ 0 & 0.5p_{33} & 0 & 0 & 0.5p_{63} \end{vmatrix} + 0.5 \begin{vmatrix} 0 & 0 & \lambda_{4}p_{41} & 0 & 0 \\ \lambda_{2}p_{22} & 0 & 0 & \lambda_{5}p_{52} & 0 \\ 0 & \lambda_{3}p_{33} & 0 & 0 & \lambda_{6}p_{63} \\ 0 & 0 & 0.5p_{41} & 0 & 0 \\ 0 & 0.5p_{33} & 0 & 0 & 0.5p_{63} \end{vmatrix} = 0$$ (the last equation holds because the first row and the third row are proportional in the first determinant and the first row and the fourth row are proportional in the second determinant), we have $$\frac{\partial \mathcal{L}}{\partial p_{12}} = \frac{\partial \det(\mathbf{X})}{\partial p_{12}} - 2\mu_1 p_{12} \left(|\lambda_1|^2 + 0.5^2 \right) \Big|_{p_{12} = 0} = 0. \tag{9.44}$$ Similarly, for all $p_{ij} \notin \{p_{11}, p_{22}, p_{33}, p_{41}, p_{52}, p_{63}\}$, the same way can be used to check that equation (9.42a) is valid. For each of these 6 $p_{ij} \in \{p_{11}, p_{22}, p_{33}, p_{41}, p_{52}, p_{63}\}$, $\frac{\partial \det(\mathbf{X})}{\partial p_{ij}} \neq 0$, one can select one of the multipliers μ_1 , μ_2 , μ_3 , μ_4 , μ_5 , μ_6 to make $\frac{\partial \mathcal{L}}{\partial p_{ij}} = 0$. Therefore, the set of p_{ij} satisfying (9.43) is a candidate of the optimal solution of (9.41). This proves that the closed-loop eigenvector matrix has the form as $$\mathbf{X} = \begin{bmatrix} \lambda_{1}p_{1,1} & 0 & 0 & \lambda_{4}p_{4,1} & 0 & 0\\ 0 & \lambda_{2}p_{2,2} & 0 & 0 & \lambda_{5}p_{5,2} & 0\\ 0 & 0 & \lambda_{3}p_{3,3} & 0 & 0 & \lambda_{6}p_{6,3}\\ 0.5p_{1,1} & 0 & 0 & 0.5p_{4,1} & 0 & 0\\ 0 & 0.5p_{2,2} & 0 & 0 & 0.5p_{5,2} & 0\\ 0 & 0 & 0.5p_{3,3} & 0 & 0 & 0.5p_{6,3} \end{bmatrix}$$ $$= \begin{bmatrix} \operatorname{diag}(\lambda_{i}p_{i,i}) & \operatorname{diag}(\lambda_{i+3}p_{i+3,i})\\ \operatorname{diag}(0.5p_{i,i}) & \operatorname{diag}(0.5p_{i+3,i}) \end{bmatrix}, \quad i = 1, 2, 3. \tag{9.45}$$ It is easy to verify that $$\mathbf{X}^{-1} = \begin{bmatrix} \operatorname{diag}\left(\frac{1}{(\lambda_{i} - \lambda_{i+3})p_{i,i}}\right) & \operatorname{diag}\left(\frac{-\lambda_{i+3}}{0.5(\lambda_{i} - \lambda_{i+3})p_{i,i}}\right) \\ \operatorname{diag}\left(\frac{-1}{(\lambda_{i} - \lambda_{i+3})p_{i+3,i}}\right) & \operatorname{diag}\left(\frac{\lambda_{i}}{0.5(\lambda_{i} - \lambda_{i+3})p_{i+3,i}}\right) \end{bmatrix}, \quad (9.46)$$ Substituting (9.39), (9.45), and (9.46) into (9.38) gives the robust pole assignment state feedback $$\mathbf{G} = \mathbf{J} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \\ \begin{pmatrix} \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 0.5\mathbf{I} & \mathbf{0} \end{bmatrix} - \begin{bmatrix} \operatorname{diag}(\lambda_{i}p_{i,i}) & \operatorname{diag}(\lambda_{i+3}p_{i+3,i}) \\ \operatorname{diag}(0.5p_{i,i}) & \operatorname{diag}(0.5p_{i+3,i}) \end{bmatrix} \begin{bmatrix} \operatorname{diag}(\lambda_{i}) & \mathbf{0} \\ \mathbf{0} & \operatorname{diag}(\lambda_{i+3}) \end{bmatrix} \mathbf{X}^{-1} \\ = -\mathbf{J} \begin{bmatrix} \operatorname{diag}(\lambda_{i}p_{i,i}) & \operatorname{diag}(\lambda_{i+3}p_{i+3,i}) \end{bmatrix} \begin{bmatrix} \operatorname{diag}(\lambda_{i}) & \mathbf{0} \\ \mathbf{0} & \operatorname{diag}(\lambda_{i+3}) \end{bmatrix} \mathbf{X}^{-1} \\ = -\mathbf{J} \begin{bmatrix} \operatorname{diag}(\lambda_{i}^{2}p_{i,i}) & \operatorname{diag}(\lambda_{i+3}^{2}p_{i+3,i}) \end{bmatrix} \begin{bmatrix} \operatorname{diag}\left(\frac{1}{(\lambda_{i}-\lambda_{i+3})p_{i,i}}\right) & \operatorname{diag}\left(\frac{-\lambda_{i+3}}{0.5(\lambda_{i}-\lambda_{i+3})p_{i+3,i}}\right) \\ \operatorname{diag}\left(\frac{-1}{(\lambda_{i}-\lambda_{i+3})p_{i+3,i}}\right) & \operatorname{diag}\left(\frac{\lambda_{i}^{2}}{0.5(\lambda_{i}-\lambda_{i+3})p_{i+3,i}}\right) \end{bmatrix} \\ = -\mathbf{J} \begin{bmatrix} \operatorname{diag}\left(\frac{\lambda_{i}^{2}-\lambda_{i+3}^{2}}{\lambda_{i}-\lambda_{i+3}}\right), & \operatorname{diag}\left(\frac{\lambda_{i+3}^{2}\lambda_{i}-\lambda_{i}^{2}\lambda_{i+3}}{0.5(\lambda_{i}-\lambda_{i+3})}\right) \end{bmatrix} \\ = -\mathbf{J} \begin{bmatrix} \operatorname{diag}(\lambda_{i}+\lambda_{i+3}), & \operatorname{diag}(-2\lambda_{i}\lambda_{i+3}) \end{bmatrix}, (9.47)$$ or $$\mathbf{G} = \left[\operatorname{diag}(-J_{ii}(\lambda_i + \lambda_{i+3})), \operatorname{diag}(2J_{ii}(\lambda_i \lambda_{i+3})) \right]. \tag{9.48}$$ Substituting (9.27) into (9.48) yields (9.19). Therefore, we conclude that the LQR design method is actually a robust pole assignment design for the linearized system (4.12), and the feedback matrix $\mathbf{G} = -[\mathbf{D}, \mathbf{K}]$ is composed of two diagonal matrices \mathbf{D} and \mathbf{K} . With the same restriction as discussed before, the robust pole assignment controller globally stabilizes the nonlinear spacecraft system. ### 9.3.3 Disturbance rejection of robust pole assignment In Appendix C, we have shown that maximizing det(X) amounts to minimizing an upper bound of the condition number κ_2 , which improves the robustness of the closed-loop eigenvalues to the modeling uncertainties (see [291] and [247]). We show now that minimizing the upper bound of the condition number also reduces the impact of disturbance torques on the system output. It is easy to see that the spacecraft system with disturbance torques can be modeled as $$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} + \mathbf{t}_d, \qquad \mathbf{y} = \mathbf{C}\mathbf{x}, \tag{9.49}$$ where \mathbf{t}_d is the vector of disturbance torques. Since $\mathbf{u} = \mathbf{G}\mathbf{x}$, taking Laplace transformation, we have $$s\mathbf{x}(s) = \mathbf{A}\mathbf{x}(s) + \mathbf{B}\mathbf{u}(s) + \mathbf{t}_d(s), \qquad \mathbf{y}(s) = \mathbf{C}\mathbf{x}(s), \tag{9.50}$$ In view of (9.36), this gives $$\mathbf{Y}(s) = \mathbf{C}(s\mathbf{I} - (\mathbf{A} + \mathbf{B}\mathbf{G}))^{-1}\mathbf{t}_d(s) = \mathbf{C}\mathbf{X}(s\mathbf{I} - \Lambda)^{-1}\mathbf{X}^{-1}\mathbf{t}_d(s).$$ Therefore. $$\|\mathbf{Y}(s)\| = \|\mathbf{C}\| \|\mathbf{X}\| \|(s\mathbf{I} - \Lambda)^{-1}\| \|\mathbf{X}^{-1}\| \|\mathbf{t}_d(s)\|.$$ Since Λ is a diagonal matrix whose elements are the prescribed closed-loop eigenvalues, and C is fixed by a spacecraft design, minimizing condition number $\kappa_2 = \|\mathbf{X}\| \| \|\mathbf{X}^{-1}\|$ will reduce the impact of the disturbance torques on the system output. ### 9.3.4 A design example The same example used in the previous subsection is used to describe the pole assignment design procedure. The spacecraft inertia matrix is given in (9.28). The spacecraft inertia matrix is approximated by a diagonal matrix whose diagonal elements are equal to the diagonal elements of **J**. First, assuming that the desired closed-loop linear system has a fast settling time of $T_s \le 10$ seconds, and small percentage of overshoot (smaller than 5%), we design the system by first considering the dominant pole positions and then loosely assigning the remaining poles to certain desired regions such that their real parts are smaller than the real parts of the dominant poles. Since the settling time is (see for example [56, pages 84–85]) $$T_s=\frac{4}{\zeta_3\omega_{3n}},$$ $\zeta_3 \omega_{3n} = 0.4$. We select $\zeta_3 = 0.8$ to meet the requirement of low percentage of overshoot (smaller than 5%). This gives $\omega_{3n} = 0.5$. Therefore, the dominant poles are at -0.4 + j0.3. To make sure the design is globally asymptotically stable (see (9.33) and (9.15)), we use $$\alpha = \frac{1}{\omega_{3n}^2 J_{33}} = \frac{1}{0.25 * 3100} = \frac{4}{3100} = \frac{1}{\omega_{2n}^2 J_{22}} = \frac{1}{\omega_{1n}^2 J_{11}}.$$ Similarly, we select $$\omega_{2n} = \frac{1}{\sqrt{\alpha J_{22}}} = \sqrt{\frac{3100}{4 * 2200}} = 0.5935,$$ $$\omega_{1n} = \frac{1}{\sqrt{\alpha J_{11}}} = \sqrt{\frac{3100}{4 * 1200}} = 0.8036.$$ Clearly, by selecting $\zeta_1 = \zeta_2 = 1$, we have two closed-loop poles at -0.5935 and two closed-loop poles at -0.8036. All of these poles have smaller real parts than the real part of the dominant poles. Therefore, from (9.34), the feedback matrices are given by $$d_1 = \frac{2\zeta_1\sqrt{J_{11}}}{\sqrt{\alpha}} = 1928.73, \quad d_2 = \frac{2\zeta_2\sqrt{J_{22}}}{\sqrt{\alpha}} = 2611.513, \quad d_3 = \frac{2\zeta_3\sqrt{J_{33}}}{\sqrt{\alpha}} = 2480.$$ and from (9.33), $$k_1 = k_2 = k_3 = \frac{2}{\alpha} = 1550.$$ Noticing that $\mathbf{K} = \operatorname{diag}(k_1, k_2, k_3) = 1550\mathbf{I}$, from (9.18), we have $\mathbf{K}^2 = 1500^2\mathbf{I} = \mathbf{R}^{-1}\mathbf{Q}_{22}$, i.e., $\mathbf{R} = c\mathbf{Q}_{22}$, which is the condition of (9.15). Therefore, the designed system is globally asymptotically stable. Applying the designed feedback controller to the linearized system (4.12) with the diagonal inertia matrix (9.28), assuming that the initial Euler angle errors of the linearized system are 10 degrees in roll, pitch, and yaw, and converting these initial Euler angles into quaternion, we have the simulated quaternion response as shown by Figure 9.2. It is clear that the designed control system meets the design criteria, i.e., the settling time is less than 10 seconds and the percentage overshoot is smaller than 5% even though the design is focused on the dominant poles while the remaining poles are loosely placed left to the dominant poles. The closed-loop system is
globally asymptotically stable as we expected. Applying the same designed feedback controller to the original nonlinear system with the non-diagonal matrix J given by (9.28), again assuming that the initial Euler angle errors of the linearized system are 10 degrees in roll, pitch, and yaw, and converting these initial Euler angles into quaternion, we have the simulated quaternion response as shown by Figure 9.3. This simulation result shows that the robust pole assignment design is insensitive to the perturbation in off-diagonal elements of J. As real spacecraft control torques are normally restricted by the solar panel size, energy consumption of the on-board instruments, fuel, etc., we prefer to have a slow response with a low percentage overshoot to reduce energy consumption. Therefore, we consider a different but a representative design. We choose $\mathbf{Q} = \mathrm{diag}(5,5,5,5,5,5)$ and $\mathbf{R} = \mathrm{diag}(8,8,8)$. This is equivalent to select the closed-loop poles as $$-0.0127 + / -0.0127i; -0.0080 + / -0.0080i; -0.0095 + / -0.0095i. \\$$ Figure 9.2: Designed controller applied to the linear spacecraft model. Figure 9.3: Designed controller applied to the nonlinear spacecraft model. Notice that this is the same design of the LQR as we described in the previous subsection. The feedback matrices $\bf D$ and $\bf K$ in this design are given in (9.29) and (9.30) which are significantly smaller than the ones in the previous design. Applying the designed feedback controller to the linearized system (4.12) with diagonal inertia matrix (9.28), and assuming that the initial Euler angle errors of the linearized system are 10 degrees in roll, pitch, and yaw, converting these initial Euler angles into quaternion, the simulation result is shown in | | Quaternion 1 | Quaternion 2 | Quaternion 3 | |-------------------------|--------------|--------------|--------------| | Rising time (seconds) | 140 | 196 | 222 | | Settling time (seconds) | 310 | 430 | 500 | | Overshoot (percentage) | 3.4% | 4% | 3.4% | **Table 9.2:** Performance of the nominal linearized system. Figure 9.4, the rising time, settling time, and overshoot of the three quaternion components for the nominal linearized system are given in Table 9.2. **Figure 9.4:** Designed controller applied to the linear spacecraft model. We have done a very aggressive test for this design (see the previous subsection, i.e., apply the same designed feedback controller to the nonlinear spacecraft system described by (4.11) and (4.8) with the full Monte Carlo perturbation model described as follows: (a) in inertia matrix $\bf J$, the off-diagonal elements are randomly selected between [0,310], (b) the initial Euler angle errors of the nonlinear spacecraft system are randomly selected between $[0,\pi]$ and these initial Euler angles are converted into quaternion, and (c) the initial angular rates are randomly selected between [0,0.1] deg/second. We conducted 300 Monte Carlo simulation runs; the simulated quaternion response is given in Figure 9.1. This simulation result shows that although the designed robust pole assignment controller is obtained from the linearized system with diagonal inertia matrix, it actually stabilizes the original nonlinear spacecraft system with any initial Euler angles, any small initial angular rates (less than 0.1deg/second), and any perturbation in off-diagonal elements whose magnitudes are smaller than 10% of the magnitude of the largest element in the inertia matrix. Table 9.3 provides the | | Quaternion 1 | Quaternion 2 | Quaternion 3 | |------------------------------|--------------|--------------|--------------| | Mean rising time (seconds) | 225 | 227 | 259 | | Std rising time | 88 | 71 | 107 | | Mean settling time (seconds) | 430 | 612 | 666 | | Std settling time | 64 | 86 | 93 | | Mean overshoot (percentage) | 15% | 45% | 30% | | Std overshoot | 18 | 37 | 29 | **Table 9.3:** Performance of the perturbed nonlinear system. means and standard deviations of the rising time, settling time, and overshoot of the perturbed nonlinear systems. Although these standard deviations appear somewhat large, the design meets the most important design target which is to stabilize the system in a few hours under all uncertainties related to the modeling error and initial conditions. A similar simulation is done for the Euler angle controller. The system is first designed for a linearized Euler angle model (see [235]) using LQR method and exactly the same set of closed-loop eigenvalues $$-0.0127 + / -0.0127i; -0.0080 + / -0.0080i; -0.0095 + / -0.0095i$$ to get the feedback control matrices $\bf D$ and $\bf K$. Using the same Monte Carlo perturbation model described as above with the perturbed nonlinear system (a) in inertia matrix $\bf J$, the off-diagonal elements are randomly selected between [0,310], (b) the initial Euler angle errors of the nonlinear spacecraft system are randomly selected between $[0,\pi]$, and (c) the initial angular rates are randomly selected between [0,0.1] deg/second. In 300 Monte Carlo runs, the Euler angle controller stabilizes only 132 cases. The comparison is clearly in favor of the quaternion design described in this section. Sidi [235, page 156-158] has done some interesting comparisons of Euler angle design and quaternion design for maneuvers operation. The result shows that for small maneuvers, both designs have similar performance, but for large maneuvers, the quaternion design is clearly superior. ### Chapter 10 ## **Spacecraft Actuators** Spacecraft actuators are components that produce the control torques to achieve the desired attitude. The desired control torques can be calculated using the methods proposed in the previous chapter. The most frequently used actuators are the *reaction wheel, momentum wheel, control moment gyros* (CMG), *magnetic torque rods*, and *thrusters*. In this chapter, we will discuss these actuators. We will see that given the designed torques, some actuators, such as reaction wheels and thruster, can easily provide the desired torques. But some other actuators, such as magnetic torque bars and CMGs, may not be able to provide the desired torques, at least in some situations, which means that we need to have alternative design methods specifically for those actuators. We will discuss these topics in Chapters 11 and 14. ### 10.1 Reaction wheel and momentum wheel The reaction wheel and momentum wheel are very similar. They all have *fly-wheel(s)* and are all driven by electric motors, they are both used for attitude control. A reaction wheel is spun up and down to create the torque to either compensate disturbance torque to stabilize the spacecraft or to create a torque and force the spacecraft to rotate for attitude manipulation. A momentum wheel is always spinning at a very high speed, which creates a momentum bias, making it resistant to changing its attitude. But a momentum wheel can also be used as a reaction wheel, meaning that the acceleration and deceleration are near a momentum biased high speed instead of near the zero speed. The torques of both reaction wheel and the momentum wheel are generated from acceleration or deceleration of the rotational flywheel and torque can be calculated by the following relation [138] $$\mathbf{u} = -\dot{\mathbf{h}}_{w} = -\mathbf{J}_{w}\dot{\boldsymbol{\omega}}, \tag{10.1}$$ where the \mathbf{h}_w is the angular momentum vector of the flywheel, \mathbf{J}_w is the moment of inertia about the flywheel rotation axis, $\boldsymbol{\omega}$ is the angular velocity vector of the flywheel. The electricity that drives a flywheel of the reaction wheel or momentum wheel, comes from the batteries which are charged by solar panels. Both the reaction wheel and momentum wheel are normally aligned with body axes. [235] has a chapter to discuss momentum biased spacecraft attitude stabilization. Since flywheels have maximum speed, once the maximum speed is reached, from (10.1), one cannot get the torque by increasing the flywheel speed. Therefore, momentum management control, which makes sure that the flywheel speed does not approach to the maximum speed, is necessary. The momentum management control uses magnetic torque rods or thrusters to balance the total torques required by the attitude control, thereby maintaining the flywheel's speed within its limit. There are many papers discuss this topic, for example [41, 71]. This issue will be discussed later in Chapter 11. Many times, the simple reaction wheel model (10.1) is good enough for spacecraft control system designs. However, there are space missions, where the higher performance requirements for the spacecraft *attitude control system* (ACS) need more accurate reaction models, such as the one discussed in [1, 212]. Some most challenging space missions will consider the spacecraft jitter effect. Most jitter phenomena are excited by moving components, such as the reaction wheel, due to the offset from the wheel center of mass (CM) to the wheel mounting interface which will cause the lateral disturbance forces to create a moment at the interface. The rocking dynamics model is therefore considered in [145]. ### 10.2 Control moment gyros Like a reaction wheel, a control moment gyro has a spinning flywheel controlled by an electrical motor. Unlike a reaction wheel, which has a fixed rotational axis, the spinning axis of a control moment gyros changes as the flywheel is suspended in a *gimbal* and a second motor controls the gimbal axis. Another difference between a reaction wheel and a control moment gyro is that the torque of a reaction wheel is produced by changing the flywheel speed, while the flywheel in a CMG rotates at a constant speed, the torque of a CMG is obtained by changing the gimbal's rotational speed. There are two different CMGs. One is *single gimbal CMG* and the other is *double gimbal CMG*. The advantage of the single CMG is the well-known torque amplification property, i.e., a
rate about the gimbal axis can produce an output torque orthogonal to both the gimbal and spin axes which is much greater than the gimbal axis torque [68]. But CMG is more complicated to model and more expensive. Only the single gimbal control moment gyro is discussed because it is the most effective CMG. Some good references about Figure 10.1: Orthonormal vectors of a CMG unit. CMG are [127, 128]. A thorough performance comparison between CMGs and reaction wheels is discussed in [276]. Three mutually orthogonal unit vectors are shown in Figure 10.1 and defined as follows: Let $\hat{\mathbf{g}}$ be the unit-length *gimbal vector*, \mathbf{h} be the *angular momentum vector* of the flywheel, $\mathbf{c} = \hat{\mathbf{g}} \times \mathbf{h}$ be the normalized *CMG torque vector*, then the torque of the CMG is given by $$\mathbf{t}_c = \mathbf{c}\boldsymbol{\omega}_g = (\hat{\mathbf{g}} \times \mathbf{h})\boldsymbol{\omega}_g = \mathbf{g} \times \mathbf{h}, \tag{10.2}$$ where the ω_g is the rotational speed of the gimbal and $\mathbf{g} = \hat{\mathbf{g}}\omega_g$. Therefore, the control variable is ω_g . If n identical single control moment gimbals are used, the total torque is given by $$\mathbf{t}_c = [\mathbf{c}_1, \dots, \mathbf{c}_n] [\boldsymbol{\omega}_{\varrho_1}, \dots, \boldsymbol{\omega}_{\varrho_n}]^{\mathrm{T}} = \mathbf{C} \boldsymbol{\omega}_{\varrho}, \tag{10.3}$$ where \mathbf{c}_i is the *i*th CMG's torque vector. Using the control system design method described in Chapter 9, we can find the desired control torque \mathbf{t}_c . Then the gimbal rotational speed ω_g is given by $$\omega_{g} = \mathbf{C}^{\mathrm{T}} (\mathbf{C} \mathbf{C}^{\mathrm{T}})^{-1} \mathbf{t}_{c}. \tag{10.4}$$ A solution does not exist when $det(\mathbf{CC}^T) = 0$. This is the so-called *gimbal singularity*. It is worthwhile to note that although the gimbal vector $\hat{\mathbf{g}}$ is a constant in the body frame, the angular momentum vector \mathbf{h} and therefore the normalized CMG torque vector \mathbf{c} depend on the gimbal angle θ . Several methods are proposed to deal with the gimbal singularity problem, for example, [185, 189, 70, 287, 285]. An experimental comparison for these methods is given in [107]. Chapter 14 will discuss a novel method of CMG control. ### 10.3 Magnetic torque rods Magnetic torque rods have been used in most low orbit earth satellites. Magnetic torque rods are generally planar coils of uniform wire rigidly placed along the spacecraft body axes. When electricity passes through the coils, a magnetic dipole is created. The strength of the dipole depends on several factors, such as the amount of electricity and the total area enclosed by the coils, etc. This dipole interacts with Earth's magnetic field, causing the coils to attempt to align their own magnetic field in the direction opposite to that of Earth's. The advantages of magnetic torque rods are that they are lightweight, reliable, and energy-efficient. The electricity comes from the battery which is charged by *solar panels*. Unlike reaction wheels and momentum wheels, magnetic torque rods do not have moving parts; therefore, they are much more reliable. The disadvantages are the magnetic torques generated by the magnetic tongue rods depends not only on the electricity applied, but also on the spacecraft location or the orbit, i.e., depend on Earth's magnetic field strength and direction. It is also impossible to control attitude in all three axes at any time even if the full three coils are used because the torque can be generated only perpendicular to the Earth's magnetic field vector. Let **m** be the magnetic moment created by the magnetic torque rods, \mathbf{r}_m be the *Earth's magnetic field intensity*, the mechanical torque \mathbf{t}_m applied to the spacecraft, due to the interaction between **m** and \mathbf{r}_m is given by $$\mathbf{t}_m = \mathbf{m} \times \mathbf{r}_m, \tag{10.5}$$ which should be equal to the required torque \mathbf{u} obtained by attitude controller design described in Chapter 9. But in the implementation of attitude control, given the desired \mathbf{u} and the geomagnetic field \mathbf{r}_m which is given by (5.16) (we need to represent the field \mathbf{r}_m in the body frame), one can only select \mathbf{m} such that $\|\mathbf{u} - \mathbf{m} \times \mathbf{r}_m\|$ is minimized. Since \mathbf{t}_m can be generated only perpendicular to the Earth's magnetic field vector, it is very likely that $\mathbf{u} \neq \mathbf{t}_m$. The best we can do is to find a minimum norm solution to the least squared problem. Denote $\hat{\mathbf{r}}_m$ the normalized vector of \mathbf{r}_m , since $\mathbf{t}_m = \mathbf{m} \times \mathbf{r}_m$, we have $$\begin{aligned} \mathbf{r}_m \times \mathbf{t}_m &= \mathbf{r}_m \times (\mathbf{m} \times \mathbf{r}_m) = \mathbf{r}_m^{\mathrm{T}} \mathbf{r}_m \mathbf{m} - \mathbf{r}_m \mathbf{r}_m^{\mathrm{T}} \mathbf{m} \\ &= \mathbf{r}_m^{\mathrm{T}} \mathbf{r}_m \mathbf{m} - \mathbf{r}_m^{\mathrm{T}} \mathbf{r}_m \frac{\mathbf{r}_m}{\|\mathbf{r}_m\|} \frac{\mathbf{r}_m^{\mathrm{T}}}{\|\mathbf{r}_m\|} \mathbf{m} = \mathbf{r}_m^{\mathrm{T}} \mathbf{r}_m (\mathbf{I} - \hat{\mathbf{r}}_m \hat{\mathbf{r}}_m^{\mathrm{T}}) \mathbf{m}. \end{aligned}$$ This gives $$\frac{\mathbf{r}_m \times \mathbf{t}_m}{\mathbf{r}_m^{\mathrm{T}} \mathbf{r}_m} = (\mathbf{I} - \hat{\mathbf{r}}_m \hat{\mathbf{r}}_m^{\mathrm{T}}) \mathbf{m}.$$ | Technology | Thrust range | Specific impulse I_{sp} | |--|---------------------------------|---------------------------| | Hydrazine Monopropellant | 0.25 – 28 N | 180 – 285 | | Alternative Mono- and Bipropellants | 50 mN – 22 N | 150 – 310 | | Hybrids | 8 – 222 N | 215 – 300 | | Cold Gas | $10 \mu\text{N} - 3.6 \text{N}$ | 40 – 110 | | Solid Motors | 37 – 461 N | 187 – 269 | | Electrothermal | 0.1 mN – 1 N | 20 – 350 | | Electrosprays | $20 \mu N - 20 \text{ mN}$ | 225 – 3,000 | | Gridded Ion | 0.1 – 20 mN | 500 – 3,000 | | Hall-Effect | 0.25 – 55 mN | 200 – 1,920 | | Pulsed Plasma and Vacuum Arc Thrusters | $4 - 500 \mu N$ | 87 – 3,200 | | Ambipolar | 0.5 – 17 mN | 400 – 1,100 | Table 10.1: Summary of propulsion technologies. It is clear that $$\mathbf{m} = \frac{\mathbf{r}_m \times \mathbf{t}_m}{\mathbf{r}_m^{\mathrm{T}} \mathbf{r}_m} \tag{10.6}$$ is the solution of the above equation because $\mathbf{r}_m \times \mathbf{t}_m$ is orthogonal to \mathbf{r}_m . Therefore, from the vector \mathbf{m} , the current applied to each magnetic torque rods can be obtained. ### 10.4 Thrusters Thrusters are another type of actuators. They can be used for the attitude control for any spacecraft. Fuels have to be loaded to thrusters and fuel budget is a major limitation on the use of thrusters. Thrusters use different propellants, such as cold gas propellant, solid chemical propellant, liquid chemical propellant, and electrical propellant. The same basic equation of propulsion holds for all kinds of propellants. The thrust force F is related to the exhaust velocity V_e relative to the satellite body, the fuel consumption rate $\frac{dm}{dt}$, the gas and ambient pressures P_e and P_a , and the area of the nozzle exit A_e . More specifically (see [235]), $$F = V_e \frac{dm}{dt} + A_e (P_e - P_a). {10.7}$$ Given the force and the thruster mounting information, the torques generated by thrusters can be obtained. We will discuss this later in Chapters 12 and 15. To select thrusters in a specific application, besides the force of the thrusters, at least two more factors should be considered, i.e., the thrusters' efficiency and their cost. A thruster's efficiency is defined by the thruster's *specific impulse* which is given as $$I_{sp} = \frac{F}{\dot{m}g_0},\tag{10.8}$$ where $\dot{m} < 0$ is the rate of fuel consumption, and $g_0 \approx 9.8 m/s^2$ is the standard gravitational constant at sea level. Reference [184] provides a table that summarizes different thrusters' thrust range and specific impulse range. ### Chapter 11 # **Spacecraft Control Using Magnetic Torques** In principle, the control system design methods presented in Chapter 9 can be implemented using any control actuators. But we have seen in Chapter 10 that this may not be a good idea for magnetic torque control because given a desired control torque vector \mathbf{u} , one can only obtain an approximate solution $\mathbf{t}_m = \mathbf{m} \times \mathbf{r}_m$ given by \mathbf{m} which minimizes the norm of $\|\mathbf{u} - \mathbf{t}_m\|$. For the thrust control system, the torques generated by thruster(s) depend on the selections of the thrusters and the thrusters' configuration design. For a control system using CMGs, given the desired torques, there are singular points where the desired torques are not achievable by any CMG gimbals' speeds. Therefore, to improve the control system design involving actuators other than reaction wheels only, we need to use models with more detailed information such as the *geomagnetic field* in magnetic torque control system design and thrusters' installation information in thrust control system design. In this chapter, we focus on the control system design involving magnetic torque bars/coils¹. The contents of this chapter are mainly based on [316, 317, 318, 320]. Spacecraft attitude control using *magnetic torque* is a very attractive technique because the implementation is seamless, the system is reliable (without moving mechanical parts), the torque coils are inexpensive, and their weights are light. The main issue with using only magnetic torques to control the attitude is that the magnetic torques generated by magnetic coils are not available in all desired axes at any time [235]. However, because of the con- ¹Since the functions of magnetic torque bar and magnetic torque coils are the same, we use these names interchangeably. stant change of the
Earth's magnetic field as a spacecraft circles around the Earth, the controllable subspace changes all the time, many researchers believe that the spacecraft's attitude is actually controllable by using only magnetic torques. Numerous spacecraft attitude control designs were proposed in the last twenty five years exploring the features of the time-varying systems [209, 335, 214, 208, 183, 205, 292, 149, 236, 150, 301, 42]. Some of these papers tried the Euler angle model and Linear Quadratic Regulator (LQR) formulations [208, 183, 205, 292, 42] which are explicitly or implicitly assumed that the *controllability* for the *linear time-varying* system holds so that the optimal solutions exist [111]. Therefore, we need to establish the controllability conditions for the problem of spacecraft attitude control using only magnetic torque. Other researchers [149, 236, 150] proposed direct design methods using the *Lyapunov stability* theory. The existence of the solutions for these methods implicitly depend on the controllability for the nonlinear time-varying system. Therefore, Bhat [25] investigated controllability of the nonlinear time-varying systems. However, the condition for the controllability of the nonlinear time-varying systems obtained by Bhat is hard to verify and is a sufficient condition. A reduced quaternion model was discussed in previous chapters and its merits over the Euler angle model were discussed (see also in [307, 309, 313]). The reduced quaternion model was also used for the design of a spacecraft attitude control system using magnetic torque [209, 214, 335]. Because the controllability of the linear time-varying (LTV) systems was not established, the existence of the solutions was not guaranteed. In this chapter, we first consider the reduced linear quaternion model proposed in [307] for the case that magnetic torques are the only control torques. We establish the conditions of the controllability for this linear time-varying system. The same strategy can easily be used to prove the controllability of the Euler angle based linear time-varying system considered in [208]. However, we will not derive a similar result because of the merits of the reduced quaternion model as discussed in [307, 309, 313]. In Section 11.3, the LQR design is discussed for the linear periodic system. Instead of directly applying a well-known algorithm, the author has proposed a different algorithm that makes full use of the feature that only input matrix **B** of the system is a periodic matrix. Then, a combined method is suggested in Section 11.4 to design the attitude control and the momentum management system at the same time, which were normally considered as two different problems in separate designs. In the last section of this Chapter, a different LQR design for the linear periodic system is discussed. This design uses a novel lifting method to convert the linear periodic system into an augmented linear time-invariant system and then proposes a new method to solve the Riccati equation. Numerical simulation is performed to show the efficiency of the new method. #### 11.1 The linear time-varying model We focus our discussion in this section on the nadir pointing spacecraft using a reduced quaternion model². Therefore, the attitude of the spacecraft is represented by the rotation of the spacecraft body fixed frame relative to the local vertical and local horizontal (LVLH) frame. Let $\omega = [\omega_1, \omega_2, \omega_3]^T$ be the body rate with respect to the LVLH frame represented in the body frame, ω_0 be the orbit (and LVLH frame) rate with respect to the inertial frame, represented in the LVLH frame. Let $\bar{\mathbf{q}} = [q_0, q_1, q_2, q_3]^T = [q_0, \mathbf{q}^T]^T = [\cos(\frac{\alpha}{2}), \hat{\mathbf{e}}^T \sin(\frac{\alpha}{2})]^T$ be the quaternion representing the rotation of the body frame relative to the LVLH frame, where $\hat{\bf e}$ is the unit length rotational axis and α is the rotational angle about ê. Therefore, the reduced quaternion-based kinematics equation can be expressed as (4.9). Assume that the inertia matrix of the spacecraft is diagonal which is approximately correct for real systems, let the control torque vector be $\mathbf{u} = [u_x, u_y, u_z]^T$, then the linearized nadir pointing spacecraft model with gravity gradient disturbance torque is a special case of (4.36) and is given as follows: $$\begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \\ \dot{\omega}_1 \\ \dot{\omega}_2 \\ \dot{\omega}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & .5 & 0 & 0 \\ 0 & 0 & 0 & 0 & .5 & 0 \\ 0 & 0 & 0 & 0 & 0 & .5 \\ f_{41} & 0 & 0 & 0 & 0 & f_{46} \\ 0 & f_{52} & 0 & 0 & 0 & 0 \\ 0 & 0 & f_{63} & f_{64} & 0 & 0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ u_x/J_{11} \\ u_y/J_{22} \\ u_z/J_{33} \end{bmatrix}$$ (11.1) where $$f_{41} = \left[8(J_{33} - J_{22})\omega_0^2\right]/J_{11} \tag{11.2a}$$ $$f_{46} = (J_{11} - J_{22} + J_{33})\omega_0/J_{11}$$ (11.2b) $$f_{64} = (-J_{11} + J_{22} - J_{33})\omega_0/J_{33}$$ (11.2c) $$f_{52} = \left[6(J_{33} - J_{11})\omega_0^2\right]/J_{22} \tag{11.2d}$$ $$f_{63} = \left[2(J_{11} - J_{22})\omega_0^2\right]/J_{33}. \tag{11.2e}$$ The control torques generated by magnetic coils interacting with the Earth's magnetic field is given by (see [235]) $$\mathbf{u} = \mathbf{m} \times \mathbf{b}$$ where the vector of the Earth's magnetic field represented in spacecraft coordinates, $\mathbf{b}(t) = [b_1(t), b_2(t), b_3(t)]^{\mathrm{T}}$, is computed using the spacecraft position, the spacecraft attitude, and a spherical harmonic model of the Earth's magnetic ²The same idea can be used to derive the controllability condition for an inertial pointing spacecraft and/or using the Euler angle model. field as we discussed in Section 5.3 (see also [283]); and $\mathbf{m} = [m_1, m_2, m_3]^{\mathrm{T}}$ is the spacecraft magnetic coils' induced magnetic moment in the spacecraft body coordinates. The time-variation of the system is an approximate periodic function of $\mathbf{b}(t) = \mathbf{b}(t+T)$ where $T = \frac{2\pi}{\omega_0}$ is the orbital period (see (2.55)). This magnetic field $\mathbf{b}(t)$ can be approximately expressed as follows [208]: $$\begin{bmatrix} b_1(t) \\ b_2(t) \\ b_3(t) \end{bmatrix} = \frac{\mu_f}{a^3} \begin{bmatrix} \cos(\omega_0 t) \sin(i_m) \\ -\cos(i_m) \\ 2\sin(\omega_0 t) \sin(i_m) \end{bmatrix}, \tag{11.3}$$ where i_m is the inclination of the spacecraft orbit with respect to the magnetic equator, $\mu_f = 7.9 \times 10^{15}$ Wb-m is the field's dipole strength, and a is the orbit's semi-major axis. The time t=0 is measured at the ascending node crossing of the magnetic equator. Therefore, the *reduced quaternion* linear time-varying system is given as follows: Substituting (11.3) into (11.4) yields $$\mathbf{B}_{2}(t) = \begin{bmatrix} 0 & b_{42}(t) & b_{43}(t) \\ b_{51}(t) & 0 & b_{53}(t) \\ b_{61}(t) & b_{62}(t) & 0 \end{bmatrix}$$ (11.5) where $$b_{42}(t) = \frac{2\mu_f}{a^3 J_{11}} \sin(i_m) \sin(\omega_0 t)$$ (11.6a) $$b_{43}(t) = \frac{\mu_f}{a^3 J_{11}} \cos(i_m) \tag{11.6b}$$ $$b_{53}(t) = \frac{\mu_f}{a^3 J_{22}} \sin(i_m) \cos(\omega_0 t)$$ (11.6c) $$b_{51}(t) = -\frac{2\mu_f}{a^3 J_{22}} \sin(i_m) \sin(\omega_0 t) = -b_{42} \frac{J_{11}}{J_{22}}$$ (11.6d) $$b_{61}(t) = -\frac{\mu_f}{a^3 J_{33}} \cos(i_m) = -b_{43} \frac{J_{11}}{J_{33}}$$ (11.6e) $$b_{62}(t) = -\frac{\mu_f}{a^3 J_{33}} \sin(i_m) \cos(\omega_0 t) = -b_{53} \frac{J_{22}}{J_{33}}.$$ (11.6f) Therefore, taking the first order and second order derivatives, we have $$b'_{42}(t) = \frac{2\mu_f \omega_0}{a^3 I_{11}} \sin(i_m) \cos(\omega_0 t)$$ (11.7a) $$b_{43}'(t) = 0 ag{11.7b}$$ $$b'_{53}(t) = -\frac{\mu_f \omega_0}{a^3 J_{22}} \sin(i_m) \sin(\omega_0 t)$$ (11.7c) $$b'_{51}(t) = -\frac{2\mu_f \omega_0}{a^3 J_{22}} \sin(i_m) \cos(\omega_0 t) = -b'_{42} \frac{J_{11}}{J_{22}}$$ (11.7d) $$b_{61}'(t) = 0 ag{11.7e}$$ $$b'_{62}(t) = \frac{\mu_f \omega_0}{a^3 J_{33}} \sin(i_m) \sin(\omega_0 t) = -b_{53} \frac{J_{22}}{J_{33}}$$ (11.7f) and $$b_{42}''(t) = -\frac{2\mu_f \omega_0^2}{a^3 J_{11}} \sin(i_m) \sin(\omega_0 t)$$ (11.8a) $$b_{43}''(t) = 0 (11.8b)$$ $$b_{53}''(t) = -\frac{\mu_f \omega_0^2}{a^3 J_{22}} \sin(i_m) \cos(\omega_0 t)$$ (11.8c) $$b_{51}''(t) = \frac{2\mu_f \omega_0^2}{a^3 J_{22}} \sin(i_m) \sin(\omega_0 t) = -b_{42}'' \frac{J_{11}}{J_{22}}$$ (11.8d) $$b_{61}''(t) = 0 (11.8e)$$ $$b_{62}''(t) = \frac{\mu_f \omega_0^2}{a^3 J_{33}} \sin(i_m) \cos(\omega_0 t) = -b_{53}'' \frac{J_{22}}{J_{33}}.$$ (11.8f) In matrix format, we have $$\mathbf{B}_{2}'(t) = \begin{bmatrix} 0 & b_{42}' & 0 \\ b_{51}' & 0 & b_{53}' \\ 0 & b_{62}' & 0 \end{bmatrix}, \tag{11.9}$$ and $$\mathbf{B}_{2}^{"}(t) = \begin{vmatrix} 0 & b_{42}^{"} & 0 \\ b_{51}^{"} & 0 & b_{53}^{"} \\ 0 & b_{62}^{"} & 0 \end{vmatrix}. \tag{11.10}$$ A special case is when $i_m = 0$, i.e., the spacecraft orbit is on the equator plane of the Earth's magnetic field. In this case, $\mathbf{b}(t) = [0, -\frac{\mu_f}{a^3}, 0]^T$ is a constant vector. The linear time-varying system of this special case is reduced to a linear time-invariant system whose model is given by ### 11.2 Spacecraft controllability using magnetic torques The definition of controllability of linear time-varying systems can be found in [220, page 124]. **Definition 11.1** The linear state equation (11.4) is called controllable on $[t_0, t_f]$ if given any \mathbf{x}_0 , there exists a continuous input signal $\mathbf{m}(t)$ defined on $[t_0, t_f]$ such that the corresponding solution of (11.4) satisfies $\mathbf{x}(t_f) = 0$. A main theorem used to prove the controllability of (11.4) is also given in [220, page 127]. ### Theorem 11.1 *Let the state transition matrix* $\Phi(t,\tau) = e^{\mathbf{A}(t-\tau)}$. *Denote* $$\mathbf{K}_{j}(t) = \frac{\partial^{j}}{\partial \tau^{j}} \left[\Phi(t, \tau) \mathbf{B}(\tau) \right] \Big|_{\tau =
t}, \quad j = 1, 2, \dots$$ (11.12) if p is a positive integer such that, for $t \in [t_0, t_f]$, $\mathbf{B}(t)$ is p time continuously differentiable. Then, the linear time-varying equation (11.4) is controllable on $[t_0, t_f]$ if for some $t_c \in [t_0, t_f]$ $$rank\left[\mathbf{K}_{0}(t_{c}),\mathbf{K}_{1}(t_{c}),\ldots,\mathbf{K}_{p}(t_{c})\right]=n. \tag{11.13}$$ **Remark 11.1** If **A** and **B** are constant matrices, the rank condition of (11.13) for the linear time-varying system is reduced to the rank condition for the linear time-invariant system [220, page 128], i.e., if $$rank \left[\mathbf{B}, \mathbf{AB}, \dots, \mathbf{A}^{n-1} \mathbf{B} \right] = n. \tag{11.14}$$ then the linear time-invariant system (A, B) is controllable. First, we consider the special case of (11.11), the time-invariant system when the spacecraft orbit is on the equator plane of the Earth's magnetic field ($i_m = 0$). Let Σ denote any 3×3 anti-diagonal and Π be any diagonal matrix with the second row composed of zeros $$\Sigma := \left\{ \left[\begin{array}{ccc} 0 & 0 & \times \\ 0 & 0 & 0 \\ \times & 0 & 0 \end{array} \right] \right\} \quad \text{ and } \quad \Pi := \left\{ \left[\begin{array}{ccc} \times & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \times \end{array} \right] \right\},$$ and Λ denote any 3×3 diagonal matrix with the form $$\Lambda := \left\{ \left[\begin{array}{ccc} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{array} \right] \right\}.$$ It is easy to verify that if $\Sigma_i \in \Sigma$, $\Sigma_j \in \Sigma$, and $\Lambda_k \in \Lambda$, then $\Sigma_i \Sigma_j \in \Sigma$, $\Sigma_i + \Sigma_j \in \Sigma$, and $\Lambda_k \Sigma_i \in \Sigma$. A similar claim is true for Π . Using this fact to expand the matrix $[\mathbf{B}, \mathbf{AB}, \mathbf{A}^2 \mathbf{B}, \mathbf{A}^3 \mathbf{B}, \mathbf{A}^4 \mathbf{B}, \mathbf{A}^5 \mathbf{B}]$, where \mathbf{A} and \mathbf{B} are defined in (11.11), shows that the second row of the controllability matrix in (11.14) is composed of all zeros. This proves that if the spacecraft orbit is on the equator plane of the Earth's magnetic field, the spacecraft attitude cannot be stabilized by using only magnetic torques. Now we show that under some simple conditions, the linear time-varying system (11.4) is controllable for any orbit which is not on the equator plane of the Earth's magnetic field, i.e., $i_m \neq 0$. From (11.12), we have $$\mathbf{K}_0(t) = \Phi(t, t)\mathbf{B}(t) = e^{\mathbf{A}(t-t)}\mathbf{B}(t) = \mathbf{B}(t),$$ $$\mathbf{K}_{1}(t) = \frac{\partial}{\partial \tau} \left[\Phi(t, \tau) \mathbf{B}(\tau) \right] \Big|_{\tau=t} = \frac{\partial}{\partial \tau} \left[e^{\mathbf{A}(t-\tau)} \mathbf{B}(\tau) \right] \Big|_{\tau=t}$$ $$= \left[-\mathbf{A} e^{\mathbf{A}(t-\tau)} \mathbf{B}(\tau) + e^{\mathbf{A}(t-\tau)} \mathbf{B}'(\tau) \right] \Big|_{\tau=t}$$ $$= -\mathbf{A} \mathbf{B}(t) + \mathbf{B}'(t), \tag{11.15}$$ $$\mathbf{K}_{2}(t) = \frac{\partial^{2}}{\partial \tau^{2}} \left[\Phi(t, \tau) \mathbf{B}(\tau) \right] \Big|_{\tau=t}$$ $$= \left[\mathbf{A}^{2} e^{\mathbf{A}(t-\tau)} \mathbf{B}(\tau) - 2\mathbf{A} e^{\mathbf{A}(t-\tau)} \mathbf{B}'(\tau) + e^{\mathbf{A}(t-\tau)} \mathbf{B}''(\tau) \right] \Big|_{\tau=t}$$ $$= \mathbf{A}^{2} \mathbf{B}(t) - 2\mathbf{A} \mathbf{B}'(t) + \mathbf{B}''(t). \tag{11.16}$$ Using the notation of (11.4), we can rewrite equation (11.15) as $$\mathbf{K}_1(t) = - \begin{bmatrix} \mathbf{0}_3 & \frac{1}{2}\mathbf{I}_3 \\ \Lambda_1 & \Sigma_1 \end{bmatrix} \begin{bmatrix} \mathbf{0}_3 \\ \mathbf{B}_2 \end{bmatrix} + \begin{bmatrix} \mathbf{0}_3 \\ \mathbf{B}_2' \end{bmatrix} = \begin{bmatrix} -\frac{1}{2}\mathbf{B}_2 \\ -\Sigma_1\mathbf{B}_2 + \mathbf{B}_2' \end{bmatrix}.$$ Since $$\mathbf{A}^2\mathbf{B} = \mathbf{A} \begin{bmatrix} \mathbf{0}_3 & \frac{1}{2}\mathbf{I}_3 \\ \Lambda_1 & \Sigma_1 \end{bmatrix} \begin{bmatrix} \mathbf{0}_3 \\ \mathbf{B}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{0}_3 & \frac{1}{2}\mathbf{I}_3 \\ \Lambda_1 & \Sigma_1 \end{bmatrix} \begin{bmatrix} \frac{1}{2}\mathbf{B}_2 \\ \Sigma_1\mathbf{B}_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\Sigma_1\mathbf{B}_2 \\ \frac{1}{2}\Lambda_1\mathbf{B}_2 + \Sigma_1^2\mathbf{B}_2 \end{bmatrix}$$ and $$-2\mathbf{A}\mathbf{B}' = -2\begin{bmatrix} \mathbf{0}_3 & \frac{1}{2}\mathbf{I}_3 \\ \Lambda_1 & \Sigma_1 \end{bmatrix} \begin{bmatrix} \mathbf{0}_3 \\ \mathbf{B}'_2 \end{bmatrix} = \begin{bmatrix} -\mathbf{B}'_2 \\ -2\Sigma_1\mathbf{B}'_2 \end{bmatrix},$$ equation (11.16) is reduced to $$\mathbf{K}_2(t) = \mathbf{A}^2 \mathbf{B} - 2\mathbf{A} \mathbf{B}' + \mathbf{B}'' = \begin{bmatrix} \frac{1}{2} \Sigma_1 \mathbf{B}_2 - \mathbf{B}_2' \\ \frac{1}{2} \Lambda_1 \mathbf{B}_2 + \Sigma_1^2 \mathbf{B}_2 - 2\Sigma_1 \mathbf{B}_2' + \mathbf{B}_2'' \end{bmatrix}.$$ Hence, $$\begin{aligned} & \left[\mathbf{K}_{0}(t), \mathbf{K}_{1}(t), \mathbf{K}_{2}(t) \right] \\ &= \left[\mathbf{B}(t) \mid -\mathbf{A}\mathbf{B}(t) + \mathbf{B}'(t) \mid \mathbf{A}^{2}\mathbf{B}(t) - 2\mathbf{A}\mathbf{B}'(t) + \mathbf{B}''(t) \right] \\ &= \left[\mathbf{0}_{3} \mid -\frac{1}{2}\mathbf{B}_{2} \mid \frac{1}{2}\Sigma_{1}\mathbf{B}_{2} - \mathbf{B}'_{2}(t) \\ \mathbf{B}_{2} \mid -\Sigma_{1}\mathbf{B}_{2} + \mathbf{B}'_{2} \mid \frac{1}{2}\Lambda_{1}\mathbf{B}_{2} + \Sigma_{1}^{2}\mathbf{B}_{2} - 2\Sigma_{1}\mathbf{B}'_{2} + \mathbf{B}''_{2} \right]. \end{aligned}$$ (11.17) Notice that $$\begin{aligned} & \operatorname{rank}[\mathbf{K}_{0}(t), \mathbf{K}_{1}(t), \mathbf{K}_{2}(t)] \\ &= & \operatorname{rank}\left(\begin{bmatrix} \mathbf{I}_{3} & \mathbf{0}_{3} \\ -2\Sigma_{1} & \mathbf{I}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{0}_{3} & -\frac{1}{2}\mathbf{B}_{2} \\ -\Sigma_{1}\mathbf{B}_{2} + \mathbf{B}_{2}' & \frac{1}{2}\Sigma_{1}\mathbf{B}_{2} - \mathbf{B}_{2}'(t) \\ \frac{1}{2}\Delta_{1}\mathbf{B}_{2} + \Sigma_{1}^{2}\mathbf{B}_{2} - 2\Sigma_{1}\mathbf{B}_{2}' + \mathbf{B}_{2}'' \end{bmatrix} \right) \\ &= & \operatorname{rank}\left[\mathbf{0}_{3} & -\frac{1}{2}\mathbf{B}_{2} & \frac{1}{2}\Sigma_{1}\mathbf{B}_{2} - \mathbf{B}_{2}'(t) \\ \frac{1}{2}\Delta_{1}\mathbf{B}_{2} + \mathbf{B}_{2}'' & \end{bmatrix} \\ &= & \operatorname{rank}\left[\mathbf{0}_{3} & -\mathbf{B}_{2} & \Sigma_{1}\mathbf{B}_{2} - 2\mathbf{B}_{2}'(t) \\ \mathbf{B}_{2}' & \frac{1}{2}\Delta_{1}\mathbf{B}_{2} + \mathbf{B}_{2}'' & \end{bmatrix}, \end{aligned}$$ $$(11.18)$$ $$\Sigma_{1}\mathbf{B}_{2} - 2\mathbf{B}_{2}'(t)$$ $$= \begin{bmatrix} 0 & 0 & f_{46} \\ 0 & 0 & 0 \\ f_{64} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & b_{42}(t) & b_{43}(t) \\ b_{51}(t) & 0 & b_{53}(t) \\ b_{61}(t) & b_{62}(t) & 0 \end{bmatrix} - 2 \begin{bmatrix} 0 & b_{42}' & 0 \\ b_{51}' & 0 & b_{53}' \\ 0 & b_{62}' & 0 \end{bmatrix}$$ $$= \begin{bmatrix} f_{46}b_{61}(t) & f_{46}b_{62}(t) - 2b'_{42} & 0\\ -2b'_{51} & 0 & 2b'_{53}\\ 0 & f_{64}b_{42}(t) - 2b'_{62} & f_{64}b_{43}(t) \end{bmatrix},$$ (11.19) and $$\frac{1}{2}\Lambda_{1}\mathbf{B}_{2} + \mathbf{B}_{2}''(t) = \frac{1}{2}\begin{bmatrix} f_{41} & 0 & 0 \\ 0 & f_{52} & 0 \\ 0 & 0 & f_{63} \end{bmatrix} \begin{bmatrix} 0 & b_{42}(t) & b_{43}(t) \\ b_{51}(t) & 0 & b_{53}(t) \\ b_{61}(t) & b_{62}(t) & 0 \end{bmatrix} + \begin{bmatrix} 0 & b_{42}'' & 0 \\ b_{51}'' & 0 & b_{53}'' \\ 0 & b_{62}'' & 0 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2}f_{41}b_{42}(t) + b_{42}'' & \frac{1}{2}f_{41}b_{43}(t) \\ \frac{1}{2}f_{52}b_{51}(t) + b_{51}'' & 0 & \frac{1}{2}f_{52}b_{53}(t) + b_{53}'' \\ \frac{1}{2}f_{63}b_{61}(t) & \frac{1}{2}f_{63}b_{62}(t) + b_{62}'' & 0 \end{bmatrix}, (11.20)$$ we have $$\begin{bmatrix} \mathbf{0}_{3} & -\mathbf{B}_{2} & \Sigma_{1}\mathbf{B}_{2} - 2\mathbf{B}_{2}'(t) \\ \mathbf{B}_{2}' & \frac{1}{2}\Lambda_{1}\mathbf{B}_{2} + \mathbf{B}_{2}'' \end{bmatrix}$$ $$= \begin{bmatrix} 0 & 0 & 0 & 0 & a_{15} & a_{16} & a_{17} & a_{18} & 0 \\ 0 & 0 & 0 & a_{24} & 0 & a_{26} & a_{27} & 0 & a_{29} \\ 0 & 0 & 0 & a_{34} & a_{35} & 0 & 0 & a_{38} & a_{39} \\ 0 & a_{42} & a_{43} & 0 & a_{45} & 0 & 0 & a_{48} & a_{49} \\ a_{51} & 0 & a_{53} & a_{54} & 0 & a_{56} & a_{57} & 0 & a_{59} \\ a_{61} & a_{62} & 0 & 0 & a_{65} & 0 & a_{67} & a_{68} & 0 \end{bmatrix},$$ where $$a_{15} = -b_{42}(t), \ a_{16} = -b_{43}(t), \ a_{17} = f_{46}b_{61}(t), \ a_{18} = f_{46}b_{62}(t) - 2b'_{42},$$ $$a_{24} = -b_{51}(t), \ a_{26} = -b_{53}(t), \ a_{27} = -2b'_{51}, \ a_{29} = 2b'_{53},$$ $$a_{34} = -b_{61}(t), \ a_{35} = -b_{62}(t), \ a_{38} = f_{64}b_{42}(t) - 2b'_{62}, \ a_{39} = f_{64}b_{43}(t),$$ $$a_{42} = b_{42}(t), \ a_{43} = b_{43}(t), \ a_{45} = b'_{42}, \ a_{48} = \frac{1}{2}f_{41}b_{42}(t) + b''_{42}, \ a_{49} = \frac{1}{2}f_{41}b_{43}(t),$$ $$a_{51} = b_{51}(t), \ a_{53} = b_{53}(t), \ a_{54} = b'_{51}, \ a_{56} = b'_{53}(t),$$ $$a_{57} = \frac{1}{2}f_{52}b_{51}(t) + b''_{51}, \ a_{59} = \frac{1}{2}f_{52}b_{53}(t) + b''_{53},$$ $$a_{61} = b_{61}(t), \ a_{62} = b_{62}(t), \ a_{65} = b'_{62}, \ a_{67} = \frac{1}{2}f_{63}b_{61}(t), \ a_{68} = \frac{1}{2}f_{63}b_{62}(t) + b''_{62}.$$ To show that this matrix is full rank for some t_c , we show that there is a 6×6 sub-matrix whose determinant is not zero for $\omega_0 t_c = \frac{\pi}{2}$. In view of (11.6), (11.7), and (11.8), for this t_c , we have $$b_{53}(t_c) = b_{62}(t_c) = b'_{51}(t_c) = b'_{42}(t_c) = b''_{53}(t_c) = b''_{62}(t_c) = 0.$$ (11.21) Considering the sub-matrix composed of the 1st, 2nd, 4th, 5th, 7th, 8th columns, and using (11.21), we have $$\det\begin{bmatrix} 0 & 0 & 0 & a_{15} & a_{17} & a_{18} \\ 0 & 0 & a_{24} & 0 & a_{27} & 0 \\ 0 & 0 & a_{34} & a_{35} & 0 & a_{38} \\ 0 & a_{42} & 0 & a_{45} & 0 & a_{48} \\ a_{51} & 0 & a_{54} & 0 & a_{57} & 0 \\ a_{61} & a_{62} & 0 & a_{65} & a_{67} & a_{68} \end{bmatrix}$$ $$= \det\begin{bmatrix} 0 & 0 & 0 & a_{15} & a_{17} & 0 \\ 0 & 0 & a_{24} & 0 & 0 & 0 \\ 0 & 0 & a_{34} & 0 & 0 & a_{38} \\ 0 & a_{42} & 0 & 0 & 0 & a_{48} \\ a_{51} & 0 & 0 & 0 & a_{57} & 0 \\ a_{61} & 0 & 0 & a_{65} & a_{67} & 0
\end{bmatrix}$$ $$= -a_{24} \det\begin{bmatrix} 0 & 0 & a_{15} & a_{17} & 0 \\ 0 & 0 & 0 & 0 & a_{38} \\ 0 & a_{42} & 0 & 0 & 0 & a_{48} \\ a_{51} & 0 & 0 & a_{57} & 0 \\ a_{61} & 0 & a_{65} & a_{67} & 0 \end{bmatrix}$$ $$= a_{38}a_{24} \det\begin{bmatrix} 0 & 0 & a_{15} & a_{17} \\ 0 & a_{42} & 0 & 0 & a_{48} \\ a_{51} & 0 & a_{65} & a_{67} & 0 \end{bmatrix}$$ $$= a_{42}a_{38}a_{24} \det\begin{bmatrix} 0 & a_{15} & a_{17} \\ 0 & a_{42} & 0 & 0 \\ a_{51} & 0 & a_{65} & a_{67} \end{bmatrix}$$ $$= a_{42}a_{38}a_{24} \det\begin{bmatrix} 0 & a_{15} & a_{17} \\ a_{51} & 0 & a_{57} \\ a_{61} & a_{65} & a_{67} \end{bmatrix}$$ $$= a_{42}a_{38}a_{24} (a_{15}a_{57}a_{61} + a_{51}a_{65}a_{17} - a_{15}a_{51}a_{67})$$ $$= -b_{42}(t_c) \left(f_{64}b_{42}(t_c) - 2b'_{62} \right) b_{51}(t_c)$$ $$\left[b_{51}b'_{62}f_{46}b_{61} - b_{42} \left(\frac{1}{2}f_{52}b_{51} + b''_{51} \right) b_{61} + \frac{1}{2}f_{63}b_{61}b_{42}b_{51} \right]. \tag{11.22}$$ Therefore, in view of Theorem 11.1, the time-varying system is controllable if $$f_{64}b_{42}(t_c) - 2b'_{62} \neq 0, (11.23)$$ and $$b_{51}b'_{62}f_{46}b_{61} - b_{42}\left(\frac{1}{2}f_{52}b_{51} + b''_{51}\right)b_{61} + \frac{1}{2}f_{63}b_{61}b_{42}b_{51} \neq 0.$$ (11.24) Using (11.2), (11.6), (11.7), (11.8), and noticing that $\sin(\omega_0 t_c) = \sin(\frac{\pi}{2}) = 1$, we have $$= \frac{f_{64}b_{42}(t_c) - 2b'_{62}}{J_{33}} = \frac{(-J_{11} + J_{22} - J_{33})\omega_0}{J_{33}} \frac{2\mu_f}{a^3J_{11}} \sin(i_m) - 2\frac{\mu_f\omega_0}{a^3J_{33}} \sin(i_m)$$ $$= \frac{2\mu_f\omega_0\sin(i_m)}{a^3(J_{11}J_{33})} (-2J_{11} - J_{33} + J_{22}),$$ the first condition (11.23) is reduced to $$2J_{11} + J_{33} \neq J_{22}. \tag{11.25}$$ Repeatedly using the same relations, we have $$= \frac{b_{51}b'_{62}f_{46}b_{61}}{\left(-\frac{2\mu_f}{a^3J_{22}}\sin(i_m)\right)\left(\frac{\mu_f\omega_0}{a^3J_{33}}\sin(i_m)\right)}$$ $$\left(\frac{(J_{11}-J_{22}+J_{33})\omega_0}{J_{11}}\right)\left(-\frac{\mu_f}{a^3J_{33}}\cos(i_m)\right)$$ $$= \frac{2\mu_f^3\omega_0^2(J_{11}-J_{22}+J_{33})}{a^9J_{11}J_{22}J_{33}^2}\sin^2(i_m)\cos(i_m), \tag{11.26}$$ $$-b_{42} \left(\frac{1}{2} f_{52} b_{51} + b_{51}''\right) b_{61}$$ $$= -\left(\frac{2\mu_f}{a^3 J_{11}} \sin(i_m)\right) \left(\frac{3(J_{33} - J_{11})\omega_0^2}{J_{22}} \left(-\frac{2\mu_f}{a^3 J_{22}} \sin(i_m)\right) + \frac{2\mu_f \omega_0^2}{a^3 J_{22}} \sin(i_m)\right)$$ $$\left(-\frac{\mu_f}{a^3 J_{33}} \cos(i_m)\right)$$ $$= -\left(\frac{2\mu_f}{a^3 J_{11}} \sin(i_m)\right) \left(\frac{2\mu_f \omega_0^2}{a^3 J_{22}^2} \sin(i_m)(-3J_{33} + 3J_{11} + J_{22})\right)$$ $$\left(-\frac{\mu_f}{a^3 J_{33}} \cos(i_m)\right)$$ $$= \frac{4\mu_f^3 \omega_0^2 (-3J_{33} + 3J_{11} + J_{22})}{a^9 J_{11} J_{22}^2 J_{33}} \sin^2(i_m) \cos(i_m), \tag{11.27}$$ and $$\begin{array}{lcl} \frac{1}{2}f_{63}b_{61}b_{42}b_{51} & = & \frac{(J_{11}-J_{22})\omega_0^2}{J_{33}}\left(-\frac{\mu_f}{a^3J_{33}}\cos(i_m)\right) \\ & & \left(\frac{2\mu_f}{a^3J_{11}}\sin(i_m)\right)\left(-\frac{2\mu_f}{a^3J_{22}}\sin(i_m)\right) \end{array}$$ $$= \frac{4\mu_f^3 \omega_0^2 (J_{11} - J_{22})}{a^9 J_{11} J_{22} J_{33}^2} \sin^2(i_m) \cos(i_m). \tag{11.28}$$ Combining (11.26), (11.27), and (11.28), we can rewrite (11.24) as $$b_{51}b'_{62}f_{46}b_{61} - b_{42}\left(\frac{1}{2}f_{52}b_{51} + b''_{51}\right)b_{61} + \frac{1}{2}f_{63}b_{61}b_{42}b_{51}$$ $$= \frac{\mu_f^3\omega_0^2}{a^9J_{11}J_{22}^2J_{33}^2}\sin^2(i_m)\cos(i_m)$$ $$[2J_{22}(J_{11} - J_{22} + J_{33}) + 4J_{33}(-3J_{33} + 3J_{11} + J_{22}) + 4J_{22}(J_{11} - J_{22})]$$ $$= \frac{\mu_f^3\omega_0^2}{a^9J_{11}J_{22}^2J_{33}^2}\sin^2(i_m)\cos(i_m)$$ $$[2J_{11}J_{22} - 2J_{22}^2 + 2J_{22}J_{33} - 12J_{33}^2 + 12J_{11}J_{33} + 4J_{22}J_{33} + 4J_{11}J_{22} - 4J_{22}^2]$$ $$= \frac{\mu_f^3\omega_0^2}{a^9J_{11}J_{22}^2J_{33}^2}\sin^2(i_m)\cos(i_m)[6J_{11}J_{22} - 6J_{22}^2 + 6J_{22}J_{33} - 12J_{33}^2 + 12J_{11}J_{33}]$$ $$= \frac{6\mu_f^3\omega_0^2}{a^9J_{11}J_{22}^2J_{33}^2}\sin^2(i_m)\cos(i_m)[J_{11}J_{22} - J_{22}^2 + J_{22}J_{33} - 2J_{33}^2 + 2J_{11}J_{33}].$$ (11.29) Therefore, the second condition of (11.24) is reduced to $$J_{22}(J_{11} - J_{22} + J_{33}) \neq 2J_{33}(J_{33} - J_{11}).$$ (11.30) We summarize the above result as the main theorem of this section. #### Theorem 11.2 For the linear time-varying spacecraft attitude control system (11.4) using only magnetic torques, if the orbit is on the equator plane of the Earth's magnetic field, then the spacecraft attitude is not fully controllable. If the orbit is not on the equator plane of the Earth's magnetic field, and the following two conditions hold: $$2J_{11} + J_{33} \neq J_{22},$$ (11.31a) $$J_{22}(J_{11} - J_{22} + J_{33}) \neq 2J_{33}(J_{33} - J_{11}),$$ (11.31b) then the spacecraft attitude is fully controllable by magnetic coils. **Remark 11.2** The controllability conditions include only the spacecraft orbit plane and the spacecraft inertia matrix which can be easily verified. The idea developed in this section is applied to attitude control of a 2U cubesat by magnetic and air drag torques [259]. ## 11.3 LQR design based on periodic Riccati equation In this section, we discuss the attitude control system design using only magnetic torque. We consider the linear quadratic regulator (LQR) design method for this problem. Riccati equation plays an important role in the LQR problem [137]. For continuous-time linear systems, the optimal solution of the LQR problem is associated with the differential Riccati equation. For discrete-time linear systems, the optimal solution of the LQR is associated with the algebraic Riccati equation. The numerical algorithms for these Riccati equations have been thoroughly studied since the work of Macfarlane [154], Kleinman [122], and Vaughan [272]. If the linear system is periodic, the optimal solution of the LQR is then associated with the *periodic* Riccati equation [28]. For continuous-time periodic linear systems, algorithms and solutions of the differential periodic Riccati equation have been studied, for example, in [29, 30, 270]. For discrete-time periodic linear system, an efficient algorithm was proposed for the *algebraic periodic* Riccati equation in [92]. Because the spacecraft attitude control system using magnetic torques is a time-varying period system, using periodic feedback control will improve the system's performance [66]. However, many researches, for example [208, 149, 150], were still focused on time-invariant feedback. Others [301, 42] sought feedback that approximate the optimal solution even though the optimal feedback exists. Most optimal control designs for this problem [209, 335, 214, 183, 292] solved the continuous differential Riccati equation using some traditional backward integration, which is inefficient and needs large memory space. As a matter of fact, a more efficient algorithm [92] developed for general periodic timevarying optimal control systems has been available since 1994, even though the algorithm in [92] is not designed to use the features of this specific problem. In this section, we will explore the features of the problem of attitude control using only magnetic torques. By utilizing these features, we are able to propose an efficient algorithm to solve the *discrete-time periodic* Riccati equation. We show that the new algorithm is more efficient than the widely recognized algorithm developed in [92] for this problem. Note that the orbital period in system (11.4) is given by (2.54) (see also [235]) $$T = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{a^3}{\mu}},\tag{11.32}$$ where a is the orbital radius (for circular orbit) and $\mu = 3.986005 * 10^{14} m^3/s^2$ is the standard gravitational parameter (see also [283]). Oftentimes, a spacecraft controller is implemented in a discrete computer system. Therefore, the following discrete model is used for the design in real implementation: $$\mathbf{x}_{k+1} = \mathbf{A}_k \mathbf{x}_k + \mathbf{B}_k \mathbf{m}_k. \tag{11.33}$$ The system matrices $(\mathbf{A}_k, \mathbf{B}_k)$ in the discrete model can be derived from (11.4) and (11.5) by different methods. Let t_s be the sample time, we use the following formulations. $$\mathbf{A}_k = (\mathbf{I} + \mathbf{A}t_s), \quad \mathbf{B}_k = \mathbf{B}(kt_s)t_s. \tag{11.34}$$ Note that $$\det(\mathbf{I} + \mathbf{A}t_s) = \det\begin{bmatrix} \mathbf{I} & 0.5t_s\mathbf{I} \\ t_s\Lambda_1 & \mathbf{I} + t_s\Sigma_1 \end{bmatrix} = \det\begin{bmatrix} \mathbf{I} & 0.5t_s\mathbf{I} \\ \mathbf{0}_3 & \mathbf{I} + t_s\Sigma_1 - 0.5t_s^2\Lambda_1 \end{bmatrix}$$ is invertible as long as t_s is selected small enough. It is worthwhile to mention that in both continuous-time and discrete-time models, the time-varying feature is introduced by time-varying matrices $\mathbf{B}(t)$ or \mathbf{B}_k ; the system matrices \mathbf{A} and \mathbf{A}_k are constants and invertible, which are important for us to derive an efficient computational algorithm. The discussion about the computational algorithm is focused on the solution of the periodic discrete Riccati equation using the special properties of (11.33), i.e., \mathbf{A}_k is constant and invertible for all k. ### 11.3.1 Preliminary results First, a matrix M is called a real quasi-upper-triangular if (a) M is a real block triangular matrix, (b) each diagonal block is either 1×1 or 2×2 , (c) for each 2×2 block, it has the form of $$\left[\begin{array}{cc}c & -s\\s & c\end{array}\right],$$ and $c \pm js$ is a pair of complex conjugate eigenvalues of M. We use $\sigma(M)$ to denote the set of all eigenvalues of M. Let $$\mathbf{L} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{I} & \mathbf{0} \end{bmatrix} \in \mathbf{R}^{2n \times 2n}, \tag{11.35}$$ where *n* is the dimension of **A** or \mathbf{A}_k . Note that $\mathbf{L}^T = \mathbf{L}^{-1} = -\mathbf{L}$. A matrix $\mathbf{M} \in \mathbf{R}^{2n \times 2n}$ is said to be *symplectic* if it meets the condition $\mathbf{L}^{-1}\mathbf{M}^T\mathbf{L}
= \mathbf{M}^{-1}$. The symplectic matrix plays a fundamental role in finding the solution of the Riccati equation [131]. An important property for the symplectic matrix is given as the following theorem which is shown in [130, 272]. ### Theorem 11.3 If **M** is symplectic, then $\lambda \in \sigma(\mathbf{M})$ implies $\frac{1}{\lambda} \in \sigma(\mathbf{M})$ with the same multiplicity. **Proof 11.1** Let $\lambda \in \sigma(M)$ be an eigenvalue of M, f and g be n-dimensional vectors such that $$\mathbf{M} \left[\begin{array}{c} \mathbf{f} \\ \mathbf{g} \end{array} \right] = \left[\begin{array}{cc} \mathbf{M}_{11} & \mathbf{M}_{12} \\ \mathbf{M}_{21} & \mathbf{M}_{22} \end{array} \right] \left[\begin{array}{c} \mathbf{f} \\ \mathbf{g} \end{array} \right] = \lambda \left[\begin{array}{c} \mathbf{f} \\ \mathbf{g} \end{array} \right].$$ Then, $$\begin{aligned} \mathbf{M}^{-1} &=& \mathbf{L}^{-1} \mathbf{M}^T \mathbf{L} = \begin{bmatrix} \mathbf{0} & -\mathbf{I} \\ \mathbf{I} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{M}_{11}^T & \mathbf{M}_{21}^T \\ \mathbf{M}_{12}^T & \mathbf{M}_{22}^T \end{bmatrix} \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{I} & \mathbf{0} \end{bmatrix} \\ &=& \begin{bmatrix} \mathbf{M}_{22}^T & -\mathbf{M}_{12}^T \\ -\mathbf{M}_{21}^T & \mathbf{M}_{11}^T \end{bmatrix}. \end{aligned}$$ Therefore, $$\mathbf{M}^{-T} \left[\begin{array}{c} \mathbf{g} \\ -\mathbf{f} \end{array} \right] = \left[\begin{array}{cc} \mathbf{M}_{22} & -\mathbf{M}_{21} \\ -\mathbf{M}_{12} & \mathbf{M}_{11} \end{array} \right] \left[\begin{array}{c} \mathbf{g} \\ -\mathbf{f} \end{array} \right] = \lambda \left[\begin{array}{c} \mathbf{g} \\ -\mathbf{f} \end{array} \right],$$ which means that λ is an eigenvalue of \mathbf{M}^{-1} . Since λ is an eigenvalue of \mathbf{M}^{-1} , $1/\lambda$ is an eigenvalue of \mathbf{M} . A stable numerical solution of the Riccati equation depends on the so-called real Schur decomposition [181]. The following Proposition is a natural extension of the real Schur decomposition for the symplectic matrix. ### Proposition 11.1 Let $\mathbf{M} \in \mathbf{R}^{2n \times 2n}$ be symplectic. Then there exists an orthogonal similarity transformation \mathbf{U} such that $$\begin{bmatrix} \mathbf{U}_{11} & \mathbf{U}_{12} \\ \mathbf{U}_{21} & \mathbf{U}_{22} \end{bmatrix}^{\mathsf{T}} \mathbf{M} \begin{bmatrix} \mathbf{U}_{11} & \mathbf{U}_{12} \\ \mathbf{U}_{21} & \mathbf{U}_{22} \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \\ \mathbf{0} & \mathbf{S}_{22} \end{bmatrix}$$ (11.36) where $U_{11}, U_{12}, U_{21}, U_{22}, S_{11}, S_{12}, S_{22} \in \mathbb{R}^{n \times n}$, and S_{11} , S_{22} are quasi-upper-triangular. Moreover, $\sigma(S_{11})$ lies inside (or outside) the unit circle and $\sigma(S_{22})$ lies outside (or inside) the unit circle. We will also use a simple result in our derivation of the main result. ### Proposition 11.2 If M_1 and M_2 are symplectic, then M_1M_2 is symplectic. **Proof 11.2** Since $$\mathbf{L}^{-1}\mathbf{M}_1^T\mathbf{L} = \mathbf{M}_1^{-1}$$ and $\mathbf{L}^{-1}\mathbf{M}_2^T\mathbf{L} = \mathbf{M}_2^{-1}$, we have $$\mathbf{L}^{-1}(\mathbf{M}_1\mathbf{M}_2)^T\mathbf{L} = \mathbf{L}^{-1}\mathbf{M}_2^T\mathbf{M}_1^T\mathbf{L} = \mathbf{L}^{-1}\mathbf{M}_2^T\mathbf{L}\mathbf{L}^{-1}\mathbf{M}_1^T\mathbf{L} = \mathbf{M}_2^{-1}\mathbf{M}_1^{-1} = (\mathbf{M}_1\mathbf{M}_2)^{-1}.$$ This concludes the proof. ## 11.3.2 Solution of the Algebraic Riccati equation For a discrete linear time-varying system (11.33), the LQR state feedback control is to find the optimal solution \mathbf{m}_k to minimize the following quadratic cost function $$\min \frac{1}{2} \mathbf{x}_N^{\mathsf{T}} \mathbf{Q}_N \mathbf{x}_N + \frac{1}{2} \sum_{k=0}^{N-1} \mathbf{x}_k^{\mathsf{T}} \mathbf{Q}_k \mathbf{x}_k + \mathbf{m}_k^{\mathsf{T}} \mathbf{R}_k \mathbf{m}_k$$ (11.37) where $$\mathbf{Q}_k \ge 0, \tag{11.38}$$ $$\mathbf{R}_k > 0, \tag{11.39}$$ and the initial condition \mathbf{x}_0 is given. The existence of the solution implicitly depends on the controllability of spacecraft attitude control using only magnetic torques discussed in the previous section. Let the co-state vector of \mathbf{x}_k is denoted by \mathbf{y}_k . A very important assumption in the so-called sweep method [33] to solve the optimization problem (11.37) under the state constraint of (11.33) is the relation between \mathbf{y}_k and \mathbf{x}_k which is given as follows: $$\mathbf{v}_k = \mathbf{P}_k \mathbf{x}_k, \tag{11.40}$$ If $(\mathbf{A}_k, \mathbf{Q}_k)$ is detectable or $\mathbf{Q}_k > 0$, the optimal feedback \mathbf{m}_k is given in Appendix B (B.21) (see also [92, 137]) $$\mathbf{m}_k = -(\mathbf{R}_k + \mathbf{B}_k^{\mathsf{T}} \mathbf{P}_{k+1} \mathbf{B}_k)^{-1} \mathbf{B}_k^{\mathsf{T}} \mathbf{P}_{k+1} \mathbf{A}_k \mathbf{x}_k, \tag{11.41}$$ where \mathbf{P}_k defined in (11.40) is the unique positive semi-definite solution of the discrete Riccati equation (B.19) (see also [92, 131, 137]) $$\mathbf{P}_{k} = \mathbf{Q}_{k} + \mathbf{A}_{k}^{\mathrm{T}} \mathbf{P}_{k+1} \mathbf{A}_{k} - \mathbf{A}_{k}^{\mathrm{T}} \mathbf{P}_{k+1} \mathbf{B}_{k} (\mathbf{R}_{k} + \mathbf{B}_{k}^{\mathrm{T}} \mathbf{P}_{k+1} \mathbf{B}_{k})^{-1} \mathbf{B}_{k}^{\mathrm{T}} \mathbf{P}_{k+1} \mathbf{A}_{k}, \quad (11.42)$$ with the boundary condition $\mathbf{P}_N = \mathbf{Q}_N$. For this discrete Riccati equation (not necessarily periodic) given as (11.42), it can be solved using a symplectic system associated with (11.33) and (11.37) as follows: Let $\mathbf{z}_k = [\mathbf{x}_k^{\mathrm{T}}, \mathbf{y}_k^{\mathrm{T}}]^{\mathrm{T}}$. Appendix B gives (B.26), which is repeated below. $$\begin{bmatrix} \mathbf{x}_k \\ \mathbf{y}_k \end{bmatrix} = \begin{bmatrix} \mathbf{A}_k^{-1} & \mathbf{A}_k^{-1} \mathbf{B}_k \mathbf{R}_k^{-1} \mathbf{B}_k^{\mathrm{T}} \\ \mathbf{Q}_k \mathbf{A}_k^{-1} & \mathbf{A}_k^{\mathrm{T}} + \mathbf{Q}_k \mathbf{A}_k^{-1} \mathbf{B}_k \mathbf{R}_k^{-1} \mathbf{B}_k^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{k+1} \\ \mathbf{y}_{k+1} \end{bmatrix} := \mathbf{H}_k \begin{bmatrix} \mathbf{x}_{k+1} \\ \mathbf{y}_{k+1} \end{bmatrix}.$$ (11.43) Let $$\mathbf{E}_{k} = \begin{bmatrix} \mathbf{I} & \mathbf{B}_{k} \mathbf{R}_{k}^{-1} \mathbf{B}_{k}^{\mathrm{T}} \\ \mathbf{0} & \mathbf{A}_{k}^{\mathrm{T}} \end{bmatrix}, \tag{11.44}$$ $$\mathbf{F}_k = \begin{bmatrix} \mathbf{A}_k & \mathbf{0} \\ -\mathbf{Q}_k & \mathbf{I} \end{bmatrix}. \tag{11.45}$$ 168 Assume that \mathbf{E}_k is invertible, which is true for $\det(\mathbf{I} + T\Sigma_1 - \frac{1}{2}T^2\Lambda_1) \neq 0$. It is easy to verify that $$\mathbf{Z}_{k} := \mathbf{H}_{k}^{-1} = \begin{bmatrix} \mathbf{A}_{k} + \mathbf{B}_{k} \mathbf{R}_{k}^{-1} \mathbf{B}_{k}^{T} \mathbf{A}_{k}^{-T} \mathbf{Q}_{k} & -\mathbf{B}_{k} \mathbf{R}_{k}^{-1} \mathbf{B}_{k}^{T} \mathbf{A}_{k}^{-T} \\ -\mathbf{A}_{k}^{-T} \mathbf{Q}_{k} & \mathbf{A}_{k}^{-T} \end{bmatrix}$$ $$= \mathbf{E}_{k}^{-1} \mathbf{F}_{k} = \begin{bmatrix} \mathbf{I} & -\mathbf{B}_{k} \mathbf{R}_{k}^{-1} \mathbf{B}_{k}^{T} \mathbf{A}_{k}^{-T} \\ \mathbf{0} & \mathbf{A}_{k}^{-T} \end{bmatrix} \begin{bmatrix} \mathbf{A}_{k} & \mathbf{0} \\ -\mathbf{Q}_{k} & \mathbf{I} \end{bmatrix}. \tag{11.46}$$ Therefore, (11.43) can be rewritten as $$\mathbf{E}_{k}\mathbf{z}_{k+1} = \mathbf{E}_{k} \begin{bmatrix} \mathbf{x}_{k+1} \\ \mathbf{y}_{k+1} \end{bmatrix} = \mathbf{F}_{k} \begin{bmatrix} \mathbf{x}_{k} \\ \mathbf{y}_{k} \end{bmatrix} = \mathbf{F}_{k}\mathbf{z}_{k}. \tag{11.47}$$ It is straightforward to verify that $\mathbf{L}^{-1}\mathbf{Z}_k^{\mathrm{T}}\mathbf{L} = \mathbf{Z}_k^{-1}$, therefore, from Proposition 11.1, there exists an orthogonal matrix \mathbf{U} such that $$\begin{bmatrix} \mathbf{U}_{11} & \mathbf{U}_{12} \\ \mathbf{U}_{21} & \mathbf{U}_{22} \end{bmatrix}^{\mathrm{T}} \mathbf{Z}_{k} \begin{bmatrix} \mathbf{U}_{11} & \mathbf{U}_{12} \\ \mathbf{U}_{21} & \mathbf{U}_{22} \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \\ \mathbf{0} & \mathbf{S}_{22} \end{bmatrix}, \tag{11.48}$$ and all eigenvalues of S_{11} are inside unit circle. For *linear time-invariant system*, $A_k = A$, $B_k = B$, $Q_k = Q$, $R_k = R$, and $Z_k = Z$ are all constant matrices, the (steady state) solution of (11.42) is given as follows (see Appendix B.3 and [131, Theorem 6]) $$P = U_{21}U_{11}^{-1}$$. ## 11.3.3 Solution of the Periodic Riccati Algebraic equation Now, we consider the periodic time-varying system $$\lim_{N \to \infty} \left[\min \frac{1}{2} \mathbf{x}_N^{\mathrm{T}} \mathbf{Q}_N \mathbf{x}_N + \frac{1}{2} \sum_{k=0}^{N-1} \mathbf{x}_k^{\mathrm{T}} \mathbf{Q}_k \mathbf{x}_k + \mathbf{m}_k^{\mathrm{T}} \mathbf{R}_k \mathbf{m}_k \right], \tag{11.49a}$$ $$\mathbf{x}_{k+1} = \mathbf{A}_k \mathbf{x}_k + \mathbf{B}_k \mathbf{m}_k, \tag{11.49b}$$ where $$\mathbf{A}_k = \mathbf{A}_{k+1} = \dots = \mathbf{A}_{k+p},$$ (11.50) $$\mathbf{B}_k = \mathbf{B}_{k+p},\tag{11.51}$$ $$\mathbf{Q}_k = \mathbf{Q}_{k+1} = \dots = \mathbf{Q}_{k+p} \ge 0, \tag{11.52}$$ $$\mathbf{R}_k = \mathbf{R}_{k+p} > 0, \tag{11.53}$$ only \mathbf{B}_k (and possibly \mathbf{R}_k) are periodic with period $p = \frac{T}{t_k}$. It is worthwhile to mention that \mathbf{A}_k and \mathbf{Q}_k are actually constant matrices. The optimal feedback given by (11.42) is periodic with $\mathbf{P}_k = \mathbf{P}_{k+p}$, a unique periodic positive semi-definite solution of the periodic Riccati equation (cf. [28]). Therefore, using the similar process for the general discrete Riccati equation and noticing that $\mathbf{F}_k = \mathbf{F}$ in (11.45) is a constant matrix because \mathbf{A}_k and \mathbf{Q}_k are constant matrices, we get $$\mathbf{E}_{k}\mathbf{z}_{k+1} = \mathbf{F}\mathbf{z}_{k} \tag{11.54}$$ $$\mathbf{E}_{k+1}\mathbf{z}_{k+2} = \mathbf{F}\mathbf{z}_{k+1} \tag{11.55}$$
$$\mathbf{E}_{k+p-1}\mathbf{z}_{k+p} = \mathbf{F}\mathbf{z}_{k+p-1}. \tag{11.57}$$ This gives $$\mathbf{z}_{k+p} = \Pi_k \mathbf{z}_k, \tag{11.58}$$ with $$\Pi_k = \mathbf{E}_{k+n-1}^{-1} \mathbf{F} \dots \mathbf{E}_{k+1}^{-1} \mathbf{F} \mathbf{E}_k^{-1} \mathbf{F}.$$ (11.59) Using Proposition 11.2, we conclude that Π_k is a symplectic matrix. Therefore, from Proposition 11.1 there is an orthogonal matrix \mathbf{T}_k such that $$\begin{bmatrix} \mathbf{T}_{11k} & \mathbf{T}_{12k} \\ \mathbf{T}_{21k} & \mathbf{T}_{22k} \end{bmatrix}^{\mathrm{T}} \Pi_{k} \begin{bmatrix} \mathbf{T}_{11k} & \mathbf{T}_{12k} \\ \mathbf{T}_{21k} & \mathbf{T}_{22k} \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{11k} & \mathbf{S}_{12k} \\ \mathbf{0} & \mathbf{S}_{22k} \end{bmatrix}.$$ (11.60) According to [92, pp. 1197–1198], the matrix S_{11k} has eigenvalues in the open unit disk, and for each sampling time $k \in \{0, 1, ..., p-1\}$ the steady state solution of the Riccati equation corresponding to (11.58) is given by $$\mathbf{P}_k = \mathbf{T}_{21k} \mathbf{T}_{11k}^{-1}. \tag{11.61}$$ Since **F** is invertible in the problem of spacecraft attitude control using only magnetic torques, this method is more efficient than the one in [199] because the latter is designed for singular **F**. However, the method of calculating (11.59), (11.60), and (11.61) as described above (proposed in [92]) is still not the best way for the problem of spacecraft attitude control using only magnetic torques. As a matter of fact, equation (11.58) can be written as $$\begin{bmatrix} \mathbf{x}_k \\ \mathbf{y}_k \end{bmatrix} = \mathbf{z}_k = \Gamma_k \mathbf{z}_{k+p} = \Gamma_k \begin{bmatrix} \mathbf{x}_{k+p} \\ \mathbf{y}_{k+p} \end{bmatrix}$$ (11.62) with the initial state \mathbf{x}_0 , the boundary condition [137] $$\mathbf{y}_N = \mathbf{Q}_N \mathbf{x}_N, \tag{11.63}$$ and $$\Gamma_k = \mathbf{F}^{-1} \mathbf{E}_k \mathbf{F}^{-1} \mathbf{E}_{k+1} \dots, \mathbf{F}^{-1} \mathbf{E}_{k+p-2} \mathbf{F}^{-1} \mathbf{E}_{k+p-1}.$$ (11.64) **Remark 11.3** Since the same \mathbf{F}^{-1} is a constant matrix and is used repeatedly in Γ_k , the computation of Γ_k avoids p-1 matrix inverse comparing to the computation of Π_k . For large p, the difference is tremendous. We propose a better way to solve (11.49). The derivations is similar to the method proposed in [131]. Since $$\mathbf{F}^{-1} = \left[\begin{array}{cc} \mathbf{A}_k^{-1} & \mathbf{0} \\ \mathbf{Q}_k \mathbf{A}_k^{-1} & \mathbf{I} \end{array} \right],$$ $$\mathbf{M} = \mathbf{F}^{-1}\mathbf{E}_{k} = \begin{bmatrix} \mathbf{A}_{k}^{-1} & \mathbf{0} \\ \mathbf{Q}_{k}\mathbf{A}_{k}^{-1} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{B}_{k}\mathbf{R}_{k}^{-1}\mathbf{B}_{k}^{\mathrm{T}} \\ \mathbf{0} & \mathbf{A}_{k}^{\mathrm{T}} \end{bmatrix}$$ $$= \begin{bmatrix} \mathbf{A}_{k}^{-1} & \mathbf{A}_{k}^{-1}\mathbf{B}_{k}\mathbf{R}_{k}^{-1}\mathbf{B}_{k}^{\mathrm{T}} \\ \mathbf{Q}_{k}\mathbf{A}_{k}^{-1} & \mathbf{Q}_{k}\mathbf{A}_{k}^{-1}\mathbf{B}_{k}\mathbf{R}_{k}^{-1}\mathbf{B}_{k}^{\mathrm{T}} + \mathbf{A}_{k}^{\mathrm{T}} \end{bmatrix}, \tag{11.65}$$ which is a similar formula as given in [272]. It is straightforward to verify that **M** is symplectic. $$\mathbf{L}^{-1}\mathbf{M}^{\mathrm{T}}\mathbf{L} = \begin{bmatrix} \mathbf{0} & -\mathbf{I} \\ \mathbf{I} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{A}_{k}^{-\mathrm{T}} & \mathbf{A}_{k}^{-\mathrm{T}}\mathbf{Q}_{k} \\ \mathbf{B}_{k}\mathbf{R}_{k}^{-1}\mathbf{B}_{k}^{\mathrm{T}}\mathbf{A}_{k}^{-\mathrm{T}} & \mathbf{A}_{k} + \mathbf{B}_{k}\mathbf{R}_{k}^{-1}\mathbf{B}_{k}^{\mathrm{T}}\mathbf{A}_{k}^{-\mathrm{T}}\mathbf{Q}_{k} \end{bmatrix} \mathbf{L}$$ $$= \begin{bmatrix} -\mathbf{B}_{k}\mathbf{R}_{k}^{-1}\mathbf{B}_{k}^{\mathrm{T}}\mathbf{A}_{k}^{-\mathrm{T}} & -\mathbf{A}_{k} - \mathbf{B}_{k}\mathbf{R}_{k}^{-1}\mathbf{B}_{k}^{\mathrm{T}}\mathbf{A}_{k}^{-\mathrm{T}}\mathbf{Q}_{k} \end{bmatrix} \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{I} & \mathbf{0} \end{bmatrix}$$ $$= \begin{bmatrix} \mathbf{A}_{k} + \mathbf{B}_{k}\mathbf{R}_{k}^{-1}\mathbf{B}_{k}^{\mathrm{T}}\mathbf{A}_{k}^{-\mathrm{T}}\mathbf{Q}_{k} & -\mathbf{B}_{k}\mathbf{R}_{k}^{-1}\mathbf{B}_{k}^{\mathrm{T}}\mathbf{A}_{k}^{-\mathrm{T}} \\ -\mathbf{A}_{k}^{-\mathrm{T}}\mathbf{Q}_{k} & \mathbf{A}_{k}^{-\mathrm{T}} \end{bmatrix}$$ $$= \mathbf{M}^{-1}. \tag{11.66}$$ Since **M** is symplectic, using Proposition 11.2 again, Γ_k is symplectic. Let $$\mathbf{V}_k = \left[\begin{array}{cc} \mathbf{V}_{11k} & \mathbf{V}_{12k} \\ \mathbf{V}_{21k} & \mathbf{V}_{22k} \end{array} \right]$$ be a matrix that transform Γ_k into a Jordon form, we have $$\Gamma_k \mathbf{V}_k = \mathbf{V}_k \begin{bmatrix} \Delta_k & \mathbf{0} \\ \mathbf{0} & \Delta_k^{-1} \end{bmatrix}$$ (11.67) where Δ_k is the Jordan block matrix of the *n* eigenvalues outside of the unit circle. One of the main results of this section is the following theorem. #### Theorem 11.4 The solution of the Riccati equation corresponding to (11.62) is given by $$\mathbf{P}_k = \mathbf{V}_{21k} \mathbf{V}_{11k}^{-1}, \quad k = 0, \dots, p - 1. \tag{11.68}$$ **Proof 11.3** The proof uses similar ideas to [272, 137]. Since the system is periodic, the Riccati equation corresponding to (11.62) represents any one of $k \in \{0, 1, ..., p-1\}$ equations, which has a sample period increasing by p with the patent $k, k+p, k+2p, \ldots, k+\ell p, \ldots$ In the following discussion, we consider one Riccati equation and drop the subscript k to simplify the notation to $0, p, 2p, \ldots, \ell p, \ldots$ To make the notation simpler, we will drop p and use ℓ for this step increment. Assume that the solution has the form $$\mathbf{y}_{\ell} = \mathbf{P}\mathbf{x}_{\ell}.\tag{11.69}$$ Using the method described in Appendix B, one can show that **P** satisfies the discretetime periodic Riccati equation $$\mathbf{0} = \mathbf{O} + \mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{A} - \mathbf{P} - \mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{B} (\mathbf{R} + \mathbf{B}^{\mathrm{T}} \mathbf{P} \mathbf{B}) \mathbf{B}^{\mathrm{T}} \mathbf{P} \mathbf{A}.$$ Further, we assume for simplicity that the eigenvalues of Γ are distinct; therefore, Δ is diagonal. For any integer $\ell > 0$, let $$\begin{bmatrix} \mathbf{x}_{\ell} \\ \mathbf{y}_{\ell} \end{bmatrix} = \begin{bmatrix} \mathbf{V}_{11} & \mathbf{V}_{12} \\ \mathbf{V}_{21} & \mathbf{V}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{t}_{\ell} \\ \mathbf{s}_{\ell} \end{bmatrix}, \tag{11.70}$$ from (11.62), (11.67) and (11.70), we have $$\mathbf{V} \left[\begin{array}{c} \mathbf{t}_{\ell} \\ \mathbf{s}_{\ell} \end{array} \right] = \left[\begin{array}{c} \mathbf{x}_{\ell} \\ \mathbf{y}_{\ell} \end{array} \right] = \Gamma \left[\begin{array}{c} \mathbf{x}_{\ell+1} \\ \mathbf{y}_{\ell+1} \end{array} \right] = \Gamma \mathbf{V} \left[\begin{array}{c} \mathbf{t}_{\ell+1} \\ \mathbf{s}_{\ell+1} \end{array} \right] = \mathbf{V} \left[\begin{array}{cc} \Delta & \mathbf{0} \\ \mathbf{0} & \Delta^{-1} \end{array} \right] \left[\begin{array}{c} \mathbf{t}_{\ell+1} \\ \mathbf{s}_{\ell+1} \end{array} \right],$$ which is equivalent to $$\left[\begin{array}{c} \mathbf{t}_{\ell} \\ \mathbf{s}_{\ell} \end{array}\right] = \left[\begin{array}{cc} \Delta & \mathbf{0} \\ \mathbf{0} & \Delta^{-1} \end{array}\right] \left[\begin{array}{c} \mathbf{t}_{\ell+1} \\ \mathbf{s}_{\ell+1} \end{array}\right].$$ Hence, $$\begin{bmatrix} \mathbf{t}_{\ell} \\ \mathbf{s}_{\ell} \end{bmatrix} = \begin{bmatrix} \Delta^{N-\ell} & \mathbf{0} \\ \mathbf{0} & \Delta^{-(N-\ell)} \end{bmatrix} \begin{bmatrix} \mathbf{t}_{N} \\ \mathbf{s}_{N} \end{bmatrix}, \tag{11.71}$$ Using the boundary condition (11.63) and (11.70), we have $$\mathbf{Q}_N(\mathbf{V}_{11}\mathbf{t}_N + \mathbf{V}_{12}\mathbf{s}_N) = \mathbf{Q}_N\mathbf{x}_N = \mathbf{y}_N = \mathbf{V}_{21}\mathbf{t}_N + \mathbf{V}_{22}\mathbf{s}_N,$$ this gives $$-(\mathbf{V}_{21}-\mathbf{Q}_N\mathbf{V}_{11})\mathbf{t}_N=(\mathbf{V}_{22}-\mathbf{Q}_N\mathbf{V}_{12})\mathbf{s}_N,$$ or equivalently $$\mathbf{s}_{N} = -(\mathbf{V}_{22} - \mathbf{Q}_{N} \mathbf{V}_{12})^{-1} (\mathbf{V}_{21} - \mathbf{Q}_{N} \mathbf{V}_{11}) \mathbf{t}_{N} := \mathbf{H} \mathbf{t}_{N}.$$ (11.72) Combining (11.71) and (11.72) yields $$\mathbf{s}_{\ell} = \Delta^{-(N-\ell)} \mathbf{s}_{N} = \Delta^{-(N-\ell)} \mathbf{H} \mathbf{t}_{N} = \Delta^{-(N-\ell)} \mathbf{H} \Delta^{-(N-\ell)} \mathbf{t}_{\ell} := \mathbf{G} \mathbf{t}_{\ell},$$ with $\mathbf{G} = \Delta^{-(N-\ell)} \mathbf{H} \Delta^{-(N-\ell)}$. Finally, using this relation, equations (6.22) and (11.69), we conclude that $$y_\ell = V_{21}t_\ell + V_{22}s_\ell = (V_{21} + V_{22}G)t_\ell = Px_\ell = P(V_{11}t_\ell + V_{12}s_\ell) = P(V_{11} + V_{12}G)t_\ell$$ holds for all \mathbf{t}_{ℓ} ; therefore $$(V_{21} + V_{22}G) = P(V_{11} + V_{12}G)$$ or $$\mathbf{P} = (\mathbf{V}_{21} + \mathbf{V}_{22}\mathbf{G})(\mathbf{V}_{11} + \mathbf{V}_{12}\mathbf{G})^{-1}.$$ (11.73) Note that $\mathbf{G} \to 0$ as $N \to \infty$. This finishes the proof. Since the eigen-decomposition is not numerically stable, we suggest using the Schur decomposition instead. Since Γ_k is symplectic, Proposition 11.1 claims that there is an orthogonal matrix \mathbf{W}_k such that $$\begin{bmatrix} \mathbf{W}_{11k} & \mathbf{W}_{12k} \\ \mathbf{W}_{21k} & \mathbf{W}_{22k} \end{bmatrix}^{\mathrm{T}} \Gamma_{k} \begin{bmatrix} \mathbf{W}_{11k} & \mathbf{W}_{12k} \\ \mathbf{W}_{21k} & \mathbf{W}_{22k} \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{11k} & \mathbf{S}_{12k} \\ \mathbf{0} & \mathbf{S}_{22k} \end{bmatrix}, \tag{11.74}$$ where S_{11k} is upper-triangular and has all of its eigenvalues outside the unit circle. We have the main result of the section as follows. ### Theorem 11.5 Let the Schur decomposition of Γ_k be given by (11.74). The solution of the Riccati equation
corresponding to (11.62) is given by $$\mathbf{P}_k = \mathbf{W}_{21k} \mathbf{W}_{11k}^{-1}. \tag{11.75}$$ **Proof 11.4** The proof follows the same argument of [131, Remark 1]. From (11.67), we have $$\Gamma_{k} \begin{bmatrix} \mathbf{V}_{11k} \\ \mathbf{V}_{21k} \end{bmatrix} = \begin{bmatrix} \mathbf{V}_{11k} \\ \mathbf{V}_{21k} \end{bmatrix} \Delta_{k}. \tag{11.76}$$ From (11.74), we have $$\Gamma_k \left[egin{array}{c} \mathbf{W}_{11k} \\ \mathbf{W}_{21k} \end{array} \right] = \left[egin{array}{c} \mathbf{W}_{11k} \\ \mathbf{W}_{21k} \end{array} \right] \mathbf{S}_{11k}.$$ Let **T** be an invertible transformation matrix such that $$\mathbf{T}^{-1}\mathbf{S}_{11k}\mathbf{T} = \Delta_k,$$ then we have $$\Gamma_{k} \begin{bmatrix} \mathbf{W}_{11k} \\ \mathbf{W}_{21k} \end{bmatrix} \mathbf{T} = \begin{bmatrix} \mathbf{W}_{11k} \\ \mathbf{W}_{21k} \end{bmatrix} \mathbf{T} \mathbf{T}^{-1} \mathbf{S}_{11k} \mathbf{T} = \begin{bmatrix} \mathbf{W}_{11k} \\ \mathbf{W}_{21k} \end{bmatrix} \mathbf{T} \Delta_{k}. \tag{11.77}$$ Comparing (11.76) and (11.77) we must have $$\left[\begin{array}{c} \mathbf{W}_{11k} \\ \mathbf{W}_{21k} \end{array}\right] \mathbf{T} = \left[\begin{array}{c} \mathbf{V}_{11k} \\ \mathbf{V}_{21k} \end{array}\right] \mathbf{D}$$ where **D** is a diagonal and invertible matrix. Thus, $$\mathbf{W}_{21k}\mathbf{W}_{11k}^{-1} = \mathbf{V}_{21k}\mathbf{D}\mathbf{T}^{-1}\mathbf{T}\mathbf{D}^{-1}\mathbf{V}_{11k}^{-1} = \mathbf{V}_{21k}\mathbf{V}_{11k}^{-1}$$ This finishes the proof. We can apply the algorithm to the problem described in (11.49). ### Algorithm 11.1 Step 0: Data J, i_m , Q, R, altitude of the spacecraft, and selected sample period t_s . Step 1: Calculate \mathbf{A}_k and \mathbf{B}_k using (11.33–11.34). Step 2: Calculate \mathbf{E}_k and \mathbf{F}_k using (11.44–11.45). Step 3: Calculate Γ_k using (11.64). Step 4: Use Schur decomposition (11.74) to get \mathbf{W}_k . Step 5: Calculate \mathbf{P}_k using (11.75). **Remark 11.4** This algorithm makes full use of the fact that **A** is a constant matrix in (11.45). Therefore, **F** is a constant matrix and the inverse of **F** in (11.64) does not need to be repeated many times which is the main difference between the method discussed in this section and the method in [92]. ### 11.3.4 Simulation test The following problem is used to demonstrate the effectiveness of a proposed design algorithm. Let the spacecraft inertia matrix be $\mathbf{J} = \mathrm{diag}\,(250,150,100)\,kg\cdot m^2$. The orbital inclination $i_m=57^o$, the orbit is circular with an altitude of 657 km. In view of equation (11.32), the orbital period is 5863 seconds, and the orbital rate is $\omega_0=0.0011$ rad/second. Assuming that the total number of samplestaken in one orbit is p=100, then, each sample period is 58.6352 seconds. Select $\mathbf{Q}=\mathrm{diag}(1.5*10^{-9},1.5*10^{-9},1.5*10^{-9},0.001,0.001,0.001)$ and $\mathbf{R}=\mathrm{diag}(2*10^{-3},2*10^{-3},2*10^{-3})$. The Riccati equation solutions \mathbf{P}_k for $k=0,1,2,\ldots,99$ are calculated using Algorithm 11.1 and are stored. Assuming that the initial quaternion error is (0.01,0.01,0.01) and the initial body rate is (0.00001,0.00001,0.00001) radians per second, applying the feedback (11.41) to the system (11.33), the simulated spacecraft attitude response is given in Figures 11.1–11.6. **Figure 11.1:** Attitude response q_1 . **Figure 11.2:** Attitude response q_2 . The designed controller stabilizes the spacecraft using only magnetic torques. This shows the effectiveness of the design method. Since this time-varying system has a long period 5863 seconds and the number of samples in each period is 100, this means that using Γ_k in (11.64) instead of Π_k in (11.59) saves about 100 **Figure 11.3:** Attitude response q_3 . **Figure 11.4:** Body rate response ω_1 . matrix inverses, a significant improvement in the computation compared to the well-known algorithm of [92]. For more detailed discussion of the computational comparison, readers are referred to [318]. **Figure 11.5:** Body rate response ω_2 . **Figure 11.6:** Body rate response ω_3 . ## 11.4 Attitude and desaturation combined control Spacecraft attitude control and reaction wheel desaturation are normally regarded as two different control system design problems and are discussed in separate chapters in text books, such as [235, 283]. While spacecraft attitude control us- ing magnetic torques has been one of the main research areas (see, for example, [217, 236] and extensive references therein), there are many research papers that address reaction wheel momentum management, for example, [41, 59, 75] and references therein. In [59], Dzielsk et al., formulated the problem as an optimization problem, and a nonlinear programming method was proposed to find the solution. His method can be very expensive and there is no guarantee to find the global optimal solution. Chen et al. [41] discussed optimal desaturation controllers using magnetic torques and thrusters. Their methods find the optimal torques which, however, may not be achieved by magnetic torque coils because given the desired torques in a three dimensional space, magnetic torque coils can only generate torques in a two dimensional plane [235]. Like most publications on this problem, the above two papers do not consider the time-varying effect of the geomagnetic field in the body frame, which arises when a spacecraft flies around the Earth. Giulietti et al. [75] considered the same problem with more details on the geomagnetic field, but the periodic feature of the magnetic field along the orbit was not used in their proposed design. In addition, all these proposed designs considered only momentum management but not attitude control. Since both attitude control and reaction wheel desaturation are performed at the same time using the same magnetic torque coils, the control system design should consider these two design objectives at the same time and some recent research papers tackled the problem in this direction, for example, [6, 265]. In [265], Tregouet et al. studied the problem of spacecraft stabilization and reaction wheel desaturation at the same time. They considered the time-variation of the magnetic field in the body frame, and their reference frame was the inertial frame. However, for a Low Earth Orbit (LEO) spacecraft that uses Earth's magnetic field, the reference frame for the spacecraft is most likely a Local Vertical Local Horizontal (LVLH) frame. In addition, their design method depends on some assumptions which is not easy to verify and their proposed design does not use the periodic feature of the magnetic field. Moreover, their design is composed of two loops, which is essentially an idea of dealing with attitude control and wheel momentum management in separate considerations. In [6], a heuristic proportional controller was proposed and a Lyapunov function was used to prove that the controller can simultaneously stabilize the spacecraft with respect to the LVLH frame and achieve reaction wheel management. However, this design method does not consider the time-varying effect of the geomagnetic field in the body frame. Although these two designs are impressive, as we have seen, these designs do not consider some factors in reality and their solutions are not optimal. This section proposes a more attractive design method that considers as many factors as practical. The controlled attitude is aligned with the LVLH frame. A general reduced quaternion model, including (a) reaction wheels, (b) magnetic torque coils, (c) the gravity gradient torque, and (d) the periodic time-varying effects of the geomagnetic field along the orbit and its interaction with mag- netic torque coils, is proposed. The model is an extension of the one discussed in Chapter 4 (see also [307]). A single objective function, which considers the performance of both attitude control and reaction wheel management at the same time, is suggested. Since a well-designed periodic controller for a period system is better than constant controllers' as pointed out in [66, 121], this objective function is optimized using the solution of a matrix periodic Riccati equation described earlier in this Chapter, which leads to a periodic time-varying optimal control. It is shown that the design can be calculated efficiently way and the designed controller is optimal for the spacecraft attitude control and for the reaction wheel momentum management at the same time. A simulation test is then provided to demonstrate that the designed system achieves a more accurate attitude than the optimal control system that uses only magnetic torques. Moreover, it will be shown that the designed controller based on the LQR method works on the nonlinear spacecraft system. # 11.4.1 Spacecraft model for attitude and reaction wheel desaturation control Throughout the rest of this section, it is assumed that the inertia matrix of a spacecraft $J = \text{diag}(J_1, J_2, J_3)$ is a diagonal matrix. This assumption is reasonable because in practical spacecraft design, spacecraft inertia matrix J is always designed as close to a diagonal matrix as possible [310]. (It is actually very close to a diagonal matrix.) For a spacecraft using Earth's magnetic torques, the nadir pointing model is probably the mostly desired one by the missions. Therefore, the attitude of the spacecraft is represented by the rotation of the spacecraft body frame relative to the local vertical and local horizontal frame. This means that the quaternion and spacecraft body rate should be represented in terms of the rotation of the spacecraft body frame relative to the LVLH frame. Let $\omega = [\omega_1, \omega_2, \omega_3]^T$ be the body rate with respect to the LVLH frame represented in the body frame, $\omega_{lvlh} = [0, -\omega_0, 0]^T$ the orbit rate (the rotation of LVLH frame) with respect to the
inertial frame represented in the LVLH frame³, and $\omega_I = [\omega_{I1}, \omega_{I2}, \omega_{I3}]^T$ be the angular velocity vector of the spacecraft body with respect to the inertial frame, represented in the spacecraft body frame. Let A_I^b represent the rotational transformation matrix from the LVLH frame to the spacecraft body frame. Then, ω_I is expressed as in (4.17) $$\omega_I = \omega + \mathbf{A}_l^b \omega_{lvlh} = \omega + \omega_{lvlh}^b, \tag{11.78}$$ where ω_{lvlh}^b is the rotational rate of the LVLH frame relative to the inertial frame represented in the spacecraft body frame. Assuming that the orbit is circular, i.e., ³For a circular orbit, given the spacecraft orbital period around the Earth P, $\omega_0 = \frac{2\pi}{P}$ is a known constant. $\dot{\omega}_{lvlh} = 0$, using the fact of (3.16) $$\dot{\mathbf{A}}_{l}^{b} = -\boldsymbol{\omega} \times \mathbf{A}_{l}^{b},\tag{11.79}$$ and taking the derivative of (11.78) give $$\dot{\boldsymbol{\omega}}_{I} = \dot{\boldsymbol{\omega}} + \dot{\mathbf{A}}_{l}^{b} \boldsymbol{\omega}_{lvlh} + \mathbf{A}_{l}^{b} \dot{\boldsymbol{\omega}}_{lvlh} = \dot{\boldsymbol{\omega}} - \boldsymbol{\omega} \times \mathbf{A}_{l}^{b} \boldsymbol{\omega}_{lvlh} = \dot{\boldsymbol{\omega}} - \boldsymbol{\omega} \times \boldsymbol{\omega}_{lvlh}^{b}.$$ (11.80) Assuming that the three reaction wheels are aligned with the body frame axes, the total angular momentum of the spacecraft \mathbf{h}_T in the body frame comprises the angular momentum of the spacecraft $\mathbf{J}\omega_I$ and the angular momentum of the reaction wheels $\mathbf{h}_w = [h_{w1}, h_{w2}, h_{w3}]^T$ is given by $$\mathbf{h}_T = \mathbf{J}\boldsymbol{\omega}_I + \mathbf{h}_w, \tag{11.81}$$ where $$\mathbf{h}_{w} = \mathbf{J}_{w} \Omega, \tag{11.82}$$ $\mathbf{J}_w = \operatorname{diag}(\mathbf{J}_{w_1}, \mathbf{J}_{w_2}, \mathbf{J}_{w_3})$ is the inertia matrix of the three reaction wheels aligned with the spacecraft body axes, and $\Omega = [\Omega_1, \Omega_2, \Omega_3]^T$ is the angular rate vector of the three reaction wheels. Let \mathbf{h}_T' be the same vector of \mathbf{h}_T represented in inertial frame. Let \mathbf{t}_T be the total external torques acting on the spacecraft, then it must have (see [230]) $$\mathbf{t}_T = \frac{d\mathbf{h}_T'}{dt}\bigg|_b.$$ Taking the derivative of (11.81) and using the above equation and (3.17) lead to the dynamics equations of the spacecraft as follows $$\mathbf{J}\dot{\boldsymbol{\omega}}_{I} + \dot{\mathbf{h}}_{w} = \left(\frac{d\mathbf{h}_{T}}{dt}\right)\Big|_{b} = -\boldsymbol{\omega}_{I} \times \mathbf{h}_{T} + \left(\frac{d\mathbf{h}_{T}'}{dt}\right)\Big|_{b}$$ $$= -\boldsymbol{\omega}_{I} \times (\mathbf{J}\boldsymbol{\omega}_{I} + \mathbf{h}_{w}) + \mathbf{t}_{T}, \qquad (11.83)$$ where \mathbf{t}_T includes the gravity gradient torque \mathbf{t}_g , magnetic control torque \mathbf{t}_m , and internal and external disturbance torque \mathbf{t}_d (including residual magnetic moment induced torque, atmosphere induced torque, solar radiation torque, etc). The torques generated by the reaction wheels \mathbf{t}_w are given by $$\mathbf{t}_{w}=-\dot{\mathbf{h}}_{w}=-\mathbf{J}_{w}\dot{\mathbf{\Omega}}.$$ Substituting these relations into (11.83) gives $$\mathbf{J}\dot{\omega}_{I} = -\omega_{I} \times (\mathbf{J}\omega_{I} + \mathbf{J}_{w}\Omega) + \mathbf{t}_{w} + \mathbf{t}_{e} + \mathbf{t}_{m} + \mathbf{t}_{d}. \tag{11.84}$$ Substituting (11.78) and (11.80) into (11.84) yields $$\mathbf{J}\dot{\boldsymbol{\omega}} = \mathbf{J}\boldsymbol{\omega} \times \boldsymbol{\omega}_{lvlh}^{b} - (\boldsymbol{\omega} + \boldsymbol{\omega}_{lvlh}^{b}) \times [\mathbf{J}(\boldsymbol{\omega} + \boldsymbol{\omega}_{lvlh}^{b}) + \mathbf{J}_{w}\Omega]$$ $$+\mathbf{t}_w + \mathbf{t}_g + \mathbf{t}_m + \mathbf{t}_d. \tag{11.85}$$ Let $$\bar{\mathbf{q}} = [q_0, q_1, q_2, q_3]^{\mathrm{T}} = [q_0, \mathbf{q}^{\mathrm{T}}]^{\mathrm{T}} = \left[\cos(\frac{\alpha}{2}), \hat{\mathbf{e}}^{\mathrm{T}}\sin(\frac{\alpha}{2})\right]^{\mathrm{T}}$$ (11.86) be the quaternion representing the rotation of the body frame relative to the LVLH frame, where $\hat{\mathbf{e}}$ is the unit length rotational axis and α is the rotation angle about $\hat{\mathbf{e}}$. Therefore, from the derivation of (4.9), the reduced kinematics equation becomes (see also [307]) $$\begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} q_0 & -q_3 & q_2 \\ q_3 & q_0 & -q_1 \\ -q_2 & q_1 & q_0 \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix}$$ $$= \mathbf{g}(q_1, q_2, q_3, \omega), \tag{11.87}$$ since $q_0 = \sqrt{1 - q_1^2 - q_2^2 - q_3^2}$. It can be rewritten simply as $$\dot{\mathbf{q}} = \mathbf{g}(\mathbf{q}, \boldsymbol{\omega}). \tag{11.88}$$ From (3.61), (see also [307, 310]), $$\mathbf{A}_{l}^{b} = \left[\begin{array}{cccc} 2q_{0}^{2} - 1 + 2q_{1}^{2} & 2q_{1}q_{2} + 2q_{0}q_{3} & 2q_{1}q_{3} - 2q_{0}q_{2} \\ 2q_{1}q_{2} - 2q_{0}q_{3} & 2q_{0}^{2} - 1 + 2q_{2}^{2} & 2q_{2}q_{3} + 2q_{0}q_{1} \\ 2q_{1}q_{3} + 2q_{0}q_{2} & 2q_{2}q_{3} - 2q_{0}q_{1} & 2q_{0}^{2} - 1 + 2q_{3}^{2} \end{array} \right],$$ we have $$\boldsymbol{\omega}_{lvlh}^{b} = \mathbf{A}_{l}^{b} \boldsymbol{\omega}_{lvlh} = \begin{bmatrix} 2q_{1}q_{2} + 2q_{0}q_{3} \\ 2q_{0}^{2} - 1 + 2q_{2}^{2} \\ 2q_{2}q_{3} - 2q_{0}q_{1} \end{bmatrix} (-\boldsymbol{\omega}_{0}), \tag{11.89}$$ which is a function of \mathbf{q} . Interestingly, given spacecraft inertia matrix \mathbf{J} , \mathbf{t}_g is also a function of \mathbf{q} . Using the facts (a) the spacecraft mass is negligible compared to the Earth mass, and (b) the size of the spacecraft is negligible compared to the magnitude of the vector from the center of the Earth to the center of the mass of the spacecraft \mathbf{R} , the gravitational torque is given by (5.5) (see also [284, page 367]): $$\mathbf{t}_g = \frac{3\mu}{|\mathbf{R}|^5} \mathbf{R} \times \mathbf{J} \mathbf{R},\tag{11.90}$$ where $\mu = GM$, $G = 6.669 * 10^{-11} m^3 / kg - s^2$ is the universal constant of gravitation, and M is the mass of the Earth. Noticing that in local vertical local horizontal frame, $\mathbf{R}_l = [0, 0, -|\mathbf{R}|]^T$, we can represent \mathbf{R} in body frame as $$\mathbf{R} = \mathbf{A}_{l}^{b} \mathbf{R}_{l} = \begin{bmatrix} 2q_{0}^{2} - 1 + 2q_{1}^{2} & 2q_{1}q_{2} + 2q_{0}q_{3} & 2q_{1}q_{3} - 2q_{0}q_{2} \\ 2q_{1}q_{2} - 2q_{0}q_{3} & 2q_{0}^{2} - 1 + 2q_{2}^{2} & 2q_{2}q_{3} + 2q_{0}q_{1} \\ 2q_{1}q_{3} + 2q_{0}q_{2} & 2q_{2}q_{3} - 2q_{0}q_{1} & 2q_{0}^{2} - 1 + 2q_{3}^{2} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -|\mathbf{R}| \end{bmatrix}.$$ (11.91) Denote the last column of \mathbf{A}_{l}^{b} as $\mathbf{A}_{l}^{b}(:,3)$. Using the relation (2.55) (see also [235, page 109]) $$\omega_0 = \sqrt{\frac{\mu}{|\mathbf{R}|^3}} \tag{11.92}$$ and (11.91), we can rewrite (11.90) as $$\mathbf{t}_{g} = 3\omega_{0}^{2} \mathbf{A}_{l}^{b}(:,3) \times \mathbf{J} \mathbf{A}_{l}^{b}(:,3). \tag{11.93}$$ Let $\mathbf{b}(t) = [b_1(t), b_2(t), b_3(t)]^{\mathrm{T}}$ be the Earth's magnetic field in the spacecraft coordinates, computed using the spacecraft position, the spacecraft attitude, and a spherical harmonic model of the Earth's magnetic field [283]. Let $\mathbf{m} = [m_1, m_2, m_3]^{\mathrm{T}}$ be the spacecraft magnetic torque coils' induced magnetic moment in the spacecraft coordinates. The desired magnetic control torque \mathbf{t}_m may not be achievable because $$\mathbf{t}_m = \mathbf{m} \times \mathbf{b} = -\mathbf{b} \times \mathbf{m} \tag{11.94}$$ provides only a torque in a two dimensional plane but not in the three dimensional space [235]. However, the spacecraft magnetic torque coils' induced magnetic moment **m** is an achievable engineering variable. Therefore, equation (11.85) should be rewritten as $$\mathbf{J}\dot{\boldsymbol{\omega}} = \mathbf{f}(\boldsymbol{\omega}, \boldsymbol{\Omega}, \mathbf{q}) + \mathbf{t}_{w} + \mathbf{t}_{g} - \mathbf{b} \times \mathbf{m} + \mathbf{t}_{d}, \tag{11.95}$$ where $$\mathbf{f}(\boldsymbol{\omega}, \boldsymbol{\Omega}, \mathbf{q}) = \mathbf{J}\boldsymbol{\omega} \times \boldsymbol{\omega}_{lvlh}^{b} - (\boldsymbol{\omega} + \boldsymbol{\omega}_{lvlh}^{b}) \times [\mathbf{J}(\boldsymbol{\omega} + \boldsymbol{\omega}_{lvlh}^{b}) + \mathbf{J}_{w}\boldsymbol{\Omega}].$$ (11.96) Notice that the cross product of $\mathbf{b} \times \mathbf{m}$ can be expressed as product of an asymmetric matrix \mathbf{b}^{\times} and the vector \mathbf{m} with $$\mathbf{b}^{\times} = \begin{bmatrix} 0 & -b_3(t) & b_2(t) \\ b_3(t) & 0 & -b_1(t) \\ -b_2(t) & b_1(t) & 0 \end{bmatrix}.$$ (11.97) Denote the system states $\mathbf{x} = [\boldsymbol{\omega}^T, \boldsymbol{\Omega}^T, \mathbf{q}^T]^T$ and control inputs $\mathbf{u} = [\mathbf{t}_w^T, \mathbf{m}^T]^T$. The spacecraft control system model can be written as follows: $$\mathbf{J}\dot{\boldsymbol{\omega}} = \mathbf{f}(\boldsymbol{\omega}, \boldsymbol{\Omega}, \mathbf{q}) + \mathbf{t}_g + [\mathbf{I}, -\mathbf{b}^{\times}]\mathbf{u} + \mathbf{t}_d, \tag{11.98a}$$ $$\mathbf{J}_{w}\dot{\mathbf{\Omega}} = -\mathbf{t}_{w},\tag{11.98b}$$ $$\dot{\mathbf{q}} = \mathbf{g}(\mathbf{q}, \boldsymbol{\omega}). \tag{11.98c}$$ **Remark 11.5** The reduced quaternion, instead of the full quaternion, is proposed in this model because of many merits discussed in Chapter 9 (see also [307, 309, 314]). # 11.4.2 Linearized model for attitude and reaction wheel desaturation control The nonlinear model of (11.98) can be used to design control systems. One popular design method for nonlinear model involves the Lyapunov stability theorem, which is actually used in [6, 265]. A design based on this method focuses on stability but not on performance. Another widely known method is the nonlinear optimal control design [59], it normally produces an open loop controller which is not robust [137] and
its computational cost is high. Therefore, it is proposed to use the Linear Quadratic Regulator (LQR) which achieves the optimal performance for the linearized system and is a closed-loop feedback control. Our task in this section is to derive the linearized model for the nonlinear system (11.98). In view of (4.21), ω_{lvlh}^b in (11.89) can be expressed approximately as a linear function of \mathbf{q} as follows $$\omega_{lvlh}^{b} \approx \begin{bmatrix} 0 & 0 & -2\omega_{0} \\ 0 & 0 & 0 \\ 2\omega_{0} & 0 & 0 \end{bmatrix} \mathbf{q} - \begin{bmatrix} 0 \\ \omega_{0} \\ 0 \end{bmatrix}.$$ (11.99) Similarly, \mathbf{t}_g in (11.93) can be expressed approximately as a linear function of \mathbf{q} as in (5.9): $$\mathbf{t}_{g} \approx \begin{bmatrix} 6\omega_{0}^{2}(J_{3} - J_{2}) & 0 & 0\\ 0 & 6\omega_{0}^{2}(J_{3} - J_{1}) & 0\\ 0 & 0 & 0 \end{bmatrix} \mathbf{q} := \mathbf{T}\mathbf{q}.$$ (11.100) Since \mathbf{t}_g and ω_{lvlh}^b are functions of \mathbf{q} , the linearized spacecraft model can be expressed as follows: $$\begin{bmatrix} \mathbf{J} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{J}_{w} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \dot{\omega} \\ \dot{\Omega} \\ \dot{\mathbf{q}} \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathbf{f}}{\partial \omega} & \frac{\partial \mathbf{f}}{\partial \Omega} & \frac{\partial \mathbf{f}}{\partial \mathbf{q}} + \mathbf{T} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \frac{\partial \mathbf{g}}{\partial \omega} & \mathbf{0} & \frac{\partial \mathbf{g}}{\partial \mathbf{q}} \end{bmatrix} \begin{bmatrix} \omega \\ \Omega \\ \mathbf{q} \end{bmatrix} + \begin{bmatrix} \mathbf{I} & -\mathbf{b}^{\times} \\ -\mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{t}_{w} \\ \mathbf{m} \end{bmatrix} + \begin{bmatrix} \mathbf{t}_{d} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix},$$ (11.101) where $\frac{\partial \mathbf{f}}{\partial \omega}$, $\frac{\partial \mathbf{f}}{\partial \Omega}$, $\frac{\partial \mathbf{f}}{\partial \mathbf{q}}$, $\frac{\partial \mathbf{g}}{\partial \omega}$, and $\frac{\partial \mathbf{g}}{\partial \mathbf{q}}$ are evaluated at the desired equilibrium point $\omega = 0$, $\Omega = 0$, and $\mathbf{q} = 0$. Using the definition of (11.97), (11.99), (11.100), and (11.96), we have $$\frac{\partial \mathbf{f}}{\partial \boldsymbol{\omega}}\Big|_{\substack{\boldsymbol{\omega} \approx 0 \\ \boldsymbol{\alpha} \approx 0}} \approx -\mathbf{J}(\boldsymbol{\omega}_{lvlh}^{b})^{\times} + (\mathbf{J}\boldsymbol{\omega}_{lvlh}^{b})^{\times} - (\boldsymbol{\omega}_{lvlh}^{b})^{\times}\mathbf{J}\Big|_{\substack{\boldsymbol{\omega} \approx 0 \\ \boldsymbol{\alpha} \approx 0 \\ \boldsymbol{\alpha} \approx 0}}$$ $$= -\mathbf{J} \begin{bmatrix} 0 & 0 & -\omega_0 \\ 0 & 0 & 0 \\ \omega_0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & -J_2\omega_0 \\ 0 & 0 & 0 \\ J_2\omega_0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 & -\omega_0 \\ 0 & 0 & 0 \\ \omega_0 & 0 & 0 \end{bmatrix} \mathbf{J}$$ $$= \begin{bmatrix} 0 & 0 & \omega_0(J_1 - J_2 + J_3) \\ 0 & 0 & 0 \\ \omega_0(-J_1 + J_2 - J_3) & 0 & 0 \end{bmatrix}, \qquad (11.102)$$ $$\frac{\partial \mathbf{f}}{\partial \Omega} \Big|_{\substack{\omega \approx 0 \\ \Omega \approx 0 \\ \mathbf{q} \approx 0}} \approx -(\omega)^{\times} \mathbf{J}_{w} - (\omega_{lvlh}^{b})^{\times} \mathbf{J}_{w} \Big|_{\substack{\omega \approx 0 \\ \Omega \approx 0 \\ \mathbf{q} \approx 0}}$$ $$= \begin{bmatrix} 0 & 0 & \omega_{0} \\ 0 & 0 & 0 \\ -\omega_{0} & 0 & 0 \end{bmatrix} \mathbf{J}_{w}$$ $$= \begin{bmatrix} 0 & 0 & \omega_{0} J_{w_{3}} \\ 0 & 0 & 0 \\ -\omega_{0} J_{w_{1}} & 0 & 0 \end{bmatrix}, \qquad (11.103)$$ and $$\frac{\partial \mathbf{f}}{\partial \mathbf{q}} \Big|_{\substack{\omega \approx 0 \\ \Omega \approx 0}} \approx -\frac{\partial}{\partial \mathbf{q}} \left(\omega_{lvlh}^b \times \mathbf{J} \omega_{lvlh}^b \right) \Big|_{\substack{\omega \approx 0 \\ \Omega \approx 0 \\ \mathbf{q} \approx 0}}$$ $$= (\mathbf{J} \omega_{lvlh}^b)^{\times} \frac{\partial \omega_{lvlh}^b}{\partial \mathbf{q}} - \omega_{lvlh}^b \times \mathbf{J} \frac{\partial \omega_{lvlh}^b}{\partial \mathbf{q}} \Big|_{\substack{\omega \approx 0 \\ \Omega \approx 0 \\ \mathbf{q} \approx 0}}$$ $$\approx (\mathbf{J} \omega_{lvlh}^b)^{\times} \begin{bmatrix} 0 & 0 & -2\omega_0 \\ 0 & 0 & 0 \\ 2\omega_0 & 0 & 0 \end{bmatrix} - (\omega_{lvlh}^b)^{\times} \mathbf{J} \begin{bmatrix} 0 & 0 & -2\omega_0 \\ 0 & 0 & 0 \\ 2\omega_0 & 0 & 0 \end{bmatrix}$$ $$\approx \begin{bmatrix} 0 & 0 & -\omega_0 \\ -\omega_0 J_2 \\ 0 \end{bmatrix}^{\times} - \begin{bmatrix} 0 & 0 & -\omega_0 \\ 0 & 0 & 0 \\ \omega_0 & 0 & 0 \end{bmatrix} \mathbf{J} \right) \begin{bmatrix} 0 & 0 & -2\omega_0 \\ 0 & 0 & 0 \\ 2\omega_0 & 0 & 0 \end{bmatrix}$$ $$\approx \begin{bmatrix} 0 & 0 & -\omega_0 (J_2 - J_3) \\ 0 & 0 & 0 \\ -\omega_0 (J_1 - J_2) & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2\omega_0 \\ 0 & 0 & 0 \\ 2\omega_0 & 0 & 0 \end{bmatrix}$$ $$= \begin{bmatrix} 2\omega_0^2 (J_3 - J_2) & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2\omega_0^2 (J_1 - J_2) \end{bmatrix} . \tag{11.104}$$ From (11.88), we have $$\frac{\partial \mathbf{g}}{\partial \boldsymbol{\omega}}\Big|_{\substack{\boldsymbol{\omega} \approx 0 \\ \mathbf{q} \approx 0}} \approx \frac{1}{2}\mathbf{I},$$ (11.105) $$\frac{\partial \mathbf{g}}{\partial \mathbf{q}}\bigg|_{\substack{\omega \approx 0 \\ \mathbf{q} \approx 0}} \approx \mathbf{0}. \tag{11.106}$$ Substituting (11.100), (11.97), (11.102), (11.103), (11.104), (11.105), and (11.106) into (11.101) yields where $a_{13}=\omega_0\frac{J_1-J_2+J_3}{J_1}$, $a_{16}=\frac{\omega_0J_{w_3}}{J_1}$, $a_{17}=8\omega_0^2\frac{J_3-J_2}{J_1}$, $a_{28}=6\omega_0^2\frac{J_3-J_1}{J_2}$, $a_{31}=\omega_0\frac{J_1-J_2+J_3}{-J_3}$, $a_{34}=\frac{\omega_0J_{w_1}}{-J_3}$, $a_{39}=2\omega_0^2\frac{J_1-J_2}{J_3}$. It is worthwhile to notice that (11.107) is in general a time-varying system. The time-variation of the system arises from an approximately periodic function of $\mathbf{b}(t)=\mathbf{b}(t+T)$, where T is the orbital period given in (11.32). This magnetic field $\mathbf{b}(t)$ is given in (11.3). The time t=0 is measured at the ascending-node crossing of the magnetic equator. Therefore, the periodic time-varying matrix **B** in (11.107) can be written as where $$b_{15} = \frac{2\mu_f}{a^3 J_1} \sin(i_m) \sin(\omega_0 t),$$ $$b_{16} = \frac{\mu_f}{a^3 J_1} \cos(i_m),$$ $$b_{24} = -\frac{2\mu_f}{a^3 J_2} \sin(i_m) \sin(\omega_0 t),$$ $$b_{26} = \frac{\mu_f}{a^3 J_2} \sin(i_m) \cos(\omega_0 t),$$ $$b_{34} = -\frac{\mu_f}{a^3 J_3} \cos(i_m),$$ $$b_{35} = -\frac{\mu_f}{a^3 J_3} \sin(i_m) \cos(\omega_0 t).$$ A special case is when $i_m = 0$, i.e., the spacecraft orbit is on the equator plane of the Earth's magnetic field. In this case, $\mathbf{b}(t) = [0, -\frac{\mu_f}{a^3}, 0]^T$ is a constant vector and \mathbf{B} is reduced to a constant matrix given as follows: In the remainder of the discussion, we will consider the discrete time system of (11.107) because it is more suitable for computer controlled system implementations. The discrete time system is given as follows: $$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k + \mathbf{B}_k\mathbf{u}_k + \mathbf{d}_k. \tag{11.110}$$ Assuming that the sampling time is t_s , the simplest but less accurate discretization formulas to get \mathbf{A}_k and \mathbf{B}_k are given as (11.34). A slightly more complex but more accurate discretization formulas to get \mathbf{A}_k and \mathbf{B}_k are given as follows [137, page 53]: $$\mathbf{A}_k = e^{\mathbf{A}t_s}, \quad \mathbf{B}_k = \int_0^{t_s} e^{\mathbf{A}\tau} B(\tau) d\tau. \tag{11.111}$$ ## 11.4.3 The LQR design Given the linearized spacecraft model (11.107), which has the state variables composed of spacecraft quaternion \mathbf{q} , the spacecraft rotational rate concerning the LVLH frame ω , and the reaction wheel rotational speed Ω , one can see that to control the spacecraft attitude and to manage the reaction wheel momentum are equivalent to minimize the following objective function $$\int_{0}^{\infty} (\mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x} + \mathbf{u}^{\mathrm{T}} \mathbf{R} \mathbf{u}) dt$$ (11.112) under the constraints of (11.107). The corresponding discrete time system is given as follows: $$\lim_{N \to \infty} \left(\min \frac{1}{2} \mathbf{x}_N^{\mathrm{T}} \mathbf{Q}_N \mathbf{x}_N + \frac{1}{2} \sum_{k=0}^{N-1} \mathbf{x}_k^{\mathrm{T}} \mathbf{Q}_k \mathbf{x}_k + \mathbf{u}_k^{\mathrm{T}} \mathbf{R}_k \mathbf{u}_k \right)$$ s.t. $$\mathbf{x}_{k+1} = \mathbf{A} \mathbf{x}_k + \mathbf{B}_k \mathbf{u}_k + \mathbf{d}_k.$$ (11.113) This is clearly a LQR design problem which has known efficient methods to solve. However, in each special case, this system has some special properties which should be fully utilized to select the most efficient and effective method for each of these cases. 11.4.3.1 Case 1: $$\mathbf{i}_m = 0$$ It was shown earlier in this Chapter that a spacecraft in this orbit is not controllable if only magnetic torque bars are used. But for a spacecraft with three reaction wheels, as we discussed in this section, the system is fully controllable. The controllability condition can be checked straightforwardly but the check is tedious and is omitted in this section (also the controllability check is not the focus of this section). In this case, as we have seen from (11.107), (11.109), and (11.34) that the linear system is time-invariant. Therefore, a method for time-varying system is not appropriate for this simple problem. For this *linear time-invariant* system (LTI), the optimal solution of (11.113) is given by (B.50) (see also [137, page 69]) $$\mathbf{u}_k = -(\mathbf{R} + \mathbf{B}^{\mathrm{T}} \mathbf{P} \mathbf{B})^{-1} \mathbf{B}^{\mathrm{T}} \mathbf{P} \mathbf{A} \mathbf{x}_k = -\mathbf{K} \mathbf{x}_k,
\tag{11.114}$$ where \mathbf{P} is a constant positive semi-definite solution of the following discrete-time algebraic Riccati equation (DARE) (B.29) $$\mathbf{P} = \mathbf{O} + \mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{A} - \mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{B} (\mathbf{R} + \mathbf{B}^{\mathrm{T}} \mathbf{P} \mathbf{B})^{-1} \mathbf{B}^{\mathrm{T}} \mathbf{P} \mathbf{A}. \tag{11.115}$$ The solution of (11.115) is discussed in Appendix B.3. There is an efficient algorithms [7] for this DARE system and an MATLAB® function dare implements this algorithm. 11.4.3.2 Case 2: $$\mathbf{i}_m \neq 0$$ It was shown earlier in this Chapter that a spacecraft without any reaction wheel in any orbit of this case is controllable if the spacecraft design satisfies some additional conditions imposed on **J** matrix. By intuition, the system is also controllable by adding reaction wheels. As a matter of fact, adding reaction wheels will achieve better performance of spacecraft attitude as we will see later in this section (which is also pointed out in [283, page 19]). A better algorithm for this case is the one developed earlier in this Chapter because **B** is a time-varying matrix but **A** is a constant matrix. The optimal solution of (11.113) is discussed in the previous section, which is given by $$\mathbf{u}_k = -(\mathbf{R}_k + \mathbf{B}_k^{\mathrm{T}} \mathbf{P}_k \mathbf{B}_k)^{-1} \mathbf{B}_k^{\mathrm{T}} \mathbf{P}_k \mathbf{A}_k \mathbf{x}_k = -\mathbf{K}_k \mathbf{x}_k, \tag{11.116}$$ where P_k is a periodic positive semi-definite solution of the periodic time-varying Riccati (PTVR) equation (B.19) which is rewritten here $$\mathbf{P}_{k} = \mathbf{Q}_{k} + \mathbf{A}_{k}^{\mathrm{T}} \mathbf{P}_{k} \mathbf{A}_{k} \\ -\mathbf{A}_{k}^{\mathrm{T}} \mathbf{P}_{k} \mathbf{B}_{k} (\mathbf{R}_{k} + \mathbf{B}_{k}^{\mathrm{T}} \mathbf{P}_{k} \mathbf{B}_{k})^{-1} \mathbf{B}_{k}^{\mathrm{T}} \mathbf{P}_{k} \mathbf{A}_{k}.$$ $$(11.117)$$ The periodic Riccati equation for this case is discussed in the previous section and the algorithm is presented below: ### Algorithm 11.2 Data: i_m , J, J_w , Q, R, the altitude of the spacecraft (for the calculation of a in (11.3)), t_s (the selected sample time period), and p (the total samples in one period $T = \frac{2\pi}{\omega_0}$). Step 1: For k = 1, ..., p, calculate \mathbf{A}_k and \mathbf{B}_k using (11.34) or (11.111). Step 2: Calculate \mathbf{E}_k and \mathbf{F}_k using $$\mathbf{E}_{k} = \begin{bmatrix} \mathbf{I} & \mathbf{B}_{k} \mathbf{R}^{-1} \mathbf{B}_{k}^{\mathrm{T}} \\ \mathbf{0} & \mathbf{A}^{\mathrm{T}} \end{bmatrix}, \tag{11.118}$$ $$\mathbf{F}_k = \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ -\mathbf{O} & \mathbf{I} \end{bmatrix} = \mathbf{F}.\tag{11.119}$$ Step 3: Calculate Γ_k , for k = 1, ..., p, using $$\Gamma_k = \mathbf{F}^{-1} \mathbf{E}_k \mathbf{F}^{-1} \mathbf{E}_{k+1} \dots, \mathbf{F}^{-1} \mathbf{E}_{k+p-2} \mathbf{F}^{-1} \mathbf{E}_{k+p-1}.$$ (11.120) Step 4: Use Schur decomposition $$\begin{bmatrix} \mathbf{W}_{11k} & \mathbf{W}_{12k} \\ \mathbf{W}_{21k} & \mathbf{W}_{22k} \end{bmatrix}^{\mathrm{T}} \Gamma_{k} \begin{bmatrix} \mathbf{W}_{11k} & \mathbf{W}_{12k} \\ \mathbf{W}_{21k} & \mathbf{W}_{22k} \end{bmatrix}$$ $$= \begin{bmatrix} \mathbf{S}_{11k} & \mathbf{S}_{12k} \\ \mathbf{0} & \mathbf{S}_{22k} \end{bmatrix}. \tag{11.121}$$ Step 5: Calculate P_k using $$\mathbf{P}_k = \mathbf{W}_{21k} \mathbf{W}_{11k}^{-1}. \tag{11.122}$$ ## 11.4.4 Simulation test and implementation consideration This section has several goals. First, it shows, by using a design example, that the proposed design achieves both attitude control and reaction wheel momentum management. Second, it compares with the design in the previous section which does not use reaction wheels to show that using reaction wheels achieves better attitude pointing accuracy. More important, it demonstrates that the LQR design works very well for both attitude and desaturation control for the nonlinear spacecraft in the environment close to the reality. Finally, it discusses the strategy in real spacecraft control system implementation. ## 11.4.4.1 Comparison with the design without reaction wheels The proposed design algorithm has been tested using the same spacecraft model and orbit parameters as in the previous section with the spacecraft inertia matrix given by $$\mathbf{J} = \text{diag}(250, 150, 100) \, kg \cdot m^2.$$ The orbital inclination $i_m = 57^{\circ}$ and the orbit is assumed to be circular with the altitude 657 km. In view of equation (11.32), the orbital period is 5863 seconds and the orbital rate is $\omega_0 = 0.0011$ rad/second. Assuming that the total number of samples taken in one orbit is 100, then, each sample period is 58.6352 second. It is easy to see that all parameters are selected the same as the simulation example in the previous section so that the two different designs can be compared. Select $\mathbf{Q} = \text{diag}([0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.02, 0.02, 0.02])$ and $\mathbf{R} = \text{diag}([10^3, 10^3, 10^3, 10^2, 10^2, 10^2])$. The solution of the periodic Riccati equations P_k for k = 0, 1, 2, ..., 99 have been calculated and stored using Algorithm 11.2. Assuming that the initial quaternion error is (0.01, 0.01, 0.01), initial body rate vector is (0.00001, 0.00001, 0.00001) radians/second, and the initial wheel speed vector is (0.00001, 0.00001, 0.00001) radians/second, applying the feedback (11.116) to the linearized system (11.107) and (11.108), the linearized spacecraft rotational rate response is obtained and given in Figure 11.7, the reaction wheel response is given in Figure 11.8, and the spacecraft attitude response is given in Figure 11.9. **Figure 11.7:** Body rate response ω_1 , ω_2 , and ω_3 . **Figure 11.8:** Reaction wheel response Ω_1 , Ω_2 , and Ω_3 . Comparing the response obtained here using both reaction wheels and magnetic torque coils and the response obtained in previous section that uses magnetic torques only, one can see that both control methods stabilize the spacecraft, but using reaction wheels achieve much accurate nadir pointing. Also reaction **Figure 11.9:** Attitude response q_1 , q_2 , and q_3 . wheel speeds approach to zero as *t* goes to infinity. Therefore, the second design goal for reaction wheel desaturation is achieved nicely. ## 11.4.4.2 Control of the nonlinear system It is natural to ask the following question: can the designed controller (11.116), which is based on the linearized model, stabilize the original nonlinear spacecraft system (11.98) with satisfactory performance? This question is answered by applying the designed controller to the original nonlinear spacecraft system (11.98). More specifically, the LVLH frame rotational rate ω_{hylh}^b is calculated using the accurate nonlinear formula (11.89) rather than the approximated linear model (11.99). The gravity gradient torque \mathbf{t}_{ϱ} is calculated using the accurate nonlinear formula (11.93) rather than the approximated linear model (11.100). The Earth's magnetic field is calculated using the much accurate International Geomagnetic Reference Field (IGRF) model [64] rather than the simplified model (11.3). This is done as follows. First, combining (2.32) and (2.55) gives the lateral speed of the spacecraft $v = R\omega_0$. Given the altitude of the spacecraft (657 km) and the orbital radius R is 7028 kilometers, the lateral speed of the spacecraft is obtained. Assuming that the ascending node at t = 0 ("now") is the **X** axis of the ECEF frame, the velocity vector $\mathbf{v} = [0, v\cos(i_m), v\sin(i_m)]^{\mathrm{T}}$. Using Algorithm 3.4 of [50, page 142], one can get the spacecraft coordinate in ECI frame at any time after t = 0. Converting ECI coordinate to ECEF coordinate, one can calculate a much accurate Earth magnetic field vector **b** using IGRF model [64], which has been implemented in Matlab. Applying this Earth magnetic field vector **b** and **Figure 11.10:** Body rate response ω_1 , ω_2 , and ω_3 . feedback control $\mathbf{u}_k = -\mathbf{K}_k \mathbf{x}_k$ designed by the LQR method to (11.98), the nonlinear spacecraft system is controlled by using the LQR controller. Also, larger initial errors in 100 test cases (possibly 10 time larger than they were used in the previous simulation test) are randomly generated. The nonlinear spacecraft system response to the LQR controller is given in Figures 11.10, 11.11, and 11.12. These figures show that the proposed design does achieve the design goals. Moreover, the difference between the linear (approximate) system response and nonlinear (true) system response for the LQR design is very small. ## 11.4.4.3 Implementation to real system In a real space environment, even the magnetic field vector obtained from the high fidelity IGRF model may not be identical to the real magnetic field vector which can be measured by a magnetometer installed on spacecraft. Therefore, it is suggested to use the measured magnetic field vector \mathbf{b} to form \mathbf{B}_k in the state feedback (11.116). Because of the interaction between the magnetic torque coils and the magnetometer, it is a common practice that measurement and control are not taken at the same time (some time slot in a sample period is allocated to the measurement and the rest time in the sample period is allocated for control). Therefore, a scaling for the control gain should be taken to compensate for the time loss in the sample period when measurement is taken. For example, if the magnetic field measurement uses half the time of the sample period, the control **Figure 11.11:** Reaction wheel response Ω_1 , Ω_2 , and Ω_3 . **Figure 11.12:** Attitude response q_1 , q_2 , and q_3 . gain should be doubled because only half the sample period is used for control. This is
similar to the method used in [314], which will be discussed in the next chapter. ## 11.5 LQR design based on a novel lifting method It has been known for about six decades that linear periodic time-varying systems can be converted to some equivalent linear time-invariant systems [109, 110]. The most popular and widely used methods that convert the linear periodic time-varying model into linear time-invariant models are the so-called *lifting methods* proposed in [79, 172]. However, the LQR design for linear periodic system has been focused on the periodic system not on the equivalent linear time-invariant systems proposed in [79, 172]. This strategy leads to extensive research on the solutions of the periodic Riccati equations (see [28, 29, 30, 270, 271] and references therein). For the discrete-time *linear periodic* system, two efficient algorithms are discussed in this chapter for the Discrete-time Periodic Algebraic Riccati Equation (DPARE). This section considers a novel lifting method that converts the linear periodic system to an augmented Linear Time-Invariant (LTI) system. It shows that the LQR design method can be directly applied to this LTI system. Moreover, by making full use of the structure of the augmented LTI system, one can derive a very efficient algorithm. The new algorithm is compared to the ones discussed in the previous sections of this chapter. In addition to some simple analysis, the efficiency and effectiveness of the new algorithm is demonstrated by the simulation test for the design problems of spacecraft attitude control using magnetic torques. The materials of this section are based on [320, 326]. ## 11.5.1 Periodic LQR design based on linear periodic system The two efficient algorithms for solving DPARE discussed in the previous sections are briefly reviewed. This will be beneficial later in the comparison of the proposed method to the existing methods. Let *p* be an integer representing the total number of samples in one period of a periodic discrete-time system. The following discrete-time linear periodic system is considered: $$\mathbf{x}_{k+1} = \mathbf{A}_k \mathbf{x}_k + \mathbf{B}_k \mathbf{u}_k, \tag{11.123}$$ where $\mathbf{A}_k = \mathbf{A}_{k+p} \in \mathbf{R}^{n \times n}$ and $\mathbf{B}_k = \mathbf{B}_{k+p} \in \mathbf{R}^{n \times m}$ are periodic time-varying matrices. For this discrete-time linear periodic system (11.33), the LQR state feedback control is to find the optimal \mathbf{u}_k to minimize the following quadratic cost function $$\lim_{N \to \infty} \left(\min \frac{1}{2} \mathbf{x}_N^{\mathrm{T}} \mathbf{Q}_N \mathbf{x}_N + \frac{1}{2} \sum_{k=0}^{N-1} \mathbf{x}_k^{\mathrm{T}} \mathbf{Q}_k \mathbf{x}_k + \mathbf{u}_k^{\mathrm{T}} \mathbf{R}_k \mathbf{u}_k \right)$$ (11.124) where $$\mathbf{Q}_k = \mathbf{Q}_{k+p} \ge 0, \tag{11.125}$$ $$\mathbf{R}_k = \mathbf{R}_{k+p} > 0, \tag{11.126}$$ and the initial condition \mathbf{x}_0 is given. It is now known that the LQR design for problem (11.33–11.37) can be solved by using the periodic solution of the discrete-time periodic algebraic Riccati equation described in the previous sections. These two algorithms solve p n-dimensional matrix Riccati equations to find p positive semidefinite matrices \mathbf{P}_k , $k = 1, \ldots, p$. Given \mathbf{P}_k , the periodic feedback controllers are given by the following equations: $$\mathbf{u}_k = -(\mathbf{R}_k + \mathbf{B}_k^{\mathrm{T}} \mathbf{P}_k \mathbf{B}_k)^{-1} \mathbf{B}_k^{\mathrm{T}} \mathbf{P}_k \mathbf{A}_k \mathbf{x}_k. \tag{11.127}$$ These two algorithms are summarized as follows: Let $$\mathbf{E}_{k} = \begin{bmatrix} \mathbf{I} & \mathbf{B}_{k} \mathbf{R}_{k}^{-1} \mathbf{B}_{k}^{\mathrm{T}} \\ \mathbf{0} & \mathbf{A}_{k}^{\mathrm{T}} \end{bmatrix} = \mathbf{E}_{k+p}, \tag{11.128}$$ $$\mathbf{F}_{k} = \begin{bmatrix} \mathbf{A}_{k} & \mathbf{0} \\ -\mathbf{Q}_{k} & \mathbf{I} \end{bmatrix} = \mathbf{F}_{k+p}. \tag{11.129}$$ If A_k is invertible, then E_k and F_k are invertible, and $$\mathbf{E}_k^{-1} = \begin{bmatrix} \mathbf{I} & -\mathbf{B}_k \mathbf{R}_k^{-1} \mathbf{B}_k^{\mathrm{T}} \mathbf{A}_k^{-\mathrm{T}} \\ \mathbf{0} & \mathbf{A}_k^{-\mathrm{T}} \end{bmatrix} = \mathbf{E}_{k+p}^{-1}.$$ and $$\mathbf{F}_k^{-1} = \begin{bmatrix} \mathbf{A}_k^{-1} & \mathbf{0} \\ \mathbf{Q}_k \mathbf{A}_k^{-1} & \mathbf{I} \end{bmatrix} = \mathbf{F}_{k+p}^{-1}.$$ Let \mathbf{y}_k be the costate of \mathbf{x}_k , $\mathbf{z}_k = [\mathbf{x}_k^{\mathrm{T}}, \mathbf{y}_k^{\mathrm{T}}]^{\mathrm{T}}$, and $$\Pi_{k} = \mathbf{E}_{k+p-1}^{-1} \mathbf{F}_{k+p-1} \mathbf{E}_{k+p-2}^{-1} \mathbf{F}_{k+p-2} \dots \mathbf{E}_{k+1}^{-1} \mathbf{F}_{k+1} \mathbf{E}_{k}^{-1} \mathbf{F}_{k} = \Pi_{k+p}, \quad (11.130)$$ $$\Gamma_k = \mathbf{F}_k^{-1} \mathbf{E}_k \mathbf{F}_{k+1}^{-1} \mathbf{E}_{k+1} \dots, \mathbf{F}_{k+p-2}^{-1} \mathbf{E}_{k+p-2} \mathbf{F}_{k+p-1}^{-1} \mathbf{E}_{k+p-1} = \Gamma_{k+p}.$$ (11.131) The solutions of p discrete-time periodic algebraic Riccati equations are symmetric positive semi-definite matrices, \mathbf{P}_k , k = 1, ..., p, which are related to the solutions of either one of the two linear systems of equations: $$\mathbf{z}_{k+p} = \Pi_k \mathbf{z}_k, \tag{11.132}$$ $$\mathbf{z}_k = \Gamma_k \mathbf{z}_{k+p}. \tag{11.133}$$ Therefore, P_k , k = 1,...,p, can be obtained by two methods. The first method uses Schur decomposition: $$\begin{bmatrix} \mathbf{T}_{11k} & \mathbf{T}_{12k} \\ \mathbf{T}_{21k} & \mathbf{T}_{22k} \end{bmatrix}^{T} \Pi_{k} \begin{bmatrix} \mathbf{T}_{11k} & \mathbf{T}_{12k} \\ \mathbf{T}_{21k} & \mathbf{T}_{22k} \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{11k} & \mathbf{S}_{12k} \\ \mathbf{0} & \mathbf{S}_{22k} \end{bmatrix},$$ (11.134) where S_{11k} is upper-triangular and has all of its eigenvalues inside the unit circle. The periodic solution P_k , k = 1, ..., p, is given by $$\mathbf{P}_k = \mathbf{T}_{21k} \mathbf{T}_{11k}^{-1}. \tag{11.135}$$ The second method uses Schur decomposition: $$\begin{bmatrix} \mathbf{W}_{11k} & \mathbf{W}_{12k} \\ \mathbf{W}_{21k} & \mathbf{W}_{22k} \end{bmatrix}^{\mathrm{T}} \Gamma_k \begin{bmatrix} \mathbf{W}_{11k} & \mathbf{W}_{12k} \\ \mathbf{W}_{21k} & \mathbf{W}_{22k} \end{bmatrix} = \begin{bmatrix} \mathbf{U}_{11k} & \mathbf{U}_{12k} \\ \mathbf{0} & \mathbf{U}_{22k} \end{bmatrix}, \quad (11.136)$$ where \mathbf{U}_{11k} is upper-triangular and has all of its eigenvalues outside the unit circle. The periodic solution \mathbf{P}_k , k = 1, ..., p, is given by $$\mathbf{P}_k = \mathbf{W}_{21k} \mathbf{W}_{11k}^{-1}. \tag{11.137}$$ **Remark 11.6** When \mathbf{A}_k and \mathbf{Q}_k are constant matrices, the second method is much efficient because \mathbf{F}_k becomes a constant matrix and $\mathbf{F}_k^{-1} = \cdots = \mathbf{F}_{k+p-1}^{-1} = \mathbf{F}^{-1}$, which makes the computation of (11.131) much more efficient than the computation of (11.130). # 11.5.2 Periodic LQR design based on linear time-invariant system This section discusses a lifting method that converts the discrete-time linear periodic system into an augmented linear time-invariant system. Thereby, the periodic LQR design is reduced to the LQR design for the *augmented linear time-invariant* system. To simplify the discussion, assume that the number of samples in a period is p = 3. In this section, the small case k is used for the discrete-time in the periodic system and the capital K is used for the discrete-time in the augmented system. $$\begin{split} \mathbf{x}_1 &= \mathbf{A}_0 \mathbf{x}_0 + \mathbf{B}_0 \mathbf{u}_0, \\ \mathbf{x}_2 &= \mathbf{A}_1 \mathbf{x}_1 + \mathbf{B}_1 \mathbf{u}_1, \\ \mathbf{x}_3 &= \mathbf{A}_2 \mathbf{x}_2 + \mathbf{B}_2 \mathbf{u}_2, \\ \mathbf{x}_4 &= \mathbf{A}_0 \mathbf{x}_3 + \mathbf{B}_0 \mathbf{u}_3, \\ \mathbf{x}_5 &= \mathbf{A}_1 \mathbf{x}_4 + \mathbf{B}_1 \mathbf{u}_4, \\ \mathbf{x}_6 &= \mathbf{A}_2 \mathbf{x}_5 + \mathbf{B}_2 \mathbf{u}_5, \\ \mathbf{x}_7 &= \mathbf{A}_0 \mathbf{x}_6 + \mathbf{B}_0 \mathbf{u}_6, \\ &\vdots \end{split}$$ It is ease to regroup the periodic system and to rewrite it as the following form: $$egin{array}{lll} ar{\mathbf{x}}_1 & = & \left[egin{array}{ccc} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{array} ight] = \left[egin{array}{ccc} \mathbf{0} & \mathbf{0} & \mathbf{A}_0 \\ \mathbf{0} & \mathbf{0} & \mathbf{A}_1 \mathbf{A}_0 \\ \mathbf{0} & \mathbf{0} & \mathbf{A}_2 \mathbf{A}_1 \mathbf{A}_0 \end{array} ight] \left[egin{array}{c} \mathbf{0} \\ \mathbf{0} \\ \mathbf{x}_0 \end{array} ight]$$ in general, for $k \ge 0$ ($K \ge 0$), we have $$\bar{\mathbf{x}}_{K+1} := \begin{bmatrix} \mathbf{x}_{pk+1} \\ \mathbf{x}_{pk+2} \\ \mathbf{x}_{pk+3} \end{bmatrix} \\ = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{A}_0 \\ \mathbf{0} & \mathbf{0} & \mathbf{A}_1 \mathbf{A}_0 \\ \mathbf{0} & \mathbf{0} & \mathbf{A}_2 \mathbf{A}_1 \mathbf{A}_0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_{p(k-1)+1} \\ \mathbf{x}_{p(k-1)+2} \\ \mathbf{x}_{p(k-1)+3} \end{bmatrix} \\ + \begin{bmatrix} \mathbf{B}_0 & \mathbf{0} & \mathbf{0} \\ \mathbf{A}_1 \mathbf{B}_0 & \mathbf{B}_1 & \mathbf{0} \\ \mathbf{A}_2 \mathbf{A}_1 \mathbf{B}_0 & \mathbf{A}_2 \mathbf{B}_1 & \mathbf{B}_2 \end{bmatrix} \begin{bmatrix} \mathbf{u}_{pk} \\ \mathbf{u}_{pk+1} \\ \mathbf{u}_{pk+2} \end{bmatrix} \\ := \bar{\mathbf{A}} \bar{\mathbf{x}}_K + \bar{\mathbf{B}} \bar{\mathbf{u}}_K, \tag{11.139}$$ where $$ar{\mathbf{x}}_0 = \left[egin{array}{c} \mathbf{x}_{-2} \\ \mathbf{x}_{-1} \\ \mathbf{x}_0 \end{array} ight] := \left[egin{array}{c} \mathbf{0} \\ \mathbf{0} \\ \mathbf{x}_0 \end{array} ight], \quad ar{\mathbf{u}}_0 = \left[egin{array}{c} \mathbf{u}_0 \\ \mathbf{u}_1 \\ \mathbf{u}_2 \end{array} ight].$$ It is worthwhile to note that (11.139) is a *linear time-invariant* system. It is ease to extend the result to the general case. Let $$ar{\mathbf{x}}_K = \left[egin{array}{c} \mathbf{x}_{p(k-1)+1} \\ \mathbf{x}_{p(k-1)+2} \\
drawnowsigned \\ \vdots \\ \mathbf{x}_{p(k-1)+p} \end{array} ight], \quad ar{\mathbf{x}}_0 := \left[egin{array}{c} \mathbf{0} \\ drawnowsigned \\ \mathbf{0} \\ \mathbf{x}_0 \end{array} ight], \quad ar{\mathbf{u}}_K = \left[egin{array}{c} \mathbf{u}_{pk} \\ \mathbf{u}_{pk+1} \\ \ddots \\ \mathbf{u}_{pk+p-1} \end{array} ight],$$ and $$\bar{\mathbf{x}}_{K+1} = \begin{bmatrix} \mathbf{x}_{pk+1} \\ \mathbf{x}_{pk+2} \\ \vdots \\ \mathbf{x}_{nk+p} \end{bmatrix}, \quad \bar{\mathbf{u}}_{K+1} = \begin{bmatrix} \mathbf{u}_{p(k+1)} \\ \mathbf{u}_{p(k+1)+1} \\ \vdots \\ \mathbf{u}_{p(k+1)+p-1} \end{bmatrix}.$$ #### Theorem 11.6 Given a linear periodic discrete-time system with period of p as follows: $$\mathbf{x}_{pk+1} = \mathbf{A}_{0}\mathbf{x}_{pk} + \mathbf{B}_{0}\mathbf{u}_{pk},$$ $$\mathbf{x}_{pk+2} = \mathbf{A}_{1}\mathbf{x}_{pk+1} + \mathbf{B}_{1}\mathbf{u}_{pk+1},$$ $$\vdots$$ $$\mathbf{x}_{pk+p} = \mathbf{A}_{p-1}\mathbf{x}_{pk+p-1} + \mathbf{B}_{p-1}\mathbf{u}_{pk+p-1}.$$ (11.140) Then, this discrete-time periodic system is equivalent to the linear time-invariant system given as follows: $$\bar{\mathbf{x}}_{K+1} := \begin{bmatrix} \mathbf{x}_{pk+1} \\ \mathbf{x}_{pk+2} \\ \vdots \\ \mathbf{x}_{pk+p} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \dots & \mathbf{0} & \mathbf{A}_0 \\ \mathbf{0} & \dots & \mathbf{0} & \mathbf{A}_1 \mathbf{A}_0 \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{0} & \dots & \mathbf{0} & \mathbf{A}_1 \mathbf{A}_0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_{p(k-1)+1} \\ \mathbf{x}_{p(k-1)+2} \\ \vdots \\ \mathbf{x}_{p(k-1)+p} \end{bmatrix} \\ + \begin{bmatrix} \mathbf{B}_0 & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{A}_1 \mathbf{B}_0 & \mathbf{B}_1 & \dots & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{A}_{p-1} \dots \mathbf{A}_1 \mathbf{B}_0 & \mathbf{A}_{p-1} \dots \mathbf{A}_2 \mathbf{B}_1 & \dots & \mathbf{B}_{p-1} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{pk} \\ \mathbf{u}_{pk+1} \\ \dots \\ \mathbf{u}_{pk+p-1} \end{bmatrix} \\ := \bar{\mathbf{A}} \bar{\mathbf{x}}_K + \bar{\mathbf{B}} \bar{\mathbf{u}}_K, \tag{11.141}$$ where $\bar{\mathbf{A}} \in \mathbf{R}^{pn \times pn}$ and $\bar{\mathbf{B}} \in \mathbf{R}^{pn \times pm}$. Moreover, the structure of $\bar{\mathbf{B}}$ matrix guarantees the causality of the system (11.141). It is worthwhile to emphasize that there is no overlap between $\bar{\mathbf{x}}_{K+1}$ and $\bar{\mathbf{x}}_K$; in addition, there is no overlap between $\bar{\mathbf{u}}_{K+1}$ and $\bar{\mathbf{u}}_K$. This is the major difference between the proposed lifting method and the existing lifting methods in [79, 172] (see also [271]). This feature makes it possible to apply existing design methods to the linear time-invariant system (11.141) which is equivalent to the linear periodic system (11.140). The remainder of this section discusses the LQR design for the system (11.141). Again, let $$\mathbf{Q}_k = \mathbf{Q}_{k+p} \ge 0, \tag{11.142}$$ $$\mathbf{R}_k = \mathbf{R}_{k+p} > 0, \tag{11.143}$$ hold and $$\bar{\mathbf{Q}}_K := \operatorname{diag}(\mathbf{Q}_1, \dots, \mathbf{Q}_{p-1}, \mathbf{Q}_0) \ge 0, \bar{\mathbf{R}}_K := \operatorname{diag}(\mathbf{R}_0, \dots, \mathbf{R}_{p-1}) > 0,$$ (11.144) be the constant matrices. Since the initial condition $\bar{\mathbf{x}}_0$ is given. The LQR state feedback control is to find the optimal $\bar{\mathbf{u}}_K$ to minimize the following quadratic cost function $$\lim_{N \to \infty} \min \frac{1}{2} \left[\mathbf{x}_{Np}^{\mathsf{T}} \mathbf{Q}_{Np} \mathbf{x}_{Np} + \sum_{k=0}^{Np-1} \left(\mathbf{x}_{k}^{\mathsf{T}} \mathbf{Q}_{k} \mathbf{x}_{k} + \mathbf{u}_{k}^{\mathsf{T}} \mathbf{R}_{k} \mathbf{u}_{k} \right) \right]$$ $$= \lim_{N \to \infty} \min \frac{1}{2} \left(\mathbf{x}_{0}^{\mathsf{T}} \mathbf{Q}_{0} \mathbf{x}_{0} + \mathbf{u}_{0}^{\mathsf{T}} \mathbf{R}_{0} \mathbf{u}_{0} + \dots + \mathbf{u}_{p-1}^{\mathsf{T}} \mathbf{R}_{p-1} \mathbf{u}_{p-1} \right)$$ $$+ \mathbf{u}_{0}^{\mathsf{T}} \mathbf{R}_{0} \mathbf{u}_{0} + \dots + \mathbf{u}_{p-1}^{\mathsf{T}} \mathbf{R}_{p-1} \mathbf{u}_{p-1} + \mathbf{x}_{p}^{\mathsf{T}} \mathbf{Q}_{0} \mathbf{x}_{p} + \mathbf{u}_{p}^{\mathsf{T}} \mathbf{Q}_{1} \mathbf{x}_{1} + \dots + \mathbf{x}_{p-1}^{\mathsf{T}} \mathbf{Q}_{p-1} \mathbf{x}_{p-1} + \mathbf{x}_{p}^{\mathsf{T}} \mathbf{Q}_{0} \mathbf{x}_{p} + \dots + \mathbf{u}_{p}^{\mathsf{T}} \mathbf{R}_{k} \mathbf{u}_{1} + \mathbf{u}_{2p-1}^{\mathsf{T}} \mathbf{R}_{p-1} \mathbf{u}_{2p-1} + \mathbf{u}_{2p-1}^{\mathsf{T}} \mathbf{Q}_{1} \mathbf{u}_{p+1} + \dots + \mathbf{u}_{p}^{\mathsf{T}} \mathbf{u}_{1} \mathbf{u}_{2p-1} + \mathbf{u}_{2p-1}^{\mathsf{T}} \mathbf{u}_{2p-1} + \mathbf{u}_{2p}^{\mathsf{T}} \mathbf{u}_{2p-1} \mathbf{u}_{2p-1} + \mathbf{u}_{2p}^{\mathsf{T}} \mathbf{u}_{2p-1} + \mathbf{u}_{2p}^{\mathsf{T}} \mathbf{u}_{2p-1} + \mathbf{u}_{2p}^{\mathsf{T}} \mathbf{u}_{2p-1} \mathbf{u}_{2p-1} + \mathbf{u}_{2p}^{\mathsf{T}} \mathbf{u}_{2p-1} \mathbf{u}_{2p-1} + \mathbf{u}_{2p}^{\mathsf{T}} \mathbf{u}_{2p-1} \mathbf{u}_{2p-1} + \mathbf{u}_{2p}^{\mathsf{T}} \mathbf{u}_{2p-1} \mathbf{u}_{2p-1} \mathbf{u}_{2p-1} + \mathbf{u}_{2p}^{\mathsf{T}} \mathbf{u}_{2p-1} \mathbf{u}_{2p-1}$$ It is straightforward to see that the optimal control problem described by (11.141) and (11.145) is *time-invariant but equivalent to the time-varying periodic* system described by (11.33) and (11.37). Moreover, the optimal feedback matrix of the system (11.141–11.145) is given in (B.21) as follows: $$\bar{\mathbf{u}}_K = -(\bar{\mathbf{R}} + \bar{\mathbf{B}}^T \bar{\mathbf{P}} \bar{\mathbf{B}})^{-1} \bar{\mathbf{B}}^T \bar{\mathbf{P}} \bar{\mathbf{A}} \bar{\mathbf{x}}_K, \tag{11.146}$$ where $\bar{\mathbf{P}}$ is the solution of the following *time-invariant algebraic Riccati equation* (see (B.29) and (B.50)): $$\bar{\mathbf{A}}^{\mathrm{T}}\bar{\mathbf{P}}\bar{\mathbf{A}} - \bar{\mathbf{P}} - \bar{\mathbf{A}}^{\mathrm{T}}\bar{\mathbf{P}}\bar{\mathbf{B}}(\bar{\mathbf{R}} + \bar{\mathbf{B}}^{\mathrm{T}}\bar{\mathbf{P}}\bar{\mathbf{B}})^{-1}\bar{\mathbf{B}}^{\mathrm{T}}\bar{\mathbf{P}}\bar{\mathbf{A}} + \bar{\mathbf{Q}} = \mathbf{0}. \tag{11.147}$$ Notice that $\bar{\mathbf{A}}$ is not invertible, this time-invariant algebraic Riccati equation cannot be directly solved by using the algorithms either described in Appendix B.3 or proposed in [131, 272], but it can be solved by using the algorithm proposed in [199]. However, because of the structure of $\bar{\bf A}$, there is a more efficient algorithm than the one of [199]. The new algorithm makes full use of the specific structure of $\bar{\bf A}$ in which the first (p-1)n columns are zeros. Denote $$\bar{\mathbf{Q}} := \bar{\mathbf{Q}}_K = \begin{bmatrix} \frac{\operatorname{diag}(\mathbf{Q}_1, \dots, \mathbf{Q}_{p-1}) & \mathbf{0}}{\mathbf{0} & \mathbf{Q}_0} \end{bmatrix} = \operatorname{diag}(\bar{\mathbf{Q}}_1, \bar{\mathbf{Q}}_2), \tag{11.148}$$ where $\mathbf{\bar{Q}}_1 = \mathrm{diag}(\mathbf{Q}_1, \dots, \mathbf{Q}_{p-1}) \in \mathbf{R}^{(p-1)n \times (p-1)n}$ and $\mathbf{\bar{Q}}_2 = \mathbf{Q}_0 \in \mathbf{R}^{n \times n}$, $$\mathbf{\bar{R}} := \mathbf{\bar{R}}_K = \begin{bmatrix} \frac{\operatorname{diag}(\mathbf{R}_0, \dots, \mathbf{R}_{p-2}) & \mathbf{0}}{\mathbf{0} & \mathbf{R}_{p-1}} \end{bmatrix} = \operatorname{diag}(\mathbf{\bar{R}}_1, \mathbf{\bar{R}}_2), \tag{11.149}$$ where $\bar{\mathbf{R}}_1 = \operatorname{diag}(\mathbf{R}_0, \dots, \mathbf{R}_{p-2}) \in \mathbf{R}^{(p-1)m \times (p-1)m}$ and $\bar{\mathbf{R}}_2 = \mathbf{R}_{p-1} \in \mathbf{R}^{m \times m}$. Let $$\bar{\mathbf{A}} = \begin{bmatrix} \mathbf{0} & \dots & \mathbf{0} & \mathbf{A}_{0} \\ \mathbf{0} & \dots & \mathbf{0} & \mathbf{A}_{1}\mathbf{A}_{0} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{0} & \dots & \mathbf{0} & \mathbf{A}_{p-2} \dots \mathbf{A}_{1}\mathbf{A}_{0} \\ \hline \mathbf{0} & \dots & \mathbf{0} & \mathbf{A}_{p-1} \dots \mathbf{A}_{2}\mathbf{A}_{1}\mathbf{A}_{0} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \dots & \mathbf{0} & \mathbf{A}_{0} \\ \mathbf{0} & \dots & \mathbf{0} & \mathbf{A}_{1}\mathbf{A}_{0} \\ \vdots & \vdots & \vdots \\ \mathbf{0} & \dots & \mathbf{0} & \mathbf{A}_{p-1} \dots \mathbf{A}_{2}\mathbf{A}_{1}\mathbf{A}_{0} \end{bmatrix}$$ $$= \begin{bmatrix} \mathbf{0} & \dots & \mathbf{0} & \mathbf{A}_{0} \\ \mathbf{A}_{p-1} & \dots & \mathbf{A}_{1}\mathbf{A}_{0} \\ \mathbf{A}_{p-1} & \dots & \mathbf{A}_{2}\mathbf{A}_{1}\mathbf{A}_{0} \end{bmatrix}$$ $$= \begin{bmatrix} \mathbf{0} & \dots & \mathbf{0} & \mathbf{A}_{1} \\ \mathbf{A}_{p-1} & \dots & \mathbf{A}_{2}\mathbf{A}_{1}\mathbf{A}_{0} \\ \mathbf{A}_{p-1} & \dots & \mathbf{A}_{2}\mathbf{A}_{1}\mathbf{A}_{0} \end{bmatrix}$$ $$= \begin{bmatrix} \mathbf{0} & \dots & \mathbf{0} & \mathbf{A}_{1} \\ \mathbf{A}_{p-1} & \dots & \mathbf{A}_{2}\mathbf{A}_{1}\mathbf{A}_{0} \\ \mathbf{A}_{p-1} & \dots & \mathbf{A}_{2}\mathbf{A}_{1}\mathbf{A}_{0} \end{bmatrix}$$ $$= \begin{bmatrix} \mathbf{0} & \dots & \mathbf{0} & \mathbf{A}_{1} \\ \mathbf{A}_{p-1} & \dots & \mathbf{A}_{2}\mathbf{A}_{1}\mathbf{A}_{0} \\ \mathbf{A}_{p-1} & \dots & \mathbf{A}_{2}\mathbf{A}_{1}\mathbf{A}_{0} \end{bmatrix}$$ $$= \begin{bmatrix} \mathbf{0} & \dots & \mathbf{0} & \mathbf{A}_{1} \\ \mathbf{A}_{p-1} & \dots & \mathbf{A}_{2}\mathbf{A}_{1}\mathbf{A}_{0} \end{bmatrix}$$ $$= \begin{bmatrix} \mathbf{0} & \mathbf{A}_{1} \\ \mathbf{A}_{2} \\ \mathbf{A}_{2} \\ \mathbf{A}_{2} \\ \mathbf{A}_{2} \\ \mathbf{A}_{2} \\ \mathbf{A}_{3} \\ \mathbf{A}_{2} \\ \mathbf{A}_{2} \\ \mathbf{A}_{3} \\ \mathbf{A}_{3} \\ \mathbf{A}_{2} \\ \mathbf{A}_{2} \\ \mathbf{A}_{3} \\ \mathbf{A}_{3} \\ \mathbf{A}_{3} \\ \mathbf{A}_{2} \\ \mathbf{A}_{3} \mathbf{A}_{4} \\ \mathbf{A}_{5} \\$$ where $\bar{\mathbf{A}}_1 \in \mathbf{R}^{(p-1)n \times n}$, $\bar{\mathbf{A}}_2 \in \mathbf{R}^{n \times n}$, and $\bar{\mathbf{F}} = \left[\bar{\mathbf{A}}_1^{\mathrm{T}}, \bar{\mathbf{A}}_2^{\mathrm{T}}\right]^{\mathrm{T}} \in \mathbf{R}^{pn \times n}$; $$\bar{\mathbf{B}} =
\begin{bmatrix} \mathbf{B}_{0} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} \\ \mathbf{A}_{1}\mathbf{B}_{0} & \mathbf{B}_{1} & \dots & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{A}_{p-2}\dots\mathbf{A}_{1}\mathbf{B}_{0} & \mathbf{A}_{p-2}\dots\mathbf{A}_{2}\mathbf{B}_{1} & \dots & \mathbf{B}_{p-2} & \mathbf{0} \\ \hline \mathbf{A}_{p-1}\dots\mathbf{A}_{1}\mathbf{B}_{0} & \mathbf{A}_{p-1}\dots\mathbf{A}_{2}\mathbf{B}_{1} & \dots & \mathbf{A}_{p-1}\mathbf{B}_{p-2} & \mathbf{B}_{p-1} \end{bmatrix} = \begin{bmatrix} \bar{\mathbf{B}}_{1} \\ \underline{\bar{\mathbf{B}}}_{2} \end{bmatrix},$$ $$(11.151)$$ where $\bar{\mathbf{B}}_1 \in \mathbf{R}^{(p-1)n \times pm}$ and $\bar{\mathbf{B}}_2 \in \mathbf{R}^{n \times pm}$; and $$\bar{\mathbf{P}} = \begin{bmatrix} \bar{\mathbf{P}}_{11} & \bar{\mathbf{P}}_{12} \\ \bar{\mathbf{P}}_{21} & \bar{\mathbf{P}}_{22} \end{bmatrix}, \tag{11.152}$$ where $\bar{\mathbf{P}}_{11} \in \mathbf{R}^{(p-1)n \times (p-1)n}$, $\bar{\mathbf{P}}_{12} \in \mathbf{R}^{(p-1)n \times n}$, $\bar{\mathbf{P}}_{21} \in \mathbf{R}^{n \times (p-1)n}$, and $\bar{\mathbf{P}}_{22} \in \mathbf{R}^{n \times n}$. Let $$\mathbf{Y} = \bar{\mathbf{P}}\bar{\mathbf{B}}(\bar{\mathbf{R}} + \bar{\mathbf{B}}^{\mathrm{T}}\bar{\mathbf{P}}\bar{\mathbf{B}})^{-1}\bar{\mathbf{B}}^{\mathrm{T}}\bar{\mathbf{P}}.$$ (11.153) Substituting (11.148), (11.149), (11.150), (11.151), (11.152), and (11.153) into (11.147) yields $$\begin{bmatrix} \mathbf{0} \\ \bar{\mathbf{F}}^{\mathrm{T}} \end{bmatrix} \bar{\mathbf{P}} \begin{bmatrix} \mathbf{0} & \bar{\mathbf{F}} \end{bmatrix} - \begin{bmatrix} \bar{\mathbf{P}}_{11} & \bar{\mathbf{P}}_{12} \\ \bar{\mathbf{P}}_{21} & \bar{\mathbf{P}}_{22} \end{bmatrix} - \begin{bmatrix} \mathbf{0} \\ \bar{\mathbf{F}}^{\mathrm{T}} \end{bmatrix} \bar{\mathbf{Y}} \begin{bmatrix} \mathbf{0} & \bar{\mathbf{F}} \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{Q}}_{1} & \mathbf{0} \\ \mathbf{0} & \bar{\mathbf{Q}}_{2} \end{bmatrix} = \mathbf{0},$$ (11.154) or equivalently $$\begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \bar{\mathbf{F}}^{\mathrm{T}} \bar{\mathbf{P}} \bar{\mathbf{F}} \end{bmatrix} - \begin{bmatrix} \bar{\mathbf{P}}_{11} & \bar{\mathbf{P}}_{12} \\ \bar{\mathbf{P}}_{21} & \bar{\mathbf{P}}_{22} \end{bmatrix} - \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \bar{\mathbf{F}}^{\mathrm{T}} \bar{\mathbf{Y}} \bar{\mathbf{F}} \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{Q}}_{1} & \mathbf{0} \\ \mathbf{0} & \bar{\mathbf{Q}}_{2} \end{bmatrix} = \mathbf{0}. \quad (11.155)$$ This proves $\bar{\mathbf{P}}_{12} = \bar{\mathbf{P}}_{21}^{T} = \mathbf{0}$ and $\bar{\mathbf{P}}_{11} = \bar{\mathbf{Q}}_{1}$. By examining the lower right block of (11.155), it is easy to see $$\bar{\mathbf{F}}^{\mathrm{T}}\bar{\mathbf{P}}\bar{\mathbf{F}} = \bar{\mathbf{A}}_{1}^{\mathrm{T}}\bar{\mathbf{Q}}_{1}\bar{\mathbf{A}}_{1} + \bar{\mathbf{A}}_{2}^{\mathrm{T}}\bar{\mathbf{P}}_{22}\bar{\mathbf{A}}_{2} \in \mathbf{R}^{n \times n}, \tag{11.156}$$ and $$\bar{\mathbf{F}}^{T}\bar{\mathbf{Y}}\bar{\mathbf{F}} = \begin{bmatrix} \bar{\mathbf{A}}_{1}^{T}, \bar{\mathbf{A}}_{2}^{T} \end{bmatrix} \begin{bmatrix} \bar{\mathbf{Q}}_{1}\bar{\mathbf{B}}_{1} \\ \bar{\mathbf{P}}_{22}\bar{\mathbf{B}}_{2} \end{bmatrix} \begin{bmatrix} \bar{\mathbf{R}} + \bar{\mathbf{B}}_{1}^{T}\bar{\mathbf{Q}}_{1}\bar{\mathbf{B}}_{1} + \bar{\mathbf{B}}_{2}^{T}\bar{\mathbf{P}}_{22}^{T}\bar{\mathbf{B}}_{2} \end{bmatrix}^{-1} \begin{bmatrix} \bar{\mathbf{B}}_{1}^{T}\bar{\mathbf{Q}}_{1} & \bar{\mathbf{B}}_{2}^{T}\bar{\mathbf{P}}_{22} \end{bmatrix} \begin{bmatrix} \bar{\mathbf{A}}_{1} \\ \bar{\mathbf{A}}_{2} \end{bmatrix} \\ = \underbrace{\begin{bmatrix} \bar{\mathbf{A}}_{1}^{T}\bar{\mathbf{Q}}_{1}\bar{\mathbf{B}}_{1} + \bar{\mathbf{A}}_{2}^{T}\bar{\mathbf{P}}_{22}\bar{\mathbf{B}}_{2} \end{bmatrix}}_{n \times pm} \underbrace{\begin{bmatrix} \bar{\mathbf{K}} + \bar{\mathbf{B}}_{1}^{T}\bar{\mathbf{Q}}_{1}\bar{\mathbf{B}}_{1} + \bar{\mathbf{B}}_{2}^{T}\bar{\mathbf{P}}_{22}\bar{\mathbf{B}}_{2} \end{bmatrix}^{-1}}_{pm \times pm} \underbrace{\begin{bmatrix} \bar{\mathbf{B}}_{1}^{T}\bar{\mathbf{Q}}_{1}\bar{\mathbf{A}}_{1} + \bar{\mathbf{B}}_{2}^{T}\bar{\mathbf{P}}_{22}\bar{\mathbf{A}}_{2} \end{bmatrix}}_{pm \times n}. \tag{11.157}$$ Let $$\hat{\mathbf{A}} = \bar{\mathbf{A}}_2 \in \mathbf{R}^{n \times n},\tag{11.158a}$$ $$\hat{\mathbf{B}} = \bar{\mathbf{B}}_2 \in \mathbf{R}^{n \times pm},\tag{11.158b}$$ $$\hat{\mathbf{Q}} = \bar{\mathbf{Q}}_2 + \bar{\mathbf{A}}_1^{\mathrm{T}} \bar{\mathbf{Q}}_1 \bar{\mathbf{A}}_1 \in \mathbf{R}^{n \times n}, \tag{11.158c}$$ $$\hat{\mathbf{R}} = \bar{\mathbf{R}} + \bar{\mathbf{B}}_{1}^{\mathrm{T}} \bar{\mathbf{Q}}_{1} \bar{\mathbf{B}}_{1} \in \mathbf{R}^{pm \times pm}, \tag{11.158d}$$ $$\hat{\mathbf{S}} = \bar{\mathbf{A}}_1^{\mathrm{T}} \bar{\mathbf{Q}}_1 \bar{\mathbf{B}}_1 \in \mathbf{R}^{n \times pm}, \tag{11.158e}$$ $$\hat{\mathbf{P}} = \bar{\mathbf{P}}_{22} \in \mathbf{R}^{n \times n}.\tag{11.158f}$$ The lower right block of (11.155) can be rewritten as follows: $$\hat{\mathbf{A}}^{\mathrm{T}}\hat{\mathbf{P}}\hat{\mathbf{A}} - \hat{\mathbf{P}} - \underbrace{\left(\hat{\mathbf{A}}^{\mathrm{T}}\hat{\mathbf{P}}\hat{\mathbf{B}} + \hat{\mathbf{S}}\right)}_{n \times pm} \underbrace{\left(\hat{\mathbf{B}}^{\mathrm{T}}\hat{\mathbf{P}}\hat{\mathbf{B}} + \hat{\mathbf{R}}\right)^{-1}}_{pm \times pm} \underbrace{\left(\hat{\mathbf{B}}^{\mathrm{T}}\hat{\mathbf{P}}\hat{\mathbf{A}} + \hat{\mathbf{S}}^{\mathrm{T}}\right)}_{pm \times n} + \hat{\mathbf{Q}} = \mathbf{0}. \quad (11.159)$$ The Riccati equation (11.159) is a special case discussed in [7, Eq. (6)]. An efficient Matlab function dare that implements an algorithm of [7] is available to solve (11.159). **Remark 11.7** Comparing to the methods described in the previous section which need to solve p n-dimensional discrete-time Riccati equations, one needs only to solve one n-dimensional discrete-time Riccati equation using the method proposed in this section. To compare the efficiency of the method to the ones discussed in Section 11.5.1, The Matlab function dare is not used directly because dare calculates more information than the solution of the Riccati equation (11.159). Let $\tilde{\bf B} = \hat{\bf B}$, $\tilde{\bf R} = \hat{\bf R}$, $$\tilde{\mathbf{A}} = \hat{\mathbf{A}} - \hat{\mathbf{B}}\hat{\mathbf{R}}^{-1}\hat{\mathbf{S}}^{\mathrm{T}},\tag{11.160}$$ and $$\tilde{\mathbf{Q}} = \hat{\mathbf{Q}} - \hat{\mathbf{S}}\hat{\mathbf{R}}^{-1}\hat{\mathbf{S}}^{\mathrm{T}}.\tag{11.161}$$ Riccati equation (11.159) can be solved by either the eigen-decomposition or Schur decomposition for the following generalized eigenvalue problem [7, page 1748, equation (8)]: $$\lambda \begin{bmatrix} \mathbf{I} & \tilde{\mathbf{B}}\tilde{\mathbf{R}}^{-1}\tilde{\mathbf{B}}^{\mathrm{T}} \\ \mathbf{0} & \tilde{\mathbf{A}}^{\mathrm{T}} \end{bmatrix} - \begin{bmatrix} \tilde{\mathbf{A}} & \mathbf{0} \\ -\tilde{\mathbf{Q}} & \mathbf{I} \end{bmatrix} := \lambda \mathbf{E} - \mathbf{F}.$$ (11.162) If $\tilde{\bf A}$ is invertible, then $\det({\bf E}) \neq 0$ and $0 = \det(\lambda {\bf E} - {\bf F}) = \det(\lambda {\bf I} - {\bf E}^{-1} {\bf F})$, the problem is reduced to solve the eigenvalue for problem (11.46): $$\mathbf{Z} = \mathbf{E}^{-1}\mathbf{F} = \begin{bmatrix} \mathbf{I} & -\tilde{\mathbf{B}}\tilde{\mathbf{R}}^{-1}\tilde{\mathbf{B}}^{\mathrm{T}}\tilde{\mathbf{A}}^{-\mathrm{T}} \\ \mathbf{0} & \tilde{\mathbf{A}}^{-\mathrm{T}} \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{A}} & \mathbf{0} \\ -\tilde{\mathbf{Q}} & \mathbf{I} \end{bmatrix}. \tag{11.163}$$ Using Schur decomposition for (11.163), the following equation holds: $$\begin{bmatrix} \mathbf{W}_{11} & \mathbf{W}_{12} \\ \mathbf{W}_{21} & \mathbf{W}_{22} \end{bmatrix}^{\mathrm{T}} \mathbf{Z} \begin{bmatrix} \mathbf{W}_{11} & \mathbf{W}_{12} \\ \mathbf{W}_{21} & \mathbf{W}_{22} \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \\ \mathbf{0} & \mathbf{S}_{22} \end{bmatrix}, \tag{11.164}$$ where S_{11} is upper-triangular and has all of its eigenvalues inside the unit circle. The solution of the discrete algebraic Riccati equation (11.159) is given by $$\hat{\mathbf{P}} = \mathbf{W}_{21} \mathbf{W}_{11}^{-1}. \tag{11.165}$$ The proposed algorithm is as follows: #### Algorithm 11.3 *Data*: $A_0, ..., A_{p-1}, B_0, ..., B_{p-1}, Q_0, ..., Q_{p-1}, R_0, ..., R_{p-1}$. Step 1: Form $$\bar{\mathbf{A}}_{1} = \begin{bmatrix} \mathbf{A}_{0} \\ \mathbf{A}_{1}\mathbf{A}_{0} \\ \vdots \\ \mathbf{A}_{p-2} \dots \mathbf{A}_{2}\mathbf{A}_{1}\mathbf{A}_{0} \end{bmatrix}, \qquad (11.166a)$$ $$\bar{\mathbf{B}}_{1} = \begin{bmatrix} \mathbf{B}_{0} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} \\ \mathbf{A}_{1}\mathbf{B}_{0} & \mathbf{B}_{1} & \dots & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{A}_{p-1} \dots \mathbf{A}_{p-1} \mathbf{B}_{p-1} \dots \mathbf{A}_{p-1} \mathbf{B}_{p-1} \dots \mathbf{0} \end{bmatrix}, \qquad (11.166b)$$ $$\bar{\mathbf{A}}_2 = \mathbf{A}_{n-1} \dots \mathbf{A}_2 \mathbf{A}_1 \mathbf{A}_0, \tag{11.166c}$$ $$\bar{\mathbf{B}}_2 = \begin{bmatrix} \mathbf{A}_{p-1} \dots \mathbf{A}_1 \mathbf{B}_0, & \mathbf{A}_{p-1} \dots \mathbf{A}_2 \mathbf{B}_1, & \dots & \mathbf{B}_{p-1} \end{bmatrix},$$ (11.166d) $$\bar{\mathbf{Q}}_1 = \operatorname{diag}(\mathbf{Q}_1, \dots, \mathbf{Q}_{p-1}), \quad \bar{\mathbf{Q}}_2 = \mathbf{Q}_0,$$ (11.166e) $$\bar{\mathbf{R}}_1 = \text{diag}(\mathbf{R}_0, \dots, \mathbf{R}_{p-2}), \quad \bar{\mathbf{R}}_2 = \mathbf{R}_{p-1}.$$ (11.166f) Step 2: Form $\hat{\mathbf{A}}$, $\hat{\mathbf{B}}$, $\hat{\mathbf{Q}}$, $\hat{\mathbf{R}}$, and $\hat{\mathbf{S}}$ using (11.158). Step 3: Find the solution $\hat{\mathbf{P}}$ of the discrete-time algebraic Riccati equation (11.159) using the algorithm of [7] implemented as dare or using the algorithm described in (11.164) and (11.165). Step 4: The solution of the discrete-time algebraic
Riccati equation (11.147) is given by $$\bar{\mathbf{P}} = \operatorname{diag}(\bar{\mathbf{Q}}_1, \hat{\mathbf{P}}). \tag{11.167}$$ Given $\bar{\mathbf{x}}_K$, the feedback control can be calculated by (11.146). Applying this feedback control to (11.141) yields the next state $\bar{\mathbf{x}}_{K+1}$. ## 11.5.3 Implementation and numerical simulation In this section, some details of implementation, which will reduce some computation time compared to the direct implementation described in the previous section, is discussed. The test result of the proposed algorithm for the problems discussed in 11.3.4 and 11.4.4 is reported. The comparison of the test results obtained from the method discussed here and the ones obtained in 11.3.4 and 11.4.4 is performed. # 11.5.3.1 Implementation consideration The most expensive calculations in Algorithm 11.3 are the calculation of $\hat{\mathbf{Q}}$, $\hat{\mathbf{R}}$, and $\hat{\mathbf{S}}$ in Step 2, and the calculation of $\hat{\mathbf{R}}^{-1} = \tilde{\mathbf{R}}^{-1}$ in Step 3. It is easy to check (cf. [77]): (1) direct calculation of $\hat{\mathbf{Q}}$ requires $$\mathcal{O}(2(p-1)^2n^3) + \mathcal{O}(2(p-1)n^3) + \mathcal{O}(n^2)$$ flops, (2) direct calculation of $\hat{\mathbf{R}}$ requires $$\mathcal{O}(2p(p-1)^2n^2m) + \mathcal{O}(2p^2(p-1)nm^2) + \mathcal{O}(p^2m^2)$$ flops, (3) direct calculation of $\hat{\mathbf{S}}$ requires $$\mathcal{O}(2(p-1)^2n^3) + \mathcal{O}(2(p-1)n^3)$$ flops, (4) directly calculation of $\hat{\mathbf{R}}^{-1}$ requires $$\mathcal{O}(p^3m^3)$$ flops. For extremely large p, i.e., very long period of the system, the majority of the computation is the computation of $\hat{\mathbf{R}}$ and $\hat{\mathbf{R}}^{-1}$. Let $\mathbf{Q}_A = \bar{\mathbf{Q}}_1^{\frac{1}{2}} \bar{\mathbf{A}}_1 \in \mathbf{R}^{(p-1)n \times n}$ and $\mathbf{Q}_B = \bar{\mathbf{Q}}_1^{\frac{1}{2}} \bar{\mathbf{B}}_1 \in \mathbf{R}^{(p-1)n \times pm}$. We use Matlab notation for sub-matrices. Since $\bar{\mathbf{Q}}_1$, $\bar{\mathbf{Q}}_2$, and $\bar{\mathbf{R}}$ are positive diagonal matrices, $\hat{\mathbf{Q}}_1$, $\hat{\mathbf{S}}_2$, and $\hat{\mathbf{R}}$ in (11.158) can be calculated more efficiently as follows: for $$i = 1: (p-1)n$$ $$\mathbf{Q}_A(i,:) = \mathbf{\bar{Q}}_1^{\frac{1}{2}}(i,i)\mathbf{\bar{A}}_1(i,:);$$ end $$\hat{\mathbf{Q}} = \mathbf{Q}_A^{\mathrm{T}} \mathbf{Q}_A$$ for i = 1 : n $$\hat{\mathbf{Q}}(i,i) = \hat{\mathbf{Q}}(i,i) + \bar{\mathbf{Q}}_2(i,i);$$ end for $$i = 1 : (p-1)n$$ $$\mathbf{Q}_{B}(i,:) = \bar{\mathbf{Q}}_{1}^{\frac{1}{2}}(i,i)\bar{\mathbf{B}}_{1}(i,:);$$ end $$\hat{\mathbf{R}} = \mathbf{Q}_B^{\mathrm{T}} \mathbf{Q}_B$$ for i = 1 : pm $$\hat{\mathbf{R}}(i,i) = \hat{\mathbf{R}}(i,i) + \bar{\mathbf{R}}(i,i);$$ end $$\hat{\mathbf{S}} = \mathbf{Q}_{A}^{\mathrm{T}}\mathbf{Q}_{B}$$ It is easy to check (cf. [77]) the flops for the following calculations: (1) the calculation of $\hat{\mathbf{Q}}$ requires $$\mathcal{O}((p-1)n) + \mathcal{O}((p-1)n^2) + \mathcal{O}(2(p-1)^2n^3) + \mathcal{O}(n)$$ flops, (2) the calculation of $\hat{\mathbf{R}}$ requires $$\mathcal{O}(p(p-1)nm) + \mathcal{O}(2p^2(p-1)nm^2) + \mathcal{O}(pm)$$ flops, (3) the calculation of $\hat{\mathbf{S}}$ requires $$\mathcal{O}(2(p-1)pn^2m)$$ flops, (4) this does not reduce the computation of $\hat{\mathbf{R}}^{-1}$. ### 11.5.3.2 Simulation test for the problem in Section 11.3 The first simulation test problem is the spacecraft attitude control design using only magnetic torques discussed in Section 11.3. The number of states of this system is n = 6. The number of control inputs of this system is m = 3. The controllability of this problem is established in Section 11.2. In this simulation test, the same discrete-time linear periodic model as in Section 11.3 with the same parameters, such as the spacecraft inertia matrix, orbital inclination, orbital altitude, weight matrices \mathbf{Q} and \mathbf{R} , and the same initial conditions, are used. Using p = 100, p = 500, and p = 1000, all three algorithms discussed in this chapter are used for this design and the CPU times for all three algorithms are recorded. The result is presented in Table 11.1. | Samples per period | Algorithm 11.3 | Algorithm 11.1 | Algorithm [92] | |--------------------|----------------|----------------|----------------| | 100 | 0.0097 (s) | 0.0757 (s) | 0.2711 (s) | | 500 | 0.2528 (s) | 1.6042 (s) | 6.5435 (s) | | 1000 | 4.2821 (s) | 6.3155 (s) | 25.8996 (s) | Table 11.1: CPU time comparison for problem in [318]. Clearly, the proposed Algorithm 11.3 is significantly cheaper than the algorithms 11.1 and the algorithm proposed in [92]. ## 11.5.3.3 Simulation test for the problem in Section 11.4 The second simulation test problem is a combined method for the spacecraft attitude and desaturation control design using both reaction wheels and magnetic torques discussed in Section 11.4. The number of states of this system is n = 9. The number of control inputs of this system is m = 6. The controllability of problem is guaranteed because three reaction wheels are assumed to be available. Using the parameters provided in Section 11.4, for p = 100, p = 500, and p = 1000, the solutions for the corresponding algebraic Riccati equations is obtained and the CPU times for all three algorithms are recorded. The result is presented in Table 11.2. | Samples per period | Algorithm 11.3 | Algorithm 11.2 | Algorithm [92] | |--------------------|----------------|----------------|----------------| | 100 | 0.0284 (s) | 0.1120 (s) | 0.3807 (s) | | 500 | 3.6376 (s) | 2.5629 (s) | 9.0144 (s) | | 1000 | 38.4912 (s) | 10.0629 (s) | 36.0690 (s) | **Table 11.2:** CPU time comparison for problem in [316]. For this problem, m=6 is twice as large as the previous problem, the algorithm 11.3 is faster than the algorithm 11.2 and the algorithm developed in [92] when the total number of samples in one period is moderate (p=100 samples per period), but when the total number of samples in one period increases (to p=500 or p=1000 samples per period), the advantage of the proposed algorithm will be lost because the computation of the inverse of $\tilde{\mathbf{R}} \in \mathbf{R}^{6000 \times 6000}$ is $\mathcal{O}(p^3m^3)$ which is very expensive. # Chapter 12 # **Attitude Maneuver and Orbit-Raising** During its life span, a spacecraft normally needs to change its attitude from one orientation to another one to accommodate different mission requirements. One example is *orbital-raising* described in [248]. In this chapter, we discuss the same problem but with a design based on a reduced quaternion model. The coordinate system of the Orbview-2 satellite is provided in [248], defined in Figure 12.1. The satellite is sent to the *parking orbit* about 300 kilometers (km) above the earth by the launch vehicle. The spacecraft thrust control system is designed to transfer the satellite from the parking orbit to a *sun-synchronous* orbit. The attitude of the satellite before orbit-raising is stabilized in the nadir-pointing orientation as in Figure 12.1. To perform the orbit raising task, the spacecraft needs to rotate 90° degree around the *y*-axis so that the thrusters, which are mounted on the anti-nadir face, are aligned parallel to the velocity vector as described in Figure 12.2. This is a typical example of a *spacecraft attitude maneuver*. ## 12.1 Attitude maneuver Attitude maneuver has been discussed in most popular textbooks, such as [283], [235], and [284]. The controller design is normally straightforward, and it can use either the Euler angle error, the direction cosine error matrix, the Euler axis command, or the quaternion error vector. Among these different methods, the Euler angle method and quaternion method are the most widely used because they have fewer parameters and these parameters are measured directly in all Figure 12.2: Spacecraft orientation after the maneuver. spacecraft. Sidi [235] has shown, by numerical simulations, that the quaternion based maneuver control law is clearly superior to the Euler angle based maneuver control law. Let the current attitude quaternions be $\bar{\mathbf{q}} = (q_0, q_1, q_2, q_3) = (q_0, \mathbf{q})$ and the desired (or target) attitude quaternion be $\bar{\mathbf{p}} = (p_0, p_1, p_2, p_3) = (p_0, \mathbf{p})$. Then the error quaternion is defined by $\bar{\mathbf{r}} = (r_0, r_1, r_2, r_3) = (r_0, \mathbf{r})$ which is given by $$\bar{\mathbf{r}} = \bar{\mathbf{p}}^{-1} \otimes \bar{\mathbf{q}} = \bar{\mathbf{p}}^* \otimes \bar{\mathbf{q}} = (p_0 - \mathbf{p}) \otimes (q_0 + \mathbf{q}).$$ In view of (3.64), $\bar{\mathbf{r}}$ can be written as $$\begin{bmatrix} r_0 \\ r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} p_0 & p_1 & p_2 & p_3 \\ -p_1 & p_0 & p_3 & -p_2 \\ -p_2 & -p_3 & p_0 & p_1 \\ -p_3 & p_2 & -p_1 & p_0 \end{bmatrix} \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix}.$$ (12.1) The obvious PD controller is therefore given by $$\mathbf{u} = -\mathbf{K}\mathbf{r} - \mathbf{D}\boldsymbol{\omega},\tag{12.2}$$ where **K** and **D** are positive gain matrix. This control law can be verified intuitively using the example of Orbview-2 satellite where to perform the orbit raising task, the spacecraft needs to rotate 90° degree around y-axis so that the thrusters are aligned parallel to the velocity vector (see Figures 12.1 and 12.2). Assume that the initial attitude is perfectly aligned with local vertical local horizontal frame, i.e., $\bar{\bf q}=(q_0,q_1,q_2,q_3)=(1,0,0,0)$. The target quaternion is $\bar{\bf p}=(p_0,p_1,p_2,p_3)=(\cos\left(\frac{\pi}{4}\right),0,\sin\left(\frac{\pi}{4}\right),0)$ which require the spacecraft to rotate around y-axis 90° . Substituting $\bar{\bf q}$ and $\bar{\bf p}$ into (12.1) yields $$\begin{bmatrix} r_0 \\ r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}
& 0 \\ 0 & \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ 0 \\ -\frac{\sqrt{2}}{2} \\ 0 \end{bmatrix}.$$ (12.3) Therefore, $-\mathbf{r}^T = \left(0, \frac{\sqrt{2}}{2}, 0\right)$ is a vector that a torque should be applied around y-axis. If the spacecraft is rotated 90^o degree around y-axis, the attitude quaternion is given by $\bar{\mathbf{q}} = \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}, 0\right)$. From (12.1), the error quaternion $\bar{\mathbf{r}}$ is given by $$\begin{bmatrix} r_0 \\ r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} \\ 0 \\ \frac{\sqrt{2}}{2} \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$ (12.4) Therefore, $-{\bf r}^T=(0,0,0)$ requires no torque as the spacecraft has reached the required attitude. # 12.2 Orbit-raising The quaternion model for orbit raising depends on the spacecraft design. This section uses OrbView-2 spacecraft [248] as an example to describe the modeling process. Most materials in this section are directly from [314]. OrbView-2 has a momentum wheel with the angular momentum vector aligned parallel to the orbit-normal (-y axis), the spacecraft attitude control is performed by this wheel and three magnetic torque bars. The parking-orbit of OrbView-2 is about 300 km above the Earth surface, and the working-orbit is about 705 km. Orbit-raising is performed by four thrusters which are mounted on the anti-nadir face of the spacecraft in each corner of a square with a side length of 2d as shown in Figure 12.3. Figure 12.3: Thrusters coordinate definition. The thrusters point to +z direction (into the page) and are canted 5^o degree from z-axis to produce moments to maintain the spacecraft attitude during the burns. They are mounted a distance l along -z axis from the spacecraft center of mass (based on the coordinate system origin). To conduct *Hohmann transfers* [235] to raise the orbit, the momentum wheel provides the torque to rotate the spacecraft $\pm 90^o$ degrees to align the thrusters along with or anti-parallel to the velocity vector (see Figure 12.2). At this orientation, the thruster burns will raise the spacecraft orbit. Let h_w be the angular momentum produced by the *momentum wheel*, $\bar{\mathbf{q}} = [q_0, q_1, q_2, q_3]^T = [q_0, \mathbf{q}^T]^T$ be the quaternion that represents the rotation of the spacecraft body frame relative to the frame described by Figure 12.2 (with *x*-axis aligned with anti-nadir direction) represented in the body frame, $\omega = [\omega_x, \omega_y, \omega_z]^T$ be the an- gular rate of the rotation represented in the body frame, $$\mathbf{J} = \begin{bmatrix} J_x & 0 & 0 \\ 0 & J_y & 0 \\ 0 & 0 & J_z \end{bmatrix}$$ (12.5) be the diagonal inertia matrix of the spacecraft, $\mathbf{m} = [m_x, m_y, m_z]^T$ be the *control* torques generated by the thrusters, $\mathbf{h} = [J_x \omega_x, J_y \omega_y + h_w, J_z \omega_z]^T$ be the inertial angular momentum vector of the spacecraft, then the spacecraft dynamics equation is given by (4.2) $$\dot{\mathbf{h}} = \mathbf{J}\dot{\boldsymbol{\omega}} = -\boldsymbol{\omega} \times \mathbf{h} + \mathbf{m} = \mathbf{h} \times \boldsymbol{\omega} + \mathbf{m}, \tag{12.6}$$ or equivalently $$\begin{bmatrix} J_{x} & 0 & 0 \\ 0 & J_{y} & 0 \\ 0 & 0 & J_{z} \end{bmatrix} \begin{bmatrix} \dot{\omega}_{x} \\ \dot{\omega}_{y} \\ \dot{\omega}_{z} \end{bmatrix}$$ $$= \begin{bmatrix} 0 & -J_{z}\omega_{z} & J_{y}\omega_{y} + h_{w} \\ J_{z}\omega_{z} & 0 & -J_{x}\omega_{x} \\ -J_{y}\omega_{y} - h_{w} & J_{x}\omega_{x} & 0 \end{bmatrix} \begin{bmatrix} \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{bmatrix} + \begin{bmatrix} m_{x} \\ m_{y} \\ m_{z} \end{bmatrix}. (12.7)$$ From Figure 12.3, the matrices of thruster force directions \mathbf{F} and moment arms \mathbf{R} in the body frame are given as $$\mathbf{F} = [\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3, \mathbf{f}_4] = \begin{bmatrix} -a & -a & a & a \\ a & -a & -a & a \\ 1 & 1 & 1 & 1 \end{bmatrix},$$ (12.8) and $$\mathbf{R} = [\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4] = \begin{bmatrix} -d & -d & d & d \\ -d & d & d & -d \\ -l & -l & -l & -l \end{bmatrix},$$ (12.9) where $a = \frac{\sqrt{2}}{2}\sin(5 \times \frac{\pi}{180}) \approx 0.707 \times 5 \times (\frac{\pi}{180})$ Newtons, columns 1, 2, 3, and 4 represent the thruster 1, 2, 3, and 4. Denote T_1, T_2, T_3 , and T_4 the *thruster levels of thrusters* 1, 2, 3, 4, and $\mathbf{u} = [T_1, T_2, T_3, T_4]^T$, then the control torque \mathbf{m} can be expressed as $$\mathbf{m} = \begin{bmatrix} \mathbf{r}_1 \times \mathbf{f}_1, \mathbf{r}_2 \times \mathbf{f}_2, \mathbf{r}_3 \times \mathbf{f}_3, \mathbf{r}_4 \times \mathbf{f}_4 \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \end{bmatrix}.$$ (12.10) Combining (12.7) and (12.10) gives $$\begin{bmatrix} \dot{\omega}_{x} \\ \dot{\omega}_{y} \\ \dot{\omega}_{z} \end{bmatrix} = \begin{bmatrix} 0 & -\frac{J_{z}\omega_{z}}{J_{x}} & \frac{J_{y}\omega_{y}+h_{w}}{J_{x}} \\ \frac{J_{z}\omega_{z}}{J_{y}} & 0 & -\frac{J_{x}\omega_{x}}{J_{y}} \\ -\frac{J_{y}\omega_{y}+h_{w}}{J_{z}} & \frac{J_{x}\omega_{x}}{J_{z}} & 0 \end{bmatrix} \begin{bmatrix} \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{bmatrix}$$ $$+ \begin{bmatrix} \frac{1}{J_x} & 0 & 0 \\ 0 & \frac{1}{J_y} & 0 \\ 0 & 0 & \frac{1}{J_z} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 \times \mathbf{f}_1 \\ \mathbf{r}_2 \times \mathbf{f}_2 \\ \mathbf{r}_3 \times \mathbf{f}_3 \\ \mathbf{r}_4 \times \mathbf{f}_4 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \end{bmatrix}. \tag{12.11}$$ From [307], the vector part of the quaternion $\bar{\bf q}$ meets the following relation $$\begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} f & -q_3 & q_2 \\ q_3 & f & -q_1 \\ -q_2 & q_1 & f \end{bmatrix} \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix}, \qquad (12.12)$$ where $f = \sqrt{1 - q_1^2 - q_2^2 - q_3^2}$. The linearized form of (12.11) is given as $$\begin{bmatrix} \dot{\omega}_{x} \\ \dot{\omega}_{y} \\ \dot{\omega}_{z} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \frac{h_{w}}{J_{x}} \\ 0 & 0 & 0 \\ -\frac{h_{w}}{J_{z}} & 0 & 0 \end{bmatrix} \begin{bmatrix} \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{bmatrix} + \begin{bmatrix} J_{x}^{-1} & 0 & 0 \\ 0 & J_{y}^{-1} & 0 \\ 0 & 0 & J_{z}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{r}_{1} \times \mathbf{f}_{1} \\ \mathbf{r}_{2} \times \mathbf{f}_{2} \\ \mathbf{r}_{3} \times \mathbf{f}_{3} \\ \mathbf{r}_{4} \times \mathbf{f}_{4} \end{bmatrix}^{T} \begin{bmatrix} T_{1} \\ T_{2} \\ T_{3} \\ T_{4} \end{bmatrix}. \quad (12.13)$$ The linearized form of (12.12) is given as $$\dot{\mathbf{q}} = \frac{1}{2} \mathbf{I}_3 \boldsymbol{\omega}. \tag{12.14}$$ Combining (12.13) and (12.14) gives the linearized quaternion based thruster control system equation as follows where $$\mathbf{A} = \begin{bmatrix} 0 & 0 & \frac{h_w}{J_x} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{h_w}{J_z} & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \end{bmatrix}$$ and $$\mathbf{B} = \begin{bmatrix} J_x^{-1} & 0 & 0 \\ 0 & J_y^{-1} & 0 \\ 0 & 0 & J_z^{-1} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 \times \mathbf{f}_1 \\ \mathbf{r}_2 \times \mathbf{f}_2 \\ \mathbf{r}_3 \times \mathbf{f}_3 \\ \mathbf{r}_4 \times \mathbf{f}_4 \end{bmatrix}.$$ For the convenience of computer control system design, following the same steps performed in [248], the continuous system is converted to discrete form given by $$\mathbf{x}_6(n+1) = \Phi_6 \mathbf{x}_6(n) + \Gamma_{6 \times 4} \mathbf{u}(n),$$ (12.16) where $\mathbf{x}_6 = [\boldsymbol{\omega}_x, \boldsymbol{\omega}_y, \boldsymbol{\omega}_z, q_1, q_2, q_3]^T$, $\boldsymbol{\Phi}_6 = e^{\mathbf{A}t_s}$, $\boldsymbol{\Gamma}_{6\times 4} = \int_0^{t_s} e^{\mathbf{A}(t-\tau)} \mathbf{B} d\tau$, and t_s is the *sample period*. In [248], it is shown that a PID control design is very successful for orbitraising. To incorporate the integral terms, the discrete integrators defined by $\mathbf{iq} = [iq_1, iq_2, iq_3]^{\mathrm{T}} = \left[\int_0^{t_s} q_1, \int_0^{t_s} q_2, \int_0^{t_s} q_3\right]^{\mathrm{T}}$ are added simply as $$\mathbf{iq}(n+1) = \mathbf{iq}(n) + t_s * \mathbf{q}(n), \tag{12.17}$$ where $\mathbf{q}(n)$ is the vector value of the quaternion at *n*-sampling time. Combining (12.16) and (12.17) gives $$\mathbf{x}_{9}(n+1) = \begin{bmatrix} \mathbf{x}_{6}(n+1) \\ \mathbf{iq}(n+1) \end{bmatrix}$$ $$= \begin{bmatrix} \Phi_{6} & \mathbf{0}_{6\times3} \\ t_{s}[\mathbf{0}_{3\times3} & \mathbf{I}_{3\times3}] & \mathbf{I}_{3\times3} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{6}(n) \\ \mathbf{iq}(n) \end{bmatrix} + \begin{bmatrix} \Gamma_{6\times4} \\ \mathbf{0}_{3\times4} \end{bmatrix} \mathbf{u}(n).$$ (12.18) The thrust control design is to select control $\mathbf{u}(n)$ to maintain the attitude in the orbit-raising operation. This can be represented as a LQR design which minimizes the cost function $$J = \frac{1}{2} \sum_{n=0}^{\infty} \left[\mathbf{x}^{\mathrm{T}}(n) \mathbf{Q} \mathbf{x}(n) + \mathbf{u}^{\mathrm{T}}(n) \mathbf{R} \mathbf{u}(n) \right]$$ under the constraints of (12.18). Using MATLAB® control toolbox [78], the discrete state feedback control can directly obtained by function dare as $$\mathbf{u}(n) = -\mathbf{K}\mathbf{x}_9(n),\tag{12.19}$$ where **K** is the 4×9 state feedback matrix. # 12.3 Comparing quaternion and Euler angle designs This section compares two different orbit-raising designs, the design based on the reduced quaternion model
established in the previous section and the design based on the Euler angle model given in [248]. Both designs use the standard LQR method. The same spacecraft parameters as reported in [248] are used in both designs. In particular, the sampling interval is 4 second; the diagonal elements of the inertia matrix are $J_x = 189(kg \cdot m^2)$, $J_y = 159(kg \cdot m^2)$, $J_z = 114(kg \cdot m^2)$; the momentum wheel moment is $-2.8(N \cdot m \cdot sec)$; the diagonal elements of the **Q** matrix are $Q_1 = Q_2 = Q_3 = 1/(2.5rad/sec)^2$ and $Q_4 = Q_5 = Q_6 = 1/(9rad)^2$, $Q_7 = Q_8 = Q_9 = 1/(182^2rad^2sec^2)$; the diagonal elements of the **R** matrix are $R_1 = R_2 = R_3 = R_4 = 1N^2$. It is assumed further that the same thrusters are installed and the same alignments are used as in Figure 12.3 where d = 0.248m and l = 0.815m. The LQR design based on the Euler angle model has been successfully used for OrbView-2 orbit-raising and the results have been reported in [248]. Using the parameters listed above and the design model described in [248] and applying dlqr command in Matlab toolbox [78] yields the feedback matrix $$\mathbf{K}_e = \begin{bmatrix} -23.3459 & 12.0068 & -40.7442 & 0.0473 & 0.4753 & -1.1156 & -0.0002 & 0.0023 & -0.0034 \\ 23.3459 & 12.0068 & 40.7442 & -0.0473 & 0.4753 & 1.1156 & 0.0002 & 0.0023 & 0.0034 \\ 17.4922 & -12.0068 & -25.5628 & 1.0759 & -0.4753 & -0.2488 & 0.0035 & -0.0023 & -0.0004 \\ -17.4922 & -12.0068 & 25.5628 & -1.0759 & -0.4753 & 0.2488 & -0.0035 & -0.0023 & 0.0004 \end{bmatrix}$$ For the reduced quaternion model (12.18) with the same set of parameters listed above, applying dlqr command in Matlab toolbox gives the feedback matrix of the LQR design $$\mathbf{K}_q = \begin{bmatrix} -19.0183 & 9.6756 & -30.6404 & 0.2488 & 0.6127 & -1.3928 & 0.0003 & 0.0024 & -0.0035 \\ 19.0183 & 9.6756 & 30.6404 & -0.2488 & 0.6127 & 1.3928 & -0.0003 & 0.0024 & 0.0035 \\ 14.1902 & -9.6756 & -17.8344 & 1.4606 & -0.6127 & -0.1312 & 0.0036 & -0.0024 & 0.0000 \\ -14.1902 & -9.6756 & 17.8344 & -1.4606 & -0.6127 & 0.1312 & -0.0036 & -0.0024 & -0.0000 \end{bmatrix}.$$ These feedback matrices (\mathbf{K}_e and \mathbf{K}_q) are applied to the original nonlinear system (12.11) and (12.12) in their discretized form as follows: $$\left[\begin{array}{c}\omega_{x}(n+1)\\\omega_{y}(n+1)\\\omega_{z}(n+1)\end{array}\right]$$ $$= t_{s} \begin{bmatrix} 1 & -\frac{J_{z}\omega_{z}(n)}{J_{x}} & \frac{J_{y}\omega_{y}(n)+h_{w}}{J_{x}} \\ \frac{J_{z}\omega_{z}(n)}{J_{y}} & 1 & -\frac{J_{x}\omega_{x}(n)}{J_{y}} \\ -\frac{J_{y}\omega_{y}(n)+h_{w}}{J_{z}} & \frac{J_{x}\omega_{x}(n)}{J_{z}} & 1 \end{bmatrix} \begin{bmatrix} \omega_{x}(n) \\ \omega_{y}(n) \\ \omega_{z}(n) \end{bmatrix}$$ $$+ t_{s} \begin{bmatrix} \frac{1}{J_{x}} & 0 & 0 \\ 0 & \frac{1}{J_{y}} & 0 \\ 0 & 0 & \frac{1}{J_{z}} \end{bmatrix} \begin{bmatrix} \mathbf{r}_{1} \times \mathbf{f}_{1}, \mathbf{r}_{2} \times \mathbf{f}_{2}, \mathbf{r}_{3} \times \mathbf{f}_{3}, \mathbf{r}_{4} \times \mathbf{f}_{4} \end{bmatrix} \mathbf{K} \mathbf{x}_{9}(n),$$ $$(12.20)$$ where **K** is either \mathbf{K}_e or \mathbf{K}_q . For the Euler angle model, the nonlinear kinematics equation of motion is given as follows [126]: $$\begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} 1 & \sin(\phi)\tan(\theta) & \cos(\phi)\tan(\theta) \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\phi)\sec(\theta) & \cos(\phi)\sec(\theta) \end{bmatrix} \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix}$$ (12.21) which has its discretized form as follows: $$\begin{bmatrix} \phi(n+1) \\ \theta(n+1) \\ \psi(n+1) \end{bmatrix} - \begin{bmatrix} \phi(n) \\ \theta(n) \\ \psi(n) \end{bmatrix}$$ $$= t_s \begin{bmatrix} 1 & \sin(\phi(n))\tan(\theta(n)) & \cos(\phi(n))\tan(\theta(n)) \\ 0 & \cos(\phi(n)) & -\sin(\phi(n)) \\ 0 & \sin(\phi(n))\sec(\theta(n)) & \cos(\phi(n))\sec(\theta(n)) \end{bmatrix} \begin{bmatrix} \omega_x(n) \\ \omega_y(n) \\ \omega_z(n) \end{bmatrix}.$$ (12.22) For reduced quaternion model, the nonlinear kinematics equation of motion has its discretized form as follows: $$\begin{bmatrix} q_{1}(n+1) \\ q_{2}(n+1) \\ q_{3}(n+1) \end{bmatrix} - \begin{bmatrix} q_{1}(n) \\ q_{2}(n) \\ q_{3}(n) \end{bmatrix}$$ $$= \frac{t_{s}}{2} \begin{bmatrix} \sqrt{1 - q_{1}^{2}(n) - q_{2}^{2}(n) - q_{3}^{2}(n)} \omega_{x}(n) - q_{3}(n) \omega_{y}(n) + q_{2}(n) \omega_{z}(n) \\ q_{3}(n) \omega_{x}(n) + \sqrt{1 - q_{1}^{2}(n) - q_{2}^{2}(n) - q_{3}^{2}(n)} \omega_{y}(n) - q_{1}(n) \omega_{z}(n) \\ -q_{2}(n) \omega_{x}(n) + q_{1}(n) \omega_{y}(n) + \sqrt{1 - q_{1}^{2}(n) - q_{2}^{2}(n) - q_{3}^{2}(n)} \omega_{z}(n) \end{bmatrix}.$$ (12.23) It is worthwhile to note that (12.17) is used to propagate for the last 3 integral states for the feedback control. For the Euler angle feedback control, the discrete Euler angle integrators $$\mathbf{ie} = [ie_1, ie_2, ie_3]^{\mathrm{T}} = \begin{bmatrix} \int_0^{t_s} \phi, \int_0^{t_s} \theta, \int_0^{t_s} \psi \end{bmatrix}^{\mathrm{T}}$$ is given by $$\mathbf{ie}(n+1) = \mathbf{ie}(n) + t_s * [\phi(n), \theta(n), \psi(n)]^{\mathrm{T}}$$ to propagate the last 3 integral states. In the simulation test, it is assumed that the initial quaternion rates are zeros; the initial Euler angles are 2 degrees in roll, pitch, and yaw which is about $2\pi/180$ radians; the initial Euler angle is converted to initial quaternion and used as the initial feedback in quaternion model based design; the initial integral terms for quaternion and Euler angles are all set to zeros. At the end of every iteration for quaternion based design simulation, the quaternion is converted back to the Euler angles and saved so that the responses of the two different designs can be compared using the same error measurement. The simulation results are provided in Figures 12.4–12.9. In these figures, the solid lines are the response of the closed loop system of quaternion based design; the dashed lines are the response of the closed loop system of Euler angle based design. Clearly, the system based on the quaternion model design has slightly better responses than the system based on the Euler angle model design in terms of widely used metrics such as percentage of overshoot, settling time, etc. [56]. **Figure 12.4:** Design comparison for quaternion rate ω_x . **Figure 12.5:** Design comparison for quaternion rate ω_{v} . Figure 12.6: Design comparison for quaternion rate ω_z . **Figure 12.7:** Design comparison for quaternion q_1 . **Figure 12.8:** Design comparison for quaternion q_2 . **Figure 12.9:** Design comparison for quaternion q_3 . # Chapter 13 # **Attitude MPC Control** Model predictive control (MPC) design [19, 170, 210, 3] has been a major research area and many successful applications have been reported [210]. The main idea of the model predictive control is to repeatedly solve a continuously updated control problem based on the latest information and apply the control action to the system based on the latest solution of the updated control problem. This requires significantly more online computational effort than most other control strategies. Therefore, model predictive control was not immediately adopted in spacecraft attitude control system designs when onboard computational power was limited. But as computers become more and more powerful, research of model predictive control designs for spacecraft application becomes very active, for example, Hegrenæs et al. in [91, 295] discussed model predictive control in different scenarios for spacecraft attitude control, Hartley et al. in [88] considered model predictive control design for spacecraft rendezvous problem, Di Cairano et al. in [35] investigated spacecraft rendezvous and proximity maneuvering, and Morgan et al. in [179] proposed model predictive control design for swarms of spacecraft using sequential convex programming. One of the most attractive and popular methods in model predictive control is to repeatedly solve a Constrained Linear Quadratic Regulator (CLQR) design problem because (a) the problem is relatively easy to solve online and (b) most nonlinear systems may be appropriately simplified as a linear system. To ensure that the model predictive control will be workable for online applications, researchers have been working on efficient and effective algorithms for the CLQR even though some algorithms were available as early as 1982 (see [24]). Since the CLQR problem can be reduced to a quadratic programming (QP) problem, the most efficient algorithms up to date are focused on the efficient solutions of QP. For example, Rao et al. in [213] proposed an *interior-point* algorithms with desirable theoretical properties (polynomial complexity). Bemporad et al. in [20, 264] proposed a multi-parametric program method aimed at reducing online computational burden and using offline computation as much as possible. Wang et al. in [280] suggested some fast algorithms specially designed for online convex QP for the model predictive control. Though these methods proposed innovative ideas to enhance online optimization efficiency, there is room and need to further improve these methods. For example, the most efficient interior-point algorithm for general QP problems is infeasible interior-point algorithms (finding a feasible starting point for general QP is expensive) which is a defect for MPC application, i.e., if early termination has to be enforced because of the online application requirement, the solution may not be feasible (because the intermediate iterates of infeasible interior-point algorithm are very likely infeasible). The multi-parametric QP proposed in [20, 264] would generate a look-up table growing exponentially with the horizon, state, and input dimensions, as noted in [280]; therefore, multi-parametric QP can be used for some very small problems (state dimensions are no more than 5). The convex QP algorithm proposed in [280] also uses
infeasible interior-point; therefore, its intermediate iterates are likely infeasible. Moreover, like the method in [213], the size of the QP problem obtained by [280] is big (for a system of n = 20, m = 3, and a horizon N = 30, the corresponding QP has 450 variables and 1260 constraints). In this chapter, the constrained MPC design problem subject to actuator saturation is considered. This problem is slightly simpler than the problems considered in [213, 20, 264, 280] but is still general enough for most real world problems. Several significant improvements over the aforementioned methods are proposed. First, the numbers of the variables and constraints of the corresponding QP problem can be reduced significantly and all equality constraints can be removed. This means that the corresponding QP problem is not only much smaller but also has a special structure, i.e., the problem is reduced to a convex quadratic programming subject to box constraints, for which we can easily find a feasible starting point. This idea was first proposed by this author in [312], and then reinvented in [337]. The second improvement over [213, 280] is to solve the reduced problem using a feasible interior-point algorithm which has several advantages over infeasible interior-point algorithms: (a) in general, the feasible interior-point algorithms have lower polynomial bound (more efficient) and (b) all intermediate iterates are feasible; therefore, early termination will give a feasible near-optimal solution. To further reduce the online computational cost, the third improvement is to devise a new algorithm that improves the efficiency of existing algorithms. By using the special structures of the problem, one can show that the algorithm proposed in this section enhances the general QP algorithm proposed in [311] in two aspects: (a) search in a larger neighborhood (the algorithm is more efficient) and (b) use an explicit initial feasible interior point (the algorithm does not need a phase-one process to find a feasible point). It is also shown that this algorithm has the best polynomial complexity bound, a very desirable theoretical property. By using the MATLAB® code to a spacecraft orbit-raising MPC design example, it is then verified that the proposed constrained MPC design has superior performance in computation because of the above mentioned improvements. The content of this chapter is based on [312, 322, 324]. Throughout this chapter, the notation e denotes a vector whose elements are all ones, and the notation of denotes the Hadamard product (component-wise multiplication of two vectors). #### Some technical lemmas 13.1 Some technical lemmas, which are independent of the problem, are introduced in this section. The first two simple lemmas are given in [311, 312]. #### Lemma 13.1 Let p > 0, q > 0, and r > 0 be some constants. If $p + q \le r$, then $pq \le \frac{r^2}{4}$. #### Lemma 13.2 For $\alpha \in [0, \frac{\pi}{2}]$, $$\sin(\alpha) \ge \sin^2(\alpha) = 1 - \cos^2(\alpha) \ge 1 - \cos(\alpha)$$. The next Lemma is proved in [178]. #### Lemma 13.3 Let **u**, **v**, and **w** be real vectors of same size satisfying $\mathbf{u} + \mathbf{v} = \mathbf{w}$ and $\mathbf{u}^T \mathbf{v} > \mathbf{0}$. Then, $$2\|\mathbf{u}\| \cdot \|\mathbf{v}\| \le \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 \le \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2\mathbf{u}^T\mathbf{v} = \|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{w}\|^2.$$ (13.1) The following technical lemma is from [297, page 88]. #### Lemma 13.4 Let **u** and **v** be any vectors of the same dimension, and $\mathbf{u}^{\mathrm{T}}\mathbf{v} \geq \mathbf{0}$. Then $$\|\mathbf{u} \circ \mathbf{v}\| \le 2^{-\frac{3}{2}} \|\mathbf{u} + \mathbf{v}\|^2.$$ The famous *Cardano's formula* can be found in [206]. #### Lemma 13.5 Let p and q be any real numbers that are related to the following cubic algebra equation $$x^3 + px + q = 0.$$ If $$\Delta = \left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3 > 0,$$ then the cubic equation has one real root that is given by $$x = \sqrt[3]{-\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}}.$$ For quartic polynomials, the roots can be represented by several different formulas, which are not discussed here but are referred to [232] and references therein. The last technical lemma in this section is as follows. #### Lemma 13.6 Let **u** and **v** be any n-dimensional vectors. Then $$\left\|\mathbf{u} \circ \mathbf{v} - \frac{1}{n} \left(\mathbf{u}^{\mathrm{T}} \mathbf{v}\right) \mathbf{e}\right\| \leq \left\|\mathbf{u} \circ \mathbf{v}\right\|.$$ #### **Proof 13.1** Simple calculation gives $$\left\| \mathbf{u} \circ \mathbf{v} - \frac{1}{n} \left(\mathbf{u}^{\mathsf{T}} \mathbf{v} \right) \mathbf{e} \right\|^{2}$$ $$= \sum_{i=1}^{n} \left(u_{i} v_{i} - \frac{1}{n} \sum_{i=1}^{n} u_{i} v_{i} \right)^{2}$$ $$= \sum_{i=1}^{n} \left(u_{i}^{2} v_{i}^{2} - \frac{2u_{i} v_{i}}{n} \sum_{i=1}^{n} u_{i} v_{i} + \frac{1}{n^{2}} \left(\sum_{i=1}^{n} u_{i} v_{i} \right)^{2} \right)$$ $$= \sum_{i=1}^{n} \left(u_{i}^{2} v_{i}^{2} \right) - \frac{2}{n} \left(\sum_{i=1}^{n} u_{i} v_{i} \right)^{2} + \frac{1}{n} \left(\sum_{i=1}^{n} u_{i} v_{i} \right)^{2}$$ $$= \sum_{i=1}^{n} \left(u_{i}^{2} v_{i}^{2} \right) - \frac{1}{n} \left(\sum_{i=1}^{n} u_{i} v_{i} \right)^{2} \leq \| \mathbf{u} \circ \mathbf{v} \|^{2}.$$ This finishes the proof. #### Constrained MPC and convex OP with box 13.2 constraints Constrained MPC design under consideration repeatedly solves the following CLQR design problem. Let $\mathbf{x} \in \mathbf{R}^r$ be the system state, $\mathbf{u} \in \mathbf{R}^m$ be the control vector, $\mathbf{A} \in \mathbf{R}^{r \times r}$ and $\mathbf{B} \in \mathbf{R}^{r \times m}$ be system matrices. The discrete linear timeinvariant system is given by $$\mathbf{x}_{s+1} = \mathbf{A}\mathbf{x}_s + \mathbf{B}\mathbf{u}_s, \tag{13.2}$$ while fulfilling the constraints $$-\mathbf{e} \le \mathbf{u}_s \le \mathbf{e},\tag{13.3}$$ where s = t, ..., t + N - 1. Let $\mathbf{P} \in \mathbf{R}^{r \times r}$, $\mathbf{Q} \in \mathbf{R}^{r \times r}$, and $\mathbf{R} \in \mathbf{R}^{m \times m}$ be positive definite matrices. The design is to optimize the following cost function $$J = \min_{\mathbf{u}_{t}, \mathbf{u}_{t+1}, \dots, \mathbf{u}_{t+N-1}} \frac{1}{2} \mathbf{x}_{t+N}^{\mathrm{T}} \mathbf{P} \mathbf{x}_{t+N} + \frac{1}{2} \sum_{k=0}^{N-1} \left[\mathbf{x}_{t+k}^{\mathrm{T}} \mathbf{Q} \mathbf{x}_{t+k} + \mathbf{u}_{t+k}^{\mathrm{T}} \mathbf{R} \mathbf{u}_{t+k} \right]$$ (13.4) under the system dynamics equality constraints (13.2) and control saturation inequality constraints (13.3). Given current state \mathbf{x}_t , this CLQR (or MPC) design problem is a typical convex quadratic programming problems with Nr + Nm variables $\mathbf{x}_{t+1}, \dots, \mathbf{x}_{t+N}, \mathbf{u}_t, \dots, \mathbf{u}_{t+N-1}$. Though this problem can be directly solved as suggested by [24], it can be significantly reduced to an equivalent but much smaller convex quadratic programming problem subject only to box constraints. Denote $$\mathbf{A}^k = \underbrace{\mathbf{A} \cdots \mathbf{A}}_{\text{product of k } \mathbf{A}} := \mathbf{A}_k \in \mathbf{R}^{r \times r}$$ with $\mathbf{A}_0 = \mathbf{I}$. Since $$\mathbf{x}_{t+k} = \mathbf{A}\mathbf{x}_{t+k-1} + \mathbf{B}\mathbf{u}_{t+k-1} = \mathbf{A}^k\mathbf{x}_t + \sum_{j=0}^{k-1} \mathbf{A}^j\mathbf{B}\mathbf{u}_{t+k-j-1}$$ $$= \mathbf{A}_k\mathbf{x}_t + \sum_{j=0}^{k-1} \mathbf{A}_j\mathbf{B}\mathbf{u}_{t+k-j-1}, \qquad (13.5)$$ equation (13.4) can be rewritten as $$J = \min_{\mathbf{u}_{t}, \mathbf{u}_{t+1}, \dots, \mathbf{u}_{t+N-1}} \frac{1}{2} \left(\mathbf{A}_{N} \mathbf{x}_{t} + \sum_{j=0}^{N-1} \mathbf{A}_{j} \mathbf{B} \mathbf{u}_{t+N-j-1} \right)^{T} \mathbf{P} \left(\mathbf{A}_{N} \mathbf{x}_{t} + \sum_{j=0}^{N-1} \mathbf{A}_{j} \mathbf{B} \mathbf{u}_{t+N-j-1} \right)^{T}$$ $$+ \frac{1}{2} \sum_{k=1}^{N-1} \left(\mathbf{A}_{k} \mathbf{x}_{t} + \sum_{j=0}^{k-1} \mathbf{A}_{j} \mathbf{B} \mathbf{u}_{t+k-j-1} \right)^{T} \mathbf{Q} \left(\mathbf{A}_{k} \mathbf{x}_{t} + \sum_{j=0}^{k-1} \mathbf{A}_{j} \mathbf{B} \mathbf{u}_{t+k-j-1} \right)^{T}$$ $$+\frac{1}{2}\sum_{k=0}^{N-1} \left(\mathbf{u}_{t+k}^{\mathrm{T}} \mathbf{R} \mathbf{u}_{t+k}\right) \tag{13.6}$$ Notice that \mathbf{x}_t is a constant vector, \mathbf{A}_j , \mathbf{P} , \mathbf{Q} , and \mathbf{R} are constant matrices, the (13.6) can be reduced to $$J_{0} = \min_{\mathbf{u}_{t}, \mathbf{u}_{t+1}, \cdots, \mathbf{u}_{t+N-1}} \frac{1}{2} \left(\sum_{j=0}^{N-1} \mathbf{A}_{j} \mathbf{B} \mathbf{u}_{t+N-j-1} \right)^{T} \mathbf{P} \left(\sum_{j=0}^{N-1} \mathbf{A}_{j} \mathbf{B} \mathbf{u}_{t+N-j-1} \right)$$ $$+ (\mathbf{A}_{N} \mathbf{x}_{t})^{T} \mathbf{P} \left(\sum_{j=0}^{N-1} \mathbf{A}_{j} \mathbf{B} \mathbf{u}_{t+N-j-1} \right)$$ $$+ \frac{1}{2} \sum_{k=1}^{N-1} \left(\sum_{j=0}^{k-1} \mathbf{A}_{j} \mathbf{B} \mathbf{u}_{t+k-j-1} \right)^{T} \mathbf{Q} \left(\sum_{j=0}^{k-1} \mathbf{A}_{j} \mathbf{B} \mathbf{u}_{t+k-j-1} \right)$$ $$+ \sum_{k=1}^{N-1} \left((\mathbf{A}_{k} \mathbf{x}_{t})^{T} \mathbf{Q} \left(\sum_{j=0}^{k-1} \mathbf{A}_{j} \mathbf{B} \mathbf{u}_{t+k-j-1} \right) \right)$$ $$+ \frac{1}{2} \sum_{k=0}^{N-1} (\mathbf{u}_{t+k}^{T} \mathbf{R} \mathbf{u}_{t+k}).$$ (13.7) Denote $$\sum_{j=0}^{k-1} \mathbf{A}_{j} \mathbf{B} \mathbf{u}_{t+k-j-1} = \underbrace{\left[\mathbf{A}_{k-1} \mathbf{B}, \mathbf{A}_{k-2} \mathbf{B}, \cdots, \mathbf{B}\right]}_{\boldsymbol{\phi}_{k} \in \mathbf{R}^{r \times (km)}} \underbrace{\left[\begin{array}{c} \mathbf{u}_{t} \\ \vdots \\ \mathbf{u}_{t+k-1} \end{array}\right]}_{\mathbf{v}_{k} \in \mathbf{R}^{km}}$$ $$= \boldsymbol{\phi}_{k} \mathbf{v}_{k}, \quad k \in \{1, 2, \dots, N\}, \tag{13.8}$$ $$\mathbf{Q}_{k} = \begin{bmatrix} \phi_{k}^{\mathsf{T}} \mathbf{Q} \phi_{k} &
\mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \in \mathbf{R}^{(Nm) \times (Nm)}, \quad \phi_{k}^{\mathsf{T}} \mathbf{Q} \phi_{k} \in \mathbf{R}^{(km) \times (km)}, \\ k \in \{1, 2, \dots, N-1\}, \tag{13.9}$$ $$\mathbf{R}_{N} = \underbrace{\begin{bmatrix} \mathbf{R} & \cdots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & \cdots & \mathbf{R} \end{bmatrix}}_{\text{N diagonal matrices}} \in \mathbf{R}^{(Nm) \times (Nm)}, \tag{13.10}$$ and $$\mathbf{S}_k = \begin{bmatrix} \mathbf{A}_k^{\mathrm{T}} \mathbf{Q} \boldsymbol{\phi}_k & \mathbf{0} \end{bmatrix} \in \mathbf{R}^{r \times (Nm)}, \quad \mathbf{A}_k^{\mathrm{T}} \mathbf{Q} \boldsymbol{\phi}_k \in \mathbf{R}^{r \times (km)},$$ $$k \in \{1, 2, \dots, N-1\},$$ (13.11) where **0**'s are zero matrices with appropriate dimensions. The CLQR (or MPC) design is reduced further to $$J_{0} = \min_{\mathbf{u}_{t}, \mathbf{u}_{t+1}, \dots, \mathbf{u}_{t+N-1}} \frac{1}{2} \mathbf{v}_{N}^{\mathrm{T}} \left(\boldsymbol{\phi}_{N}^{\mathrm{T}} \mathbf{P} \boldsymbol{\phi}_{N} + \sum_{k=1}^{N-1} \mathbf{Q}_{k} + \mathbf{R}_{N} \right) \mathbf{v}_{N} + \mathbf{x}_{t}^{\mathrm{T}} \left(\mathbf{A}_{N}^{\mathrm{T}} \mathbf{P} \boldsymbol{\phi}_{N} + \sum_{k=1}^{N-1} \mathbf{S}_{k} \right) \mathbf{v}_{N}$$ $$s.t. \quad -\mathbf{e} \leq \mathbf{v}_{N} \leq \mathbf{e}. \tag{13.12}$$ Let n = Nm. $$\mathbf{x} = \mathbf{v}_N, \tag{13.13}$$ $$\mathbf{H} = \left(\phi_N^{\mathrm{T}} \mathbf{P} \phi_N + \sum_{k=1}^{N-1} \mathbf{Q}_k + \mathbf{R}_N\right), \tag{13.14}$$ $$\mathbf{c}^{\mathrm{T}} = \mathbf{x}_{t}^{\mathrm{T}} \left(\mathbf{A}_{N}^{\mathrm{T}} \mathbf{P} \phi_{N} + \sum_{k=1}^{N-1} \mathbf{S}_{k} \right). \tag{13.15}$$ The CLQR (or MPC) design problem can be written in a standard form of convex quadratic problem with box constraints: $$(QP)$$ min $\frac{1}{2}\mathbf{x}^{\mathrm{T}}\mathbf{H}\mathbf{x} + \mathbf{c}^{\mathrm{T}}\mathbf{x}$, subject to $-\mathbf{e} \le \mathbf{x} \le \mathbf{e}$, (13.16) where $0 < \mathbf{H} \in \mathbf{R}^{n \times n}$ is a positive definite matrix, $\mathbf{c} \in \mathbf{R}^n$ is given, and $\mathbf{x} \in \mathbf{R}^n$ is the control vector to be optimized. This convex quadratic programming problem has Nm variables and 2Nm box constraints, and its size is independent of the system dimension r, a much smaller and simpler problem than the original one. A quick comparison of the MPC problem sizes and reduced QP sizes using the method of this section and methods mentioned in [280] (cf. [280, Table 13.1]) is given in Table 13.1. The bigger the linear system is, the more advantaged the proposed method will be. A bigger advantage of the proposed method is that the constraints in (13.16) are very simple and admit a feasible initial interior point (see Section 13.6). The proposed method allows users to use more efficient feasible (initial) | system | control | horizon | QP size of this section | | QP size of [280] and other papers | | |---------|---------|---------|-------------------------|------------------|-----------------------------------|------------------| | state r | input m | N | # of variables | # of constraints | # of variables | # of constraints | | 4 | 2 | 20 | 40 | 80 | 100 | 320 | | 10 | 3 | 30 | 90 | 180 | 360 | 1080 | | 16 | 4 | 30 | 120 | 240 | 570 | 1680 | | 30 | 8 | 30 | 240 | 480 | 1110 | 3180 | **Table 13.1:** Comparison of reduced OP sizes of the proposed method and other methods. interior-point algorithms rather than an infeasible (initial) interior-point algorithm as used in [280]. Moreover, if a premature termination is enforced due to the on-line computational requirement, the solution is feasible. All the simplifications described in this section are offline. But it greatly reduces the online problem size and simplifies the problem constraints. However, it is not wise to use an interior-point algorithm designed for general problems for this very special convex quadratic programming problem which has only box constraints. In the remainder of this chapter, the structure of the box constraints will be fully investigated and every efficient algorithm for the problem (13.16) will be devised. For readers who want to know more about interior-point methods, it is recommended to read [326]. # 13.3 Central path of convex QP with box constraints In view of the KKT conditions (see Appendix A or [188]), since **H** is a positive definite matrix, **x** is an optimal solution of (13.16) if and only if **x**, λ , and γ satisfy $$-\lambda + \gamma - \mathbf{H}\mathbf{x} = \mathbf{c}, \tag{13.17a}$$ $$-\mathbf{e} \le \mathbf{x} \le \mathbf{e},\tag{13.17b}$$ $$(\lambda, \gamma) \ge \mathbf{0}, \tag{13.17c}$$ $$\lambda_i(e_i - x_i) = 0, \quad \gamma_i(e_i + x_i) = 0, \quad i = 1, \dots, n.$$ (13.17d) Denote y = e - x > 0, z = e + x > 0. The KKT conditions can be rewritten as $$\mathbf{H}\mathbf{x} + \mathbf{c} + \lambda - \gamma = \mathbf{0},\tag{13.18a}$$ $$\mathbf{x} + \mathbf{y} = \mathbf{e}, \quad \mathbf{x} - \mathbf{z} = -\mathbf{e}, \tag{13.18b}$$ $$(\mathbf{y}, \mathbf{z}, \lambda, \gamma) \ge \mathbf{0},$$ (13.18c) $$\lambda_i y_i = 0, \quad \gamma_i z_i = 0, \quad i = 1, \dots, n.$$ (13.18d) For the convex (QP) problem, the KKT conditions are also sufficient for \mathbf{x} to be a global optimal solution (see Appendix A). Denote the *feasible set* \mathcal{F} as a collection of all points that meet the constraints (13.18a), (13.18b), (13.18c) $$\mathcal{F} = \{(\mathbf{x}, \mathbf{y}, \mathbf{z}, \lambda, \gamma) : \mathbf{H}\mathbf{x} + \mathbf{c} + \lambda - \gamma = \mathbf{0}, (\mathbf{y}, \mathbf{z}, \lambda, \gamma) \ge \mathbf{0}, \mathbf{x} + \mathbf{y} = \mathbf{e}, \mathbf{x} - \mathbf{z} = -\mathbf{e}\},\$$ (13.19) and the *strictly feasible* set \mathcal{F}^o as a collection of all points that meet the constraints (13.18a), (13.18b), and are strictly positive in (13.18c) $$\mathcal{F}^o = \{ (\mathbf{x}, \mathbf{y}, \mathbf{z}, \lambda, \gamma) : \mathbf{H}\mathbf{x} + \mathbf{c} + \lambda - \gamma = \mathbf{0}, (\mathbf{y}, \mathbf{z}, \lambda, \gamma) > \mathbf{0}, \mathbf{x} + \mathbf{y} = \mathbf{e}, \mathbf{x} - \mathbf{z} = -\mathbf{e} \}.$$ (13.20) Similar to the linear programming, the *central path* $C \in \mathcal{F}^o \subset \mathcal{F}$ is defined as a curve in a finite dimensional space parameterized by a scalar $\tau > 0$ as follows. For each interior point $(\mathbf{x}, \mathbf{y}, \mathbf{z}, \lambda, \gamma) \in \mathcal{F}^o$ on the central path, there is a $\tau > 0$ such that $$\mathbf{H}\mathbf{x} + \mathbf{c} + \lambda - \gamma = \mathbf{0},\tag{13.21a}$$ $$\mathbf{x} + \mathbf{y} = \mathbf{e}, \quad \mathbf{x} - \mathbf{z} = -\mathbf{e}, \tag{13.21b}$$ $$(\mathbf{y}, \mathbf{z}, \lambda, \gamma) > \mathbf{0}, \tag{13.21c}$$ $$\lambda_i y_i = \tau, \quad \gamma_i z_i = \tau, \quad i = 1, \dots, n. \tag{13.21d}$$ Therefore, the central path is an arc that is parameterized as a function of τ and is denoted as $$C = \{ (\mathbf{x}(\tau), \mathbf{y}(\tau), \mathbf{z}(\tau), \lambda(\tau), \gamma(\tau)) : \tau > 0 \}.$$ (13.22) As $\tau \to 0$, the moving point $(\mathbf{x}(\tau), \mathbf{y}(\tau), \mathbf{z}(\tau), \lambda(\tau), \gamma(\tau))$ on the central path represented by (13.21) approaches the solution of (QP) represented by (13.16). Throughout the rest of this chapter, the following assumption is made. #### **Assumption:** 1. \mathcal{F}^o is not empty. Assumption 1 implies the existence of a central path. This assumption is always true for the CLQR problem. An explicit initial interior point will be provided later in this chapter. Let $1 > \theta > 0$, denote $\mathbf{p} = (\mathbf{y}, \mathbf{z})$, $\omega = (\lambda, \gamma)$, and the duality measure $$\mu = \frac{\lambda^{\mathrm{T}} \mathbf{y} + \gamma^{\mathrm{T}} \mathbf{z}}{2n} = \frac{\mathbf{p}^{\mathrm{T}} \boldsymbol{\omega}}{2n}.$$ (13.23) A set of neighborhood of the central path is defined as $$\mathcal{N}_2(\theta) = \{ (\mathbf{x}, \mathbf{y}, \mathbf{z}, \lambda, \gamma) \in \mathcal{F}^o : \|\mathbf{p} \circ \boldsymbol{\omega} - \mu \mathbf{e}\| \le \theta \mu \} \subset \mathcal{F}^o. \tag{13.24}$$ As the duality measure is reduced to zero, the neighborhood of $\mathcal{N}_2(\theta)$ will be a neighborhood of the central path that approaches the optimizer(s) of the QP problem, therefore, all points inside $\mathcal{N}_2(\theta)$ will approach the optimizer(s) of the QP problem. For $(\mathbf{x}, \mathbf{y}, \mathbf{z}, \lambda, \gamma) \in \mathcal{N}_2(\theta)$, since $(1 - \theta)\mu \le \omega_i p_i \le (1 + \theta)\mu$, where ω_i are either λ_i or γ_i , and p_i are either y_i or z_i , it must have $$\frac{\omega_i p_i}{1+\theta} \le \frac{\max_i \omega_i p_i}{1+\theta} \le \mu \le \frac{\min_i \omega_i p_i}{1-\theta} \le \frac{\omega_i p_i}{1-\theta}.$$ (13.25) #### An algorithm for convex QP with box constraints 13.4 The idea of arc-search proposed in this section is straightforward. The algorithm starts from a feasible point in $\mathcal{N}_2(\theta)$ close to the central path, constructs an arc that passes through the point and approximates the central path, and searches along the arc to a new point in a larger area $\mathcal{N}_2(2\theta)$ that reduces the duality measure $\mathbf{p}^T \boldsymbol{\omega}$ and meets (13.21a), (13.21b), and (13.21c). The process is repeated by finding a better point close to the central path or on the central path in $\mathcal{N}_2(\theta)$ that simultaneously meets (13.21a), (13.21b), and (13.21c). Following the idea used in [311], an *ellipse* \mathcal{E} [37] in an appropriate dimensional space will be used to approximate the central path \mathcal{C} described by (13.21), where $$\mathcal{E} = \{ (\mathbf{x}(\alpha), \mathbf{y}(\alpha), \mathbf{z}(\alpha), \lambda(\alpha), \gamma(\alpha)) : \\ (\mathbf{x}(\alpha), \mathbf{y}(\alpha), \mathbf{z}(\alpha), \lambda(\alpha), \gamma(\alpha)) =
\vec{\mathbf{a}}\cos(\alpha) + \vec{\mathbf{b}}\sin(\alpha) + \vec{\mathbf{c}} \},$$ (13.26) $\vec{\mathbf{a}} \in \mathbf{R}^{5n}$ and $\vec{\mathbf{b}} \in \mathbf{R}^{5n}$ are the axes of the ellipse, $\vec{\mathbf{c}} \in \mathbf{R}^{5n}$ is the center of the ellipse. Given a point $(\mathbf{x},\mathbf{y},\mathbf{z},\lambda,\gamma)=(\mathbf{x}(\alpha_0),\mathbf{y}(\alpha_0),\mathbf{z}(\alpha_0),\lambda(\alpha_0),\gamma(\alpha_0))\in\mathcal{E}$ which is close to or on the central path, $\vec{\mathbf{a}},\vec{\mathbf{b}},\vec{\mathbf{c}}$ are functions of α , $(\mathbf{x},\lambda,\gamma,\mathbf{y},\mathbf{z})$, $(\dot{\mathbf{x}},\dot{\mathbf{y}},\dot{\mathbf{z}},\dot{\lambda},\dot{\gamma})$, and $(\ddot{\mathbf{x}},\ddot{\mathbf{y}},\ddot{\mathbf{z}},\ddot{\lambda},\ddot{\gamma})$, where $(\dot{\mathbf{x}},\dot{\mathbf{y}},\dot{\mathbf{z}},\dot{\lambda},\dot{\gamma})$ and $(\ddot{\mathbf{x}},\ddot{\mathbf{y}},\ddot{\mathbf{z}},\ddot{\lambda},\ddot{\gamma})$ are defined $$\begin{bmatrix} \mathbf{H} & \mathbf{0} & \mathbf{0} & \mathbf{I} & -\mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{I} & \mathbf{0} & -\mathbf{I} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \Lambda & \mathbf{0} & \mathbf{Y} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \Gamma & \mathbf{0} & \mathbf{Z} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{y}} \\ \dot{\mathbf{z}} \\ \dot{\lambda} \\ \dot{\gamma} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \lambda \circ \mathbf{y} \\ \gamma \circ \mathbf{z} \end{bmatrix}, \tag{13.27}$$ $$\begin{bmatrix} \mathbf{H} & \mathbf{0} & \mathbf{0} & \mathbf{I} & -\mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{I} & \mathbf{0} & -\mathbf{I} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \Lambda & \mathbf{0} & \mathbf{Y} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \Gamma & \mathbf{0} & \mathbf{Z} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{x}} \\ \ddot{\mathbf{y}} \\ \ddot{\mathbf{z}} \\ \ddot{\boldsymbol{\gamma}} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ -2\dot{\boldsymbol{\lambda}} \circ \dot{\mathbf{y}} \\ -2\dot{\boldsymbol{\gamma}} \circ \dot{\mathbf{z}} \end{bmatrix}, \tag{13.28}$$ where $\Lambda = \operatorname{diag}(\lambda)$, $\Gamma = \operatorname{diag}(\gamma)$, $\mathbf{Y} = \operatorname{diag}(\mathbf{y})$, and $\mathbf{Z} = \operatorname{diag}(\mathbf{z})$. The first rows of (13.27) and (13.28) are equivalent to $$\mathbf{H}\dot{\mathbf{x}} = \dot{\mathbf{y}} - \dot{\lambda}, \quad \mathbf{H}\ddot{\mathbf{x}} = \ddot{\mathbf{y}} - \ddot{\lambda}. \tag{13.29}$$ The next 2 rows of (13.27) and (13.28) are equivalent to $$\dot{\mathbf{x}} = -\dot{\mathbf{y}}, \quad \dot{\mathbf{x}} = \dot{\mathbf{z}}, \quad \ddot{\mathbf{x}} = -\ddot{\mathbf{y}}, \quad \ddot{\mathbf{x}} = \ddot{\mathbf{z}}.$$ (13.30) The last 2 rows of (13.27) and (13.28) are equivalent to $$\mathbf{p} \circ \dot{\boldsymbol{\omega}} + \dot{\mathbf{p}} \circ \boldsymbol{\omega} = \mathbf{p} \circ \boldsymbol{\omega}, \tag{13.31}$$ $$\mathbf{p} \circ \ddot{\boldsymbol{\omega}} + \ddot{\mathbf{p}} \circ \boldsymbol{\omega} = -2\dot{\mathbf{p}} \circ \dot{\boldsymbol{\omega}}, \tag{13.32}$$ where o denotes the Hadamard product which will be used in the remainder of this chapter. It has been shown in [309, 311] that one can avoid the calculation of \vec{a} , \vec{b} , and \vec{c} in the expression of the ellipse. The following formulas are used instead. #### Theorem 13.1 Let $(\mathbf{x}(\alpha), \mathbf{y}(\alpha), \mathbf{z}(\alpha), \lambda(\alpha), \gamma(\alpha))$ be an arc defined by (13.26) passing through a point $(\mathbf{x}, \mathbf{y}, \mathbf{z}, \lambda, \gamma) \in \mathcal{E}$, and its first and second derivatives at $(\mathbf{x}, \mathbf{y}, \mathbf{z}, \lambda, \gamma)$ be $(\dot{\mathbf{x}},\dot{\mathbf{y}},\dot{\mathbf{z}},\dot{\lambda},\dot{\gamma})$ and $(\ddot{\mathbf{x}},\ddot{\mathbf{y}},\ddot{\mathbf{z}},\ddot{\lambda},\ddot{\gamma})$ which are defined by (13.27) and (13.28). Then an ellipse approximation of the central path is given by $$\mathbf{x}(\alpha) = \mathbf{x} - \dot{\mathbf{x}}\sin(\alpha) + \ddot{\mathbf{x}}(1 - \cos(\alpha)), \tag{13.33}$$ $$\mathbf{y}(\alpha) = \mathbf{y} - \dot{\mathbf{y}}\sin(\alpha) + \ddot{\mathbf{y}}(1 - \cos(\alpha)), \tag{13.34}$$ $$\mathbf{z}(\alpha) = \mathbf{z} - \dot{\mathbf{z}}\sin(\alpha) + \ddot{\mathbf{z}}(1 - \cos(\alpha)), \tag{13.35}$$ $$\lambda(\alpha) = \lambda - \dot{\lambda}\sin(\alpha) + \ddot{\lambda}(1 - \cos(\alpha)), \tag{13.36}$$ $$\gamma(\alpha) = \gamma - \dot{\gamma}\sin(\alpha) + \ddot{\gamma}(1 - \cos(\alpha)). \tag{13.37}$$ Two compact representations for $\mathbf{p}(\alpha) = (\mathbf{y}(\alpha), \mathbf{z}(\alpha))$ and $\omega(\alpha) =$ $(\lambda(\alpha), \gamma(\alpha))$ are given below: $$\mathbf{p}(\alpha) = \mathbf{p} - \dot{\mathbf{p}}\sin(\alpha) + \ddot{\mathbf{p}}(1 - \cos(\alpha)), \tag{13.38}$$ $$\omega(\alpha) = \omega - \dot{\omega}\sin(\alpha) + \ddot{\omega}(1 - \cos(\alpha)). \tag{13.39}$$ The duality measure at point $(\mathbf{x}(\alpha), \mathbf{p}(\alpha), \omega(\alpha))$ is defined as: $$\mu(\alpha) = \frac{\lambda(\alpha)^{\mathrm{T}} \mathbf{y}(\alpha) + \gamma(\alpha)^{\mathrm{T}} \mathbf{z}(\alpha)}{2n} = \frac{\mathbf{p}(\alpha)^{\mathrm{T}} \omega(\alpha)}{2n}.$$ (13.40) Assuming $(\mathbf{y}, \mathbf{z}, \lambda, \gamma) > 0$, one can easily see that if $\frac{\dot{\mathbf{y}}}{\mathbf{y}}, \frac{\dot{\mathbf{z}}}{\mathbf{z}}, \frac{\dot{\lambda}}{\lambda}, \frac{\dot{\gamma}}{\gamma}, \frac{\ddot{\mathbf{y}}}{\mathbf{y}}, \frac{\ddot{\mathbf{z}}}{\mathbf{z}}, \frac{\ddot{\lambda}}{\lambda}$ are bounded (this will be shown to be true), and if α is small enough, then, $\mathbf{y}(\alpha) > 0$, $\mathbf{z}(\alpha) > 0$, $\lambda(\alpha) > 0$, and $\gamma(\alpha) > 0$. It will also be shown that searching along this ellipse will reduce the duality measure, i.e., $\mu(\alpha) < \mu$. #### Lemma 13.7 Let $(\mathbf{x}, \mathbf{y}, \mathbf{z}, \lambda, \gamma)$ be a strictly feasible point of (QP), $(\dot{\mathbf{x}}, \dot{\mathbf{y}}, \dot{\mathbf{z}}, \dot{\lambda}, \dot{\gamma})$ and $(\ddot{\mathbf{x}}, \ddot{\mathbf{y}}, \ddot{\mathbf{z}}, \ddot{\lambda}, \ddot{\gamma})$ meet (13.27) and (13.28), $(\mathbf{x}(\alpha), \mathbf{y}(\alpha), \mathbf{z}(\alpha), \lambda(\alpha), \gamma(\alpha))$ be calculated using (13.33), (13.34), (13.35), (13.36), and (13.37), then the following conditions hold. $$\mathbf{x}(\alpha)+\mathbf{y}(\alpha)=\mathbf{e}, \quad \mathbf{x}(\alpha)-\mathbf{z}(\alpha)=-\mathbf{e}, \quad \mathbf{H}\mathbf{x}(\alpha)+\mathbf{c}+\lambda(\alpha)+\gamma(\alpha)=\mathbf{0}.$$ **Proof 13.2** Since $(\mathbf{x}, \mathbf{y}, \mathbf{z}, \lambda, \gamma)$ is a strictly feasible point, the result follows from direct calculation by using (13.20), (13.27), (13.28), and Theorem 13.1. #### Lemma 13.8 Let $(\dot{\mathbf{x}}, \dot{\mathbf{p}}, \dot{\boldsymbol{\omega}})$ be defined by (13.27), $(\ddot{\mathbf{x}}, \ddot{\mathbf{p}}, \ddot{\boldsymbol{\omega}})$ be defined by (13.28), and \mathbf{H} be positive definite matrix. Then the following relations hold: $$\dot{\mathbf{p}}^{\mathrm{T}}\dot{\boldsymbol{\omega}} = \dot{\mathbf{x}}^{\mathrm{T}}(\dot{\boldsymbol{\gamma}} - \dot{\boldsymbol{\lambda}}) = \dot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\dot{\mathbf{x}} \ge \mathbf{0},\tag{13.41}$$ the equality holds if and only if $\|\dot{\mathbf{x}}\| = \mathbf{0}$; $$\ddot{\mathbf{p}}^{\mathrm{T}}\ddot{\omega} = \ddot{\mathbf{x}}^{\mathrm{T}}(\ddot{\gamma} - \ddot{\lambda}) = \ddot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\ddot{\mathbf{x}} \ge \mathbf{0},\tag{13.42}$$ the equality holds if and only if $\|\ddot{\mathbf{x}}\| = \mathbf{0}$; $$\ddot{\mathbf{p}}^{\mathrm{T}}\dot{\boldsymbol{\omega}} = \ddot{\mathbf{x}}^{\mathrm{T}}(\dot{\boldsymbol{\gamma}} - \dot{\boldsymbol{\lambda}}) = \dot{\mathbf{x}}^{\mathrm{T}}(\ddot{\boldsymbol{\gamma}} - \ddot{\boldsymbol{\lambda}}) = \ddot{\mathbf{p}}^{\mathrm{T}}\ddot{\boldsymbol{\omega}} = \dot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\ddot{\mathbf{x}}; \tag{13.43}$$ $$-(\dot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\dot{\mathbf{x}})(1-\cos(\alpha))^{2} - (\ddot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\ddot{\mathbf{x}})\sin^{2}(\alpha)$$ $$\leq (\ddot{\mathbf{x}}^{\mathrm{T}}(\dot{\gamma}-\dot{\lambda}) + \dot{\mathbf{x}}^{\mathrm{T}}(\ddot{\gamma}-\ddot{\lambda}))\sin(\alpha)(1-\cos(\alpha))$$ $$\leq (\dot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\dot{\mathbf{x}})(1-\cos(\alpha))^{2} + (\ddot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\ddot{\mathbf{x}})\sin^{2}(\alpha); \tag{13.44}$$ and $$-(\dot{\mathbf{x}}^{T}\mathbf{H}\dot{\mathbf{x}})\sin^{2}(\alpha) - (\ddot{\mathbf{x}}^{T}\mathbf{H}\ddot{\mathbf{x}})(1-\cos(\alpha))^{2}$$ $$\leq (\ddot{\mathbf{x}}^{T}(\dot{\gamma}-\dot{\lambda}) + \dot{\mathbf{x}}^{T}(\ddot{\gamma}-\ddot{\lambda}))\sin(\alpha)(1-\cos(\alpha))$$ $$\leq (\dot{\mathbf{x}}^{T}\mathbf{H}\dot{\mathbf{x}})\sin^{2}(\alpha) + (\ddot{\mathbf{x}}^{T}\mathbf{H}\ddot{\mathbf{x}})(1-\cos(\alpha))^{2}.$$ (13.45) For $\alpha = \frac{\pi}{2}$, (13.44) and (13.45) reduce to $$-\left(\dot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\dot{\mathbf{x}} + \ddot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\ddot{\mathbf{x}}\right) \le \left(\ddot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\dot{\mathbf{x}} + \dot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\ddot{\mathbf{x}}\right) \le \dot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\dot{\mathbf{x}} + \ddot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\ddot{\mathbf{x}}.\tag{13.46}$$ The proof of this lemma is given in the last section. From Lemmas 13.8, 13.1, and 13.3, it can be shown that $\frac{\dot{\mathbf{p}}}{\mathbf{p}} := \left(\frac{\dot{\mathbf{y}}}{\mathbf{y}}, \frac{\dot{\mathbf{z}}}{\mathbf{z}}\right)$, $\frac{\dot{\omega}}{\omega} := \left(\frac{\dot{\lambda}}{\lambda}, \frac{\dot{\gamma}}{\gamma}\right)$, $\frac{\ddot{\mathbf{p}}}{\mathbf{p}} :=
\left(\frac{\ddot{\mathbf{y}}}{\mathbf{y}}, \frac{\ddot{\mathbf{z}}}{\mathbf{z}}\right)$, and $\frac{\ddot{\omega}}{\omega} := \left(\frac{\ddot{\lambda}}{\lambda}, \frac{\ddot{\gamma}}{\gamma}\right)$ are all bounded as claimed in the following two Lemmas. #### Lemma 13.9 Let $(\mathbf{x}, \mathbf{p}, \boldsymbol{\omega}) = (\mathbf{x}, \mathbf{y}, \mathbf{z}, \lambda, \gamma) \in \mathcal{N}_2(\boldsymbol{\theta})$ and $(\dot{\mathbf{x}}, \dot{\mathbf{p}}, \dot{\boldsymbol{\omega}}) = (\dot{\mathbf{x}}, \dot{\mathbf{y}}, \dot{\mathbf{z}}, \dot{\lambda}, \dot{\gamma})$ meet equation (13.27). Then, $$\left\|\frac{\dot{\mathbf{p}}}{\mathbf{p}}\right\|^2 + \left\|\frac{\dot{\boldsymbol{\omega}}}{\boldsymbol{\omega}}\right\|^2 \le \frac{2n}{1-\theta},\tag{13.47}$$ $$\left\|\frac{\dot{\mathbf{p}}}{\mathbf{p}}\right\|^2 \left\|\frac{\dot{\boldsymbol{\omega}}}{\boldsymbol{\omega}}\right\|^2 \le \left(\frac{n}{1-\theta}\right)^2,\tag{13.48}$$ $$0 \le \frac{\dot{\mathbf{p}}^{\mathsf{T}}\dot{\boldsymbol{\omega}}}{\mu} \le \frac{1+\theta}{1-\theta}n := \delta_1 n. \tag{13.49}$$ The proof of this lemma is given in the last section. #### Lemma 13.10 Let $(\mathbf{x}, \mathbf{p}, \omega) = (\mathbf{x}, \mathbf{y}, \mathbf{z}, \lambda, \gamma) \in \mathcal{N}_2(\theta)$, $(\dot{\mathbf{x}}, \dot{\mathbf{y}}, \dot{\mathbf{z}}, \dot{\lambda}, \dot{\gamma})$ and $(\ddot{\mathbf{x}}, \ddot{\mathbf{y}}, \ddot{\mathbf{z}}, \ddot{\lambda}, \ddot{\gamma})$ meet equations (13.27) and (13.28). Then $$\left\|\frac{\ddot{\mathbf{p}}}{\mathbf{p}}\right\|^2 + \left\|\frac{\ddot{\boldsymbol{\omega}}}{\boldsymbol{\omega}}\right\|^2 \le \frac{4(1+\theta)n^2}{(1-\theta)^3},\tag{13.50}$$ $$\left\|\frac{\ddot{\mathbf{p}}}{\mathbf{p}}\right\|^2 \left\|\frac{\ddot{\boldsymbol{\omega}}}{\boldsymbol{\omega}}\right\|^2 \le \left(\frac{2(1+\theta)n^2}{(1-\theta)^3}\right)^2,\tag{13.51}$$ $$0 \le \frac{\ddot{\mathbf{p}}^{\mathsf{T}} \ddot{\boldsymbol{\omega}}}{\mu} \le \frac{2(1+\theta)^2}{(1-\theta)^3} n^2 := \delta_2 n^2, \tag{13.52}$$ $$\left| \frac{\dot{\mathbf{p}}^{\mathrm{T}} \ddot{\boldsymbol{\omega}}}{\mu} \right| \le \frac{(2n(1+\theta))^{\frac{3}{2}}}{(1-\theta)^{2}} := \delta_{3} n^{\frac{3}{2}}, \quad \left| \frac{\ddot{\mathbf{p}}^{\mathrm{T}} \dot{\boldsymbol{\omega}}}{\mu} \right| \le \frac{(2n(1+\theta))^{\frac{3}{2}}}{(1-\theta)^{2}} := \delta_{3} n^{\frac{3}{2}}. \quad (13.53)$$ The proof of this lemma is given in the last section. From the bounds established in Lemmas 13.8, 13.9, 13.10, and 13.2, the lower bound and upper bound for $\mu(\alpha)$ can be obtained. #### Lemma 13.11 Let $(\mathbf{x}, \mathbf{p}, \omega) = (\mathbf{x}, \mathbf{y}, \mathbf{z}, \lambda, \gamma) \in \mathcal{N}_2(\theta)$, $(\dot{\mathbf{x}}, \dot{\mathbf{y}}, \dot{\mathbf{z}}, \dot{\lambda}, \dot{\gamma})$ and $(\ddot{\mathbf{x}}, \ddot{\mathbf{y}}, \ddot{\mathbf{z}}, \ddot{\lambda}, \ddot{\gamma})$ meet equations (13.27) and (13.28). Let $\mathbf{x}(\alpha)$, $\mathbf{y}(\alpha)$, $\mathbf{z}(\alpha)$, $\lambda(\alpha)$, and $\gamma(\alpha)$ be defined by (13.33), (13.34), (13.35), (13.36), and (13.37). Then, $$\mu(1 - \sin(\alpha)) - \frac{1}{2n}\dot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\dot{\mathbf{x}}\left((1 - \cos(\alpha))^{2} + \sin^{2}(\alpha)\right)$$ $$\leq \mu(\alpha) = \mu(1 - \sin(\alpha)) + \frac{1}{2n}\left(\ddot{\mathbf{x}}^{\mathrm{T}}(\ddot{\gamma} - \ddot{\lambda}) - \dot{\mathbf{x}}^{\mathrm{T}}(\dot{\gamma} - \dot{\lambda})\right)(1 - \cos(\alpha))^{2}$$ $$-\frac{1}{2n}\left(\dot{\mathbf{x}}^{\mathrm{T}}(\ddot{\gamma} - \ddot{\lambda}) + \ddot{\mathbf{x}}^{\mathrm{T}}(\dot{\gamma} - \dot{\lambda})\right)\sin(\alpha)(1 - \cos(\alpha))$$ $$\leq \mu(1 - \sin(\alpha)) + \frac{1}{2n}\ddot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\ddot{\mathbf{x}}\left((1 - \cos(\alpha))^{2} + \sin^{2}(\alpha)\right). \tag{13.54}$$ The proof of this lemma is given in the last section. To keep all the iterates of the algorithm inside the strictly feasible set, $(p(\alpha), \omega(\alpha)) > 0$ for all iterations is required. This is guaranteed when $\mu(\alpha) > 0$ holds. The following corollary states the condition for $\mu(\alpha) > 0$ to hold. #### Corollary 13.1 If $\mu > 0$, then for any fixed $\theta \in (0,1)$, there is an $\bar{\alpha} > 0$ depending on θ , such that for any $\sin(\alpha) \le \sin(\bar{\alpha})$, $\mu(\alpha) > 0$. In particular, if $\theta = 0.19$, $\sin(\bar{\alpha}) \ge 0.6158$. **Proof 13.3** From Lemmas 13.8 and 13.2, it is easy to see that $\dot{\mathbf{x}}^T \mathbf{H} \dot{\mathbf{x}}^T = \dot{\mathbf{x}}^T (\dot{\gamma} - \dot{\lambda}) = \dot{\mathbf{p}}^T \dot{\omega}$ and $((1 - \cos(\alpha))^2 \le \sin^4(\alpha)$. Therefore, from Lemmas 13.11 and 13.9, it must have $$\begin{split} \mu(\alpha) &\geq \mu \left(1 - \sin(\alpha) - \frac{1}{2n\mu} \dot{\mathbf{p}}^T \dot{\boldsymbol{\omega}} \Big(\sin^4(\alpha) + \sin^2(\alpha) \Big) \right) \\ &\geq \mu \left(1 - \sin(\alpha) - \frac{(1+\theta)}{2(1-\theta)} \Big(\sin^4(\alpha) + \sin^2(\alpha) \Big) \Big) := \mu r(\alpha). \end{split}$$ Since $\mu > 0$, and $r(\alpha)$ is a monotonic decreasing function in $[0, \frac{\pi}{2}]$ with r(0) > 0 and $r(\frac{\pi}{2}) < 0$, there is a unique real solution $\sin(\bar{\alpha}) \in (0,1)$ of $r(\alpha) = 0$ such that for all $\sin(\alpha) < \sin(\bar{\alpha})$, $r(\alpha) > 0$, or $\mu(\alpha) > 0$. It is easy to check that if $\theta = 0.19$, $\sin(\bar{\alpha}) = 0.6158$ is the solution of $r(\alpha) = 0$. **Remark 13.1** Corollary 13.1 indicates that for any $\theta \in (0,1)$, there is a positive $\bar{\alpha}$ such that for $\alpha \leq \bar{\alpha}$, $\mu(\alpha) > 0$. Intuitively, to search in a wider region will generate a longer step. Therefore, the larger the θ is, the better. But to derive the convergence result, $\theta \leq 0.22$ is imposed in Lemma 13.15 and $\theta \leq 0.19$ is imposed in Lemma 13.19. To reduce the duality measure in an iteration, it must have $\mu(\alpha) \leq \mu$. For linear programming, it is known [311] that $\mu(\alpha) \leq \mu$ for $\alpha \in [0, \hat{\alpha}]$ with $\hat{\alpha} = \frac{\pi}{2}$, and the larger the α in the interval is, the smaller the $\mu(\alpha)$ will be. This claim is not true for the convex quadratic programming with box constraints and it needs to be modified as follows. #### Lemma 13.12 Let $(\mathbf{x}, \mathbf{p}, \boldsymbol{\omega}) = (\mathbf{x}, \mathbf{y}, \mathbf{z}, \lambda, \gamma) \in \mathcal{N}_2(\boldsymbol{\theta})$, $(\dot{\mathbf{x}}, \dot{\mathbf{y}}, \dot{\mathbf{z}}, \dot{\lambda}, \dot{\gamma})$ and $(\ddot{\mathbf{x}}, \ddot{\mathbf{y}}, \ddot{\mathbf{z}}, \ddot{\lambda}, \ddot{\gamma})$ meet equations (13.27) and (13.28). Let $\mathbf{x}(\boldsymbol{\alpha})$, $\mathbf{y}(\boldsymbol{\alpha})$, $\mathbf{z}(\boldsymbol{\alpha})$, $\lambda(\boldsymbol{\alpha})$, and $\gamma(\boldsymbol{\alpha})$ be defined by (13.33), (13.34), (13.35), (13.36), and (13.37). Then, there exists $$\hat{\alpha} = \begin{cases} \frac{\pi}{2}, & \text{if } \frac{\ddot{\mathbf{x}}^{\mathsf{T}} \mathbf{H} \ddot{\mathbf{x}}}{n\mu} \le 1\\ \sin^{-1}(g), & \text{if } \frac{\ddot{\mathbf{x}}^{\mathsf{T}} \mathbf{H} \ddot{\mathbf{x}}}{n\mu} > 1 \end{cases}$$ (13.55) where $$g = \sqrt[3]{\frac{n\mu}{\ddot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\ddot{\mathbf{x}}} + \sqrt{\left(\frac{n\mu}{\ddot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\ddot{\mathbf{x}}}\right)^{2} + \left(\frac{1}{3}\right)^{3}} + \sqrt[3]{\frac{n\mu}{\ddot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\ddot{\mathbf{x}}} - \sqrt{\left(\frac{n\mu}{\ddot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\ddot{\mathbf{x}}}\right)^{2} + \left(\frac{1}{3}\right)^{3}},$$ such that for every $\alpha \in [0, \hat{\alpha}]$, $\mu(\alpha) \leq \mu$. The proof of this lemma is given in the last section. According to Theorem 13.1, Lemmas 13.7, 13.9, 13.10, and 13.12, if α is small enough, then $(\mathbf{p}(\alpha), \omega(\alpha)) > 0$, and $\mu(\alpha) < \mu$, i.e., the search along the ellipse defined by Theorem 13.1 will generate a strictly feasible point with a smaller duality measure. Since $(\mathbf{p}, \boldsymbol{\omega}) > 0$ holds in all iterations, reducing the duality measure to zero means approaching the solution of the convex quadratic programming. This can be achieved by applying a similar idea used in [176], i.e., starting with an iterate in $\mathcal{N}_2(\theta)$, searching along the approximated central path to reduce the duality measure and to keep the iterate in $\mathcal{N}_2(2\theta)$, and then making a correction to move the iterate back to $\mathcal{N}_2(\theta)$. The following notations will be used. $$a_0 = -\theta \mu < 0,$$ $$a_1 = \theta \mu > 0,$$ $$a_2 = 2\theta \frac{\dot{\mathbf{p}}^T \dot{\boldsymbol{\omega}}}{2n} = 2\theta \frac{\dot{\mathbf{x}}^T (\dot{\gamma} - \dot{\lambda})}{2n} = 2\theta \frac{\dot{\mathbf{x}}^T \mathbf{H} \dot{\mathbf{x}}}{2n} \ge 0,$$ $$a_3 = \left\| \dot{\mathbf{p}} \circ \ddot{\boldsymbol{\omega}} + \dot{\boldsymbol{\omega}} \circ \ddot{\mathbf{p}} - \frac{1}{2n} (\dot{\mathbf{p}}^T \ddot{\boldsymbol{\omega}} + \dot{\boldsymbol{\omega}}^T \ddot{\mathbf{p}}) \mathbf{e} \right\| \ge 0,$$ and $$a_{4} = \left\| \ddot{\mathbf{p}} \circ \ddot{\boldsymbol{\omega}} - \dot{\boldsymbol{\omega}} \circ \dot{\mathbf{p}} - \frac{1}{2n} (\ddot{\mathbf{p}}^{T} \ddot{\boldsymbol{\omega}} - \dot{\boldsymbol{\omega}}^{T} \dot{\mathbf{p}}) \mathbf{e} \right\| + 2\theta \frac{\dot{\mathbf{p}}^{T} \dot{\boldsymbol{\omega}}}{2n}$$ $$= \left\| \ddot{\mathbf{p}} \circ \ddot{\boldsymbol{\omega}} - \dot{\boldsymbol{\omega}} \circ \dot{\mathbf{p}} - \frac{1}{2n} (\ddot{\mathbf{p}}^{T} \ddot{\boldsymbol{\omega}} - \dot{\boldsymbol{\omega}}^{T} \dot{\mathbf{p}}) \mathbf{e} \right\| + 2\theta \frac{\dot{\mathbf{x}}^{T} \mathbf{H} \dot{\mathbf{x}}}{2n} \ge 0.$$ Denote a quartic polynomial in terms of $sin(\alpha)$ as follows: $$q(\alpha) = a_4 \sin^4(\alpha) + a_3
\sin^3(\alpha) + a_2 \sin^2(\alpha) + a_1 \sin(\alpha) + a_0 = 0.$$ (13.56) Since $q(\alpha)$ is a monotonic increasing function of $\alpha \in [0, \frac{\pi}{2}], q(0) = -\theta \mu < 0$ and $q(\frac{\pi}{2}) = a_2 + a_3 + a_4 > 0$ if $\dot{x} \neq 0$, the polynomial has exactly one positive root in $\left[0, \frac{\pi}{2}\right]$. Moreover, since (13.56) is a quartic equation, all the solutions are analytical and the computational cost is independent of the size of H and negligible [206]. #### Lemma 13.13 Let $(\mathbf{x}, \mathbf{p}, \boldsymbol{\omega}) = (\mathbf{x}, \mathbf{y}, \mathbf{z}, \lambda, \boldsymbol{\omega}) \in \mathcal{N}_2(\boldsymbol{\theta}), (\dot{\mathbf{x}}, \dot{\mathbf{y}}, \dot{\mathbf{z}}, \dot{\lambda}, \dot{\boldsymbol{\omega}})$ and $(\ddot{\mathbf{x}}, \ddot{\mathbf{y}}, \ddot{\mathbf{z}}, \ddot{\lambda}, \ddot{\boldsymbol{\omega}})$ be calculated from (13.27) and (13.28). Denote $\sin(\tilde{\alpha})$ the only positive real solution of (13.56) in [0,1]. Assume $\sin(\alpha) \leq \min\{\sin(\tilde{\alpha}),\sin(\bar{\alpha})\}$, let $(\mathbf{x}(\alpha),\mathbf{y}(\alpha),\mathbf{z}(\alpha),\lambda(\alpha),\gamma(\alpha))$ and $\mu(\alpha)$ be updated as follows: $$(\mathbf{x}(\alpha), \mathbf{y}(\alpha), \mathbf{z}(\alpha), \lambda(\alpha), \gamma(\alpha))$$ $$= (\mathbf{x}, \mathbf{y}, \mathbf{z}, \lambda, \gamma) - (\dot{\mathbf{x}}, \dot{\mathbf{y}}, \dot{\mathbf{z}}, \dot{\lambda}, \dot{\gamma}) \sin(\alpha) + (\ddot{\mathbf{x}}, \ddot{\mathbf{y}}, \ddot{\mathbf{z}}, \ddot{\lambda}, \ddot{\gamma}) (1 - \cos(\alpha)), \quad (13.57)$$ $$\mu(\alpha) = \mu(1 - \sin(\alpha)) + \frac{1}{2n} \Big((\ddot{\mathbf{p}}^{\mathrm{T}} \ddot{\boldsymbol{\omega}} - \dot{\mathbf{p}}^{\mathrm{T}} \dot{\boldsymbol{\omega}}) (1 - \cos(\alpha))^{2} - (\dot{\mathbf{p}}^{\mathrm{T}} \ddot{\boldsymbol{\omega}} + \ddot{\mathbf{p}}^{\mathrm{T}} \dot{\boldsymbol{\omega}}) \sin(\alpha) (1 - \cos(\alpha)) \Big).$$ (13.58) *Then* $$(\mathbf{x}(\alpha), \mathbf{y}(\alpha), \mathbf{z}(\alpha), \lambda(\alpha), \gamma(\alpha)) \in \mathcal{N}_2(2\theta)$$. The proof of this lemma is given in the last section. The lower bound of $\sin(\bar{\alpha})$ is estimated in Corollary 13.1. To estimate the lower bound of $\sin(\bar{\alpha})$, the following lemma is needed. # Lemma 13.14 Let $(\mathbf{x}, \mathbf{p}, \boldsymbol{\omega}) \in \mathcal{N}_2(\boldsymbol{\theta})$, $(\dot{\mathbf{x}}, \dot{\mathbf{p}}, \dot{\boldsymbol{\omega}})$ and $(\ddot{\mathbf{x}}, \ddot{\mathbf{p}}, \ddot{\boldsymbol{\omega}})$ meet equations (13.27) and (13.28). Then $$\left\|\dot{\mathbf{p}}\circ\dot{\boldsymbol{\omega}}\right\| \leq \frac{(1+\theta)}{(1-\theta)}n\mu,$$ (13.59) $$\left\|\ddot{\mathbf{p}}\circ\ddot{\boldsymbol{\omega}}\right\| \le \frac{2(1+\theta)^2}{(1-\theta)^3}n^2\mu,\tag{13.60}$$ $$\left\|\ddot{\mathbf{p}} \circ \dot{\boldsymbol{\omega}}\right\| \le \frac{2\sqrt{2}(1+\theta)^{\frac{3}{2}}}{(1-\theta)^2} n^{\frac{3}{2}} \mu,$$ (13.61) $$\|\dot{\mathbf{p}} \circ \ddot{\boldsymbol{\omega}}\| \le \frac{2\sqrt{2}(1+\theta)^{\frac{3}{2}}}{(1-\theta)^2} n^{\frac{3}{2}} \mu.$$ (13.62) The proof of this lemma is given in the last section. # Lemma 13.15 Let $$\theta \leq 0.22$$. Then $\sin(\tilde{\alpha}) \geq \frac{\theta}{\sqrt{n}}$. The proof of this lemma is given in the last section. Corollary 13.1, Lemmas 13.13, and 13.15 prove the feasibility of searching optimizer along the ellipse. To move the iterate back to $\mathcal{N}_2(\theta)$, one can use the direction $(\Delta \mathbf{x}, \Delta \mathbf{y}, \Delta \mathbf{z}, \Delta \lambda, \Delta \gamma)$ defined by $$\begin{bmatrix} \mathbf{H} & \mathbf{0} & \mathbf{0} & \mathbf{I} & -\mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{I} & \mathbf{0} & -\mathbf{I} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \Lambda(\alpha) & \mathbf{0} & \mathbf{Y}(\alpha) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \Gamma(\alpha) & \mathbf{0} & \mathbf{Z}(\alpha) \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x} \\ \Delta \mathbf{y} \\ \Delta \mathbf{z} \\ \Delta \lambda \\ \Delta \gamma \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mu(\alpha)\mathbf{e} - \lambda(\alpha) \circ \mathbf{y}(\alpha) \\ \mu(\alpha)\mathbf{e} - \gamma(\alpha) \circ \mathbf{z}(\alpha) \end{bmatrix}. \tag{13.63}$$ and update $(\mathbf{x}^{k+1}, \mathbf{p}^{k+1}, \boldsymbol{\omega}^{k+1})$ and $\boldsymbol{\mu}^{k+1}$ by $$(\mathbf{x}^{k+1}, \mathbf{p}^{k+1}, \boldsymbol{\omega}^{k+1}) = (\mathbf{x}(\boldsymbol{\alpha}), \mathbf{p}(\boldsymbol{\alpha}), \boldsymbol{\omega}(\boldsymbol{\alpha})) + (\Delta \mathbf{x}, \Delta \mathbf{p}, \Delta \boldsymbol{\omega}), \tag{13.64}$$ $$\mu^{k+1} = \frac{\mathbf{p}^{k+1^{\mathsf{T}}} \boldsymbol{\omega}^{k+1}}{2n},\tag{13.65}$$ where $$\Delta \mathbf{p} = (\Delta \mathbf{y}, \Delta \mathbf{z})$$ and $\Delta \omega = (\Delta \lambda, \Delta \gamma)$. Denote $\mathbf{P}(\alpha) = \begin{bmatrix} \mathbf{Y}(\alpha) & \mathbf{0} \\ \mathbf{0} & \mathbf{Z}(\alpha) \end{bmatrix}$, $\Omega(\alpha) = \begin{bmatrix} \Lambda(\alpha) & \mathbf{0} \\ \mathbf{0} & \Gamma(\alpha) \end{bmatrix}$, and $\mathbf{D} = \mathbf{P}^{\frac{1}{2}}(\alpha)\Omega^{-\frac{1}{2}}(\alpha)$. Then, the last 2 rows of $$\mathbf{P}\Delta\omega + \Omega\Delta\mathbf{p} = \mu(\alpha)\mathbf{e} - \mathbf{P}(\alpha)\Omega(\alpha)\mathbf{e}.$$ (13.66) Now, it is ready to show that the correction step brings the iterate from $\mathcal{N}_2(2\theta)$ back to $\mathcal{N}_2(\theta)$. # Lemma 13.16 Let $(\mathbf{x}(\alpha), \mathbf{p}(\alpha), \omega(\alpha)) \in \mathcal{N}_2(2\theta)$ and $(\Delta \mathbf{x}, \Delta \mathbf{p}, \Delta \omega)$ be defined as in (13.63). Let $(\mathbf{x}^{k+1}, \mathbf{p}^{k+1}, \omega^{k+1})$ be updated by using (13.64). Then, for $\theta \le 0.29$ and $\sin(\alpha) \le 0.29$ $\sin(\bar{\boldsymbol{\alpha}}), (\mathbf{x}^{k+1}, \mathbf{p}^{k+1}, \boldsymbol{\omega}^{k+1}) \in \mathcal{N}_2(\boldsymbol{\theta}).$ The proof of this lemma is given in the last section. The next step is to show that the combined step (searching along the arc in $\mathcal{N}_2(2\theta)$ and moving back to $\mathcal{N}_2(\theta)$) will reduce the duality measure of the iterate, i.e., $\mu^{k+1} < \mu^k$, if some appropriate θ and α are selected. The following two Lemmas are introduced for this purpose. ## Lemma 13.17 Let $(\mathbf{x}(\alpha), \mathbf{p}(\alpha), \omega(\alpha)) \in \mathcal{N}_2(2\theta)$ and $(\Delta \mathbf{x}, \Delta \mathbf{p}, \Delta \omega)$ be defined as in (13.63). Then $$0 \le \frac{\Delta \mathbf{p}^{\mathrm{T}} \Delta \omega}{2n} \le \frac{\theta^{2} (1 + 2\theta)}{n(1 - 2\theta)^{2}} \mu(\alpha) := \frac{\delta_{0}}{n} \mu(\alpha). \tag{13.67}$$ The proof of this lemma is given in the last section. ## Lemma 13.18 Let $(\mathbf{x}(\alpha), \mathbf{p}(\alpha), \omega(\alpha)) \in \mathcal{N}_2(2\theta)$ and $(\Delta \mathbf{x}, \Delta \mathbf{p}, \Delta \omega)$ be defined as in (13.63). Let $(\mathbf{x}^{k+1}, \mathbf{p}^{k+1}, \omega^{k+1})$ be defined as in (13.64). Then $$\mu(\alpha) \leq \mu^{k+1} := \frac{\mathbf{p}^{k+1^{\mathsf{T}}} \boldsymbol{\omega}^{k+1}}{2n} \leq \mu(\alpha) \left(1 + \frac{\theta^2 (1+2\theta)}{n(1-2\theta)^2} \right) = \mu(\alpha) \left(1 + \frac{\delta_0}{n} \right).$$ **Proof 13.4** Using the fact that $\mathbf{p}(\alpha)^{\mathrm{T}}\Delta\omega + \omega(\alpha)^{\mathrm{T}}\Delta\mathbf{p} = 0$ established in (13.114) in the proof of Lemma 13.16, and Lemma 13.17, it is straightforward to obtain $$\mu(\alpha) \leq \frac{\mathbf{p}(\alpha)^{\mathrm{T}}\omega(\alpha)}{2n} + \frac{1}{2n}\Delta\mathbf{p}^{\mathrm{T}}\Delta\omega$$ $$= \frac{(\mathbf{p}(\alpha) + \Delta\mathbf{p})^{\mathrm{T}}(\omega(\alpha) + \Delta\omega)}{2n} = \mu^{k+1}$$ $$\leq \mu(\alpha) + \frac{\theta^{2}(1+2\theta)}{n(1-2\theta)^{2}}\mu(\alpha). \tag{13.68}$$ This proves the lemma. For linear programming, it is known [176, 311] that $\mu^{k+1} = \mu(\alpha)$. This claim is not always true for the convex quadratic programming as is pointed out in Lemma 13.18. Therefore, some extra work is needed to make sure that the μ^k will be reduced in every iteration. Lemma 13.19 For $\theta \leq 0.19$, if $$\sin(\alpha) = \frac{\theta}{\sqrt{n}},\tag{13.69}$$ then $\mu^{k+1} < \mu^k$. Moreover, for $\sin(\alpha) = \frac{\theta}{\sqrt{n}} = \frac{0.19}{\sqrt{n}}$, $$\mu^{k+1} \le \mu^k \left(1 - \frac{0.0185}{\sqrt{n}} \right). \tag{13.70}$$ The proof of this lemma is given in the last section. **Remark 13.2** As one has seen in this section that starting with $(\mathbf{x}^0, \mathbf{p}^0, \omega^0)$, the interior-point algorithm proceeds with finding $(\mathbf{x}(\alpha), \mathbf{p}(\alpha), \omega(\alpha)) \in \mathcal{N}_2(2\theta)$ and $(\mathbf{x}^{k+1}, \mathbf{p}^{k+1}, \omega^{k+1}) \in \mathcal{N}_2(\theta)$ such that $\mu^{k+1} < \mu^k$. In view of the proofs of Lemmas 13.13, 13.16, and 13.19, the positivity conditions of $(\mathbf{x}(\alpha), \mathbf{p}(\alpha), \omega(\alpha)) > 0$ and $(\mathbf{x}^{k+1}, \mathbf{p}^{k+1}, \omega^{k+1}) > 0$ relies on $\mu(\alpha) > 0$ which, according to Corollary 13.1, is achievable for any θ and is given by a bound in terms of $\bar{\alpha}$. The proximity condition for $(\mathbf{x}(\alpha), \mathbf{p}(\alpha), \omega(\alpha))$ relies on the real positive root of $q(\sin(\alpha)) = 0$, denoted by $\sin(\tilde{\alpha})$, which is conservatively estimated in Lemma 13.15 under the condition that $\theta \leq 0.22$; the proximity condition for $(\mathbf{x}^{k+1}, \mathbf{p}^{k+1}, \omega^{k+1})$ is established in Lemma 13.16 under the condition that $\theta \leq 0.29$. Finally, duality measure reduction $\mu^{k+1} < \mu^k$ is established in Lemma 13.19 under the condition that $\theta \leq 0.19$. For all these results to hold, it just needs to take the smallest bound $\theta = 0.19$. Summarizing all the results
in this section leads to the following theorem. # Theorem 13.2 Let $$\theta = 0.19$$ and $(\mathbf{x}^k, \mathbf{p}^k, \omega^k) \in \mathcal{N}_2(\theta)$. Then, $(\mathbf{x}(\alpha), \mathbf{p}(\alpha), \omega(\alpha)) \in \mathcal{N}_2(2\theta)$; $(\mathbf{x}^{k+1}, \mathbf{p}^{k+1}, \omega^{k+1}) \in \mathcal{N}_2(\theta)$; and $\mu^{k+1} \leq \mu^k \left(1 - \frac{0.0185}{\sqrt{n}}\right)$. **Proof 13.5** From Corollary 13.1 and Lemma 13.15, one can select $\sin(\alpha)$ $\min\{\sin(\tilde{\alpha}),\sin(\bar{\alpha})\}\$. Therefore, Lemma 13.13 holds, i.e., $(\mathbf{x}(\alpha),\mathbf{p}(\alpha),\omega(\alpha))\in$ $\mathcal{N}_2(2\theta)$. Since $\sin(\alpha) \leq \sin(\bar{\alpha})$ and $(\mathbf{x}(\alpha), \mathbf{p}(\alpha), \omega(\alpha)) \in \mathcal{N}_2(2\theta)$, Lemma 13.16 states $(\mathbf{x}^{k+1}, \mathbf{p}^{k+1}, \boldsymbol{\omega}^{k+1}) \in \mathcal{N}_2(\theta)$. For $\theta = 0.19$ and $\sin(\alpha) = \frac{\theta}{\sqrt{n}}$, Lemma 13.19 states $\mu^{k+1} \leq \mu^k \left(1 - \frac{0.0185}{\sqrt{n}}\right)$. This finishes the proof. It is worthwhile to point out that $\theta = 0.19$ for the box constrained Remark 13.3 quadratic optimization problem is larger than the $\theta = 0.148$ for linearly constrained quadratic optimization problem. This makes the searching neighborhood larger and the following algorithm more efficient than the algorithm in [311]. The proposed method can be presented as the following algorithm. # Algorithm 13.1 # (Arc-search path-following) *Data*: **H** \geq 0, **c**, *n*, θ = 0.19, ε > 0. Initial point $(\mathbf{x}^0, \mathbf{p}^0, \omega^0) \in \mathcal{N}_2(\theta)$, and $\mu^0 = \frac{\mathbf{p}^{0^T} \omega^0}{2\pi}$. **for** *iteration* k = 1, 2, ... > Step 1: Solve the linear systems of equations (13.27) and (13.28) to get $(\dot{\mathbf{x}}, \dot{\mathbf{p}}, \dot{\boldsymbol{\omega}})$ and $(\ddot{\mathbf{x}}, \ddot{\mathbf{p}}, \ddot{\boldsymbol{\omega}})$. > Step 2: Let $\sin(\alpha) = \frac{\theta}{\sqrt{n}}$. Update $(\mathbf{x}(\alpha), \mathbf{p}(\alpha), \omega(\alpha))$ and $\mu(\alpha)$ by (13.57) and (13.58). > Step 3: Solve (13.63) to get $(\Delta \mathbf{x}, \Delta \mathbf{p}, \Delta \omega)$, update $(\mathbf{x}^{k+1}, \mathbf{p}^{k+1}, \omega^{k+1})$ and μ^{k+1} by using (13.64) and (13.65). Step 4: Set $k+1 \rightarrow k$. Go back to Step 1. end (for) #### 13.5 **Convergence analysis** The first result in this section extends a result of linear programming (c.f. [297]) to convex quadratic programming subject to box constraints. # Lemma 13.20 Suppose $\mathcal{F}^o \neq \emptyset$. Then for each $K \geq 0$, the set $$\{(\mathbf{x}, \mathbf{p}, \omega) \mid (\mathbf{x}, \mathbf{p}, \omega) \in \mathcal{F}, \quad \mathbf{p}^{\mathrm{T}} \omega < K\}$$ is bounded. **Proof 13.6** The proof is similar to the proof in [297]. It is given here for completeness. First, \mathbf{x} is bounded because $-\mathbf{e} \leq \mathbf{x} \leq \mathbf{e}$. Since $\mathbf{x} + \mathbf{y} = \mathbf{e}$ and $-\mathbf{e} \leq \mathbf{x} \leq \mathbf{e}$, it is easy to see $\mathbf{0} \leq \mathbf{y} = \mathbf{e} - \mathbf{x} \leq 2\mathbf{e}$. Since $\mathbf{x} - \mathbf{z} = -\mathbf{e}$, it is easy to see $\mathbf{0} \leq \mathbf{z} = \mathbf{x} + \mathbf{e} \leq 2\mathbf{e}$. Therefore, \mathbf{y} and \mathbf{z} are also bounded. Let $(\bar{\mathbf{x}}, \bar{\mathbf{y}}, \bar{\mathbf{z}}, \bar{\lambda}, \bar{\gamma})$ be any fixed point in \mathcal{F}^o , and $(\mathbf{x}, \mathbf{y}, \mathbf{z}, \lambda, \gamma)$ be any point in \mathcal{F} with $\mathbf{y}^T \lambda + \mathbf{z}^T \gamma \leq K$. Using the definition of \mathcal{F}^o and \mathcal{F} yields $$\mathbf{H}(\bar{\mathbf{x}} - \mathbf{x}) + (\bar{\lambda} - \lambda) - (\bar{\gamma} - \gamma) = 0.$$ Therefore $$(\bar{\mathbf{x}} - \mathbf{x})^{\mathrm{T}} \mathbf{H} (\bar{\mathbf{x}} - \mathbf{x}) + (\bar{\mathbf{x}} - \mathbf{x})^{\mathrm{T}} (\bar{\lambda} - \lambda) - (\bar{\mathbf{x}} - \mathbf{x})^{\mathrm{T}} (\bar{\gamma} - \gamma) = 0,$$ or equivalently $$(\bar{\boldsymbol{x}}-\boldsymbol{x})^T(\bar{\boldsymbol{\gamma}}-\boldsymbol{\gamma})-(\bar{\boldsymbol{x}}-\boldsymbol{x})^T(\bar{\boldsymbol{\lambda}}-\boldsymbol{\lambda})=(\bar{\boldsymbol{x}}-\boldsymbol{x})^T\boldsymbol{H}(\bar{\boldsymbol{x}}-\boldsymbol{x})\geq 0.$$ This gives $$((\bar{\boldsymbol{x}} + \boldsymbol{e}) - (\boldsymbol{x} + \boldsymbol{e}))^T(\bar{\boldsymbol{\gamma}} - \boldsymbol{\gamma}) - ((\bar{\boldsymbol{x}} - \boldsymbol{e}) - (\boldsymbol{x} - \boldsymbol{e}))^T(\bar{\boldsymbol{\lambda}} - \boldsymbol{\lambda}) \geq 0.$$ Substituting $\mathbf{x} - \mathbf{e} = -\mathbf{y}$ and $\mathbf{x} + \mathbf{e} = \mathbf{z}$ yields $$(\bar{\boldsymbol{z}}-\boldsymbol{z})^T(\bar{\boldsymbol{\gamma}}-\boldsymbol{\gamma})+(\bar{\boldsymbol{y}}-\boldsymbol{y})^T(\bar{\boldsymbol{\lambda}}-\boldsymbol{\lambda})\geq 0.$$ This leads to $$\bar{\boldsymbol{z}}^T\bar{\boldsymbol{\gamma}} + \boldsymbol{z}^T\boldsymbol{\gamma} - \boldsymbol{z}^T\bar{\boldsymbol{\gamma}} - \bar{\boldsymbol{z}}^T\boldsymbol{\gamma} + \bar{\boldsymbol{y}}^T\bar{\boldsymbol{\lambda}} + \boldsymbol{y}^T\boldsymbol{\lambda} - \boldsymbol{y}^T\bar{\boldsymbol{\lambda}} - \bar{\boldsymbol{y}}^T\boldsymbol{\lambda} \geq 0,$$ or in a compact form $$\bar{\mathbf{p}}^{\mathrm{T}}\bar{\boldsymbol{\omega}} + \mathbf{p}^{\mathrm{T}}\boldsymbol{\omega} - \mathbf{p}^{\mathrm{T}}\bar{\boldsymbol{\omega}} - \bar{\mathbf{p}}^{\mathrm{T}}\boldsymbol{\omega} \geq 0.$$ Sine $(\bar{\mathbf{p}}, \bar{\boldsymbol{\omega}}) > 0$ is fixed, let $$\xi = \min_{i=1,\dots,n} \min\{\bar{p}_i, \bar{\omega}_i\},$$ then, using $\mathbf{p}^{\mathrm{T}}\omega \leq K$, $$\bar{\mathbf{p}}^{\mathrm{T}}\bar{\boldsymbol{\omega}} + K \geq \xi \mathbf{e}^{\mathrm{T}}(\mathbf{p} + \boldsymbol{\omega}) \geq \max_{i=1,\dots,n} \max\{\xi p_i, \xi \omega_i\},$$ i.e., for $i \in \{1, \dots, n\}$, $$0 \le p_i \le \frac{1}{\xi} (K + \bar{\mathbf{p}}^T \bar{\boldsymbol{\omega}}), \quad 0 \le \omega_i \le \frac{1}{\xi} (K + \bar{\mathbf{p}}^T \bar{\boldsymbol{\omega}}).$$ This proves the lemma. The following theorem is a direct result of Lemmas 13.20, 13.7, Theorem 13.2, KKT conditions, Theorem A.2 in [297]. ## Theorem 13.3 Suppose that Assumption 1 holds, then the sequence generated by Algorithm 13.1 converges to a set of accumulation points, and all these accumulation points are global optimal solutions of the convex quadratic programming subject to box constraints. Let $(\mathbf{x}^*, \mathbf{p}^*, \boldsymbol{\omega}^*)$ be any solution of (13.17), following the notation of [23], denote index sets \mathcal{B} , \mathcal{S} , and \mathcal{T} as $$\mathcal{B} = \{ j \in \{1, \dots, 2n\} \mid p_j^* \neq 0 \}. \tag{13.71}$$ $$S = \{ j \in \{1, \dots, 2n\} \mid \omega_i^* \neq 0 \}. \tag{13.72}$$ $$\mathcal{T} = \{ j \in \{1, \dots, 2n\} \mid p_j^* = \omega_j^* = 0 \}. \tag{13.73}$$ According to Goldman-Tucker theorem [76], for the linear programming, $\mathcal{B} \cap$ $S = \emptyset = \mathcal{T}$ and $\mathcal{B} \cup S = \{1, \dots, 2n\}$. A solution with this property is called strictly complementary (see Appendix A). This property has been used in many papers to prove the local super-linear convergence of interior-point algorithms in linear programming. However, it is pointed out in [82] that this partition does not hold for general quadratic programming problems. But a convex quadratic programming subject to box constraints has a strictly complementary solution(s), an interior-point algorithm will generate a sequence to approach strict complementary solution(s). As a matter of fact, from Lemma 13.20, the result of [297, Lemma 5.13] can be extended to the case of convex quadratic programming subject to box constraints, and the following lemma, which is independent of any algorithm, holds. # Lemma 13.21 Let $\mu^0 > 0$, and $\rho \in (0,1)$. Assume that the convex QP (13.16) has strictly complementary solution(s). Then for all points $(\mathbf{x}, \mathbf{p}, \boldsymbol{\omega})$ with $(\mathbf{x}, \mathbf{p}, \boldsymbol{\omega}) \in \mathcal{F}^o$, $p_i \omega_i > \rho \mu$, and $\mu < \mu^0$, there are constants M, C_1 , and C_2 such that $$\|(\mathbf{p},\boldsymbol{\omega})\| \le M,\tag{13.74}$$ $$0 < p_i \le \mu/C_1 \quad (i \in S), \quad 0 < \omega_i \le \mu/C_1 \quad (i \in B).$$ (13.75) $$\omega_i \ge C_2 \rho \quad (i \in \mathcal{S}), \quad p_i \ge C_2 \rho \quad (i \in \mathcal{B}).$$ (13.76) **Proof 13.7** The proof mimics the one in [297, Lemma 5.13]. It is presented here for completeness. The first result (13.74) follows immediately from Lemma 13.20 by setting $K = 2n\mu^0$. Let $(\mathbf{x}^*, \mathbf{p}^*, \omega^*)$ be any strictly complementary solution. Since $(\mathbf{x}^*, \mathbf{p}^*, \omega^*)$ and $(\mathbf{x}, \mathbf{p}, \omega)$ are both feasible, it must have $$(\mathbf{y} - \mathbf{y}^*) = -(\mathbf{x} - \mathbf{x}^*) = -(\mathbf{z} - \mathbf{z}^*), \quad \mathbf{H}(\mathbf{x} - \mathbf{x}^*) + (\lambda - \lambda^*) - (\gamma - \gamma^*) = 0.$$ Therefore. 240 $$(\mathbf{y} - \mathbf{y}^*)^{\mathrm{T}} (\lambda - \lambda^*) + (\mathbf{z} - \mathbf{z}^*)^{\mathrm{T}} (\gamma - \gamma^*) = (\mathbf{x} - \mathbf{x}^*)^{\mathrm{T}} \mathbf{H} (\mathbf{x} - \mathbf{x}^*) \ge 0.$$ (13.77) Since $(\mathbf{x}^*, \mathbf{y}^*, \mathbf{z}^*, \lambda^*, \gamma^*) = (\mathbf{x}^*, \mathbf{p}^*, \omega^*)$ is strictly complementary solution, it must have $\mathcal{T} = \emptyset$, $p_i^* = 0$ for $i \in \mathcal{S}$, and $\omega_i^* = 0$ for $i \in \mathcal{B}$. Since $\mathbf{p}^T \omega = 2n\mu$, $(\mathbf{p}^*)^T \omega^* = 0$, from (13.77), it must have $$\mathbf{p}^{\mathsf{T}}\boldsymbol{\omega} = \mathbf{y}^{\mathsf{T}}\boldsymbol{\lambda} + \mathbf{z}^{\mathsf{T}}\boldsymbol{\gamma} + \left((\mathbf{y}^{*})^{\mathsf{T}}\boldsymbol{\lambda}^{*} +
(\mathbf{z}^{*})^{\mathsf{T}}\boldsymbol{\gamma}^{*} \right)$$ $$\geq \mathbf{y}^{\mathsf{T}}\boldsymbol{\lambda}^{*} + \mathbf{z}^{\mathsf{T}}\boldsymbol{\gamma}^{*} + \left((\mathbf{y}^{*})^{\mathsf{T}}\boldsymbol{\lambda} + (\mathbf{z}^{*})^{\mathsf{T}}\boldsymbol{\gamma} \right) = \mathbf{p}^{\mathsf{T}}\boldsymbol{\omega}^{*} + \boldsymbol{\omega}^{\mathsf{T}}\mathbf{p}^{*}$$ $$\iff 2n\boldsymbol{\mu} \geq \mathbf{p}^{\mathsf{T}}\boldsymbol{\omega}^{*} + \boldsymbol{\omega}^{\mathsf{T}}\mathbf{p}^{*} = \sum_{i \in \mathcal{S}} p_{i}\boldsymbol{\omega}_{i}^{*} + \sum_{i \in \mathcal{B}} p_{i}^{*}\boldsymbol{\omega}_{i}. \tag{13.78}$$ Since each term in the summations is positive and bounded above by $2n\mu$, it must have $\omega_i^* > 0$ for any $i \in \mathcal{S}$; therefore, $$0 < p_i \leq \frac{2n\mu}{\omega_i^*}.$$ Denote $\Omega_D=\{(\mathbf{p}^*,\omega^*)|\omega_i^*>0\}$ and $\Omega_P=\{(\mathbf{p}^*,\omega^*)|p_i^*>0\}$, it must have $$0 < p_i \le \frac{2n\mu}{\sup_{(\mathbf{p}^*, \omega^*) \in \Omega_D} \omega_i^*}.$$ This leads to $$\max_{i \in \mathcal{S}} p_i \leq \frac{2n\mu}{\min_{i \in \mathcal{S}} \sup_{(\mathbf{p}^*, \boldsymbol{\omega}^*) \in \Omega_D} \omega_i^*}.$$ Similarly, $$\max_{i \in \mathcal{B}} \omega_i \leq \frac{2n\mu}{\min_{i \in \mathcal{B}} \sup_{(\mathbf{p}^*, \omega^*) \in \Omega_P} p_i^*}.$$ Combining these two inequalities gives $$\max \{ \max_{i \in \mathcal{S}} p_i, \max_{i \in \mathcal{B}} \omega_i \}$$ $$\leq \frac{2n\mu}{\min \{ \min_{i \in \mathcal{S}} \sup_{(\mathbf{p}^*, \omega^*) \in \Omega_D} \omega_i^*, \min_{i \in \mathcal{B}} \sup_{(\mathbf{p}^*, \omega^*) \in \Omega_P} p_i^* \}}$$ $$= \frac{\mu}{C_1}. \tag{13.79}$$ This proves (13.75). Finally, since $p_i \omega_i \ge \rho \mu$, we have, for any $i \in \mathcal{S}$, $$\omega_i \geq \frac{\rho \mu}{p_i} \geq \frac{\rho \mu}{\mu/C_1} = C_2 \rho.$$ Similarly, for any $i \in \mathcal{B}$, $$p_i \geq \frac{\rho \mu}{\omega_i} \geq \frac{\rho \mu}{\mu/C_1} = C_2 \rho.$$ Lemma 13.21 leads to the following ## Theorem 13.4 Let $(\mathbf{x}^k, \mathbf{p}^k, \boldsymbol{\omega}^k) \in \mathcal{N}_2(\boldsymbol{\theta})$ be generated by Algorithms 13.1. Assume that the convex QP with box constraints has strictly complementary solution(s). Then every limit point of the sequence is a strictly complementary solution of the convex quadratic programming with box constraints, i.e., $$\omega_i^* \ge C_2 \rho \quad (i \in \mathcal{S}), \qquad p_i^* \ge C_2 \rho \quad (i \in \mathcal{B}).$$ (13.80) From Lemma 13.21, (\mathbf{p}^k, ω^k) is bounded; therefore there is at least one limit point (\mathbf{p}^*, ω^*) . Since (p_i^k, ω_i^k) is in the neighborhood of the central path, i.e., $\rho_{i}^{k}\omega_{i}^{k} > \rho \mu^{k} := (1-3\theta)\mu^{k}$ $$\omega_i^k \ge C_2 \rho \quad (i \in \mathcal{S}), \qquad p_i^k \ge C_2 \rho \quad (i \in \mathcal{B}),$$ every limit point will meet (13.80) due to the fact that $C_2\rho$ is a constant. It is now ready to show that the complexity bound of Algorithm 13.1 is $O(\sqrt{n}\log(1/\varepsilon))$. The following theorem from [297] is needed for this purpose. ### Theorem 13.5 Let $\varepsilon \in (0,1)$ be given. Suppose that an algorithm for solving (13.17) generates a sequence of iterations that satisfies $$\mu^{k+1} \le \left(1 - \frac{\delta}{n^{\chi}}\right) \mu^k, \quad k = 0, 1, 2, \dots,$$ (13.81) for some positive constants δ and χ . Suppose that the starting point $(\mathbf{x}^0, \mathbf{p}^0, \boldsymbol{\omega}^0)$ satisfies $\mu^0 \le 1/\varepsilon$. Then there exists an index K with $$K = O(n^{\chi} \log(1/\varepsilon))$$ such that $$\mu^k \le \varepsilon$$ for $\forall k \ge K$. Combining Lemma 13.19 and Theorems 13.5 gives ## Theorem 13.6 The complexity of Algorithm 13.1 is bounded by $O(\sqrt{n}\log(1/\varepsilon))$. # 13.6 Implementation issues Algorithm 13.1 is presented in a form that is convenient for the convergence analysis. Some implementation details that make the algorithm more efficient are discussed in this section. # 13.6.1 Termination criterion Algorithm 13.1 needs a termination criterion in real implementation. One can use $$\mu^k \le \varepsilon,$$ (13.82a) $$\|\mathbf{r}_X\| = \|\mathbf{H}\mathbf{x}^k + \lambda^k - \gamma^k + \mathbf{c}\| \le \varepsilon,$$ (13.82b) $$\|\mathbf{r}_{Y}\| = \|\mathbf{x}^{k} + \mathbf{y}^{k} - \mathbf{e}\| \le \varepsilon, \tag{13.82c}$$ $$\|\mathbf{r}_Z\| = \|\mathbf{x}^k - \mathbf{z}^k + \mathbf{e}\| \le \varepsilon, \tag{13.82d}$$ $$\|\mathbf{r}_t\| = \|\mathbf{P}^k \mathbf{\Omega}^k \mathbf{e} - \mu \mathbf{e}\| \le \varepsilon, \tag{13.82e}$$ $$(\mathbf{p}^k, \boldsymbol{\omega}^k) > 0. \tag{13.82f}$$ An alternate criterion is similar to the one used in linprog [338] $$\kappa := \frac{\|\mathbf{r}_{Y}\| + \|\mathbf{r}_{Z}\|}{2n} + \frac{\|\mathbf{r}_{X}\|}{\max\{1, \|\mathbf{c}\|\}} + \frac{\mu^{k}}{\max\{1, \|\mathbf{x}^{k^{\mathsf{T}}}\mathbf{H}\mathbf{x}^{k} + \mathbf{c}^{\mathsf{T}}\mathbf{x}^{k}\|\}} \le \varepsilon. \quad (13.83)$$ # **13.6.2** Initial $(\mathbf{x}^0, \mathbf{y}^0, \mathbf{z}^0, \lambda^0, \gamma^0) \in \mathcal{N}_2(\theta)$ For feasible interior-point algorithms, an important prerequisite is to start with a feasible interior point. While finding an *initial feasible point* may not be a simple and trivial task for even linear programming with equality constraints [297], for quadratic programming subject to box constraints, finding the initial point is not an issue. As a matter of fact, the following initial point $(\mathbf{x}^0, \mathbf{y}^0, \mathbf{z}^0, \lambda^0, \gamma^0)$ is an interior point, moreover $(\mathbf{x}^0, \mathbf{y}^0, \mathbf{z}^0, \lambda^0, \gamma^0) \in \mathcal{N}_2(\theta)$. $$\mathbf{x}^0 = 0, \quad \mathbf{y}^0 = \mathbf{z}^0 = \mathbf{e} > 0,$$ (13.84a) $$\lambda_i^0 = 4(1 + \|\mathbf{c}\|^2) - \frac{c_i}{2} > 0,$$ (13.84b) $$\gamma_i^0 = 4(1 + \|\mathbf{c}\|^2) + \frac{c_i}{2} > 0.$$ (13.84c) It is easy to see that this selected point meets (13.20). Since $$\mu^{0} = \frac{\sum_{i=1}^{n} (\lambda_{i}^{0} + \gamma_{i}^{0})}{2n} = \frac{\sum_{i=1}^{n} (8(1 + \|\mathbf{c}\|^{2}))}{2n} = 4(1 + \|\mathbf{c}\|^{2}), \quad (13.85)$$ for $\theta = 0.19$, it must have $$\begin{aligned} \left\| \mathbf{p}^{0} \circ \boldsymbol{\omega}^{0} - \boldsymbol{\mu}^{0} \mathbf{e} \right\|^{2} &= \sum_{i=1}^{n} (\lambda_{i}^{0} - \boldsymbol{\mu}^{0})^{2} + \sum_{i=1}^{n} (\gamma_{i}^{0} - \boldsymbol{\mu}^{0})^{2} \\ &= \frac{\|\mathbf{c}\|^{2}}{2} \le 16\theta^{2} (1 + \|\mathbf{c}\|^{2})^{2} = \theta^{2} (\boldsymbol{\mu}^{0})^{2}. \end{aligned}$$ This shows that $(\mathbf{x}^0, \mathbf{y}^0, \mathbf{z}^0, \lambda^0, \gamma^0) \in \mathcal{N}_2(\theta)$. #### 13.6.3 Step size Directly using $\sin(\alpha) = \frac{\theta}{\sqrt{n}}$ in Algorithm 13.1 provides an effective formula to prove the polynomiality. However, this choice of $sin(\alpha)$ is too conservative in practice because this search step in $\mathcal{N}_2(2\theta)$ is too small and the speed of duality measure reduction is slow. A better choice of $\sin(\alpha)$ should have a larger step in every iteration so that the polynomiality is reserved and fast convergence is achieved. In view of Remark 13.2, conditions that restrict step size are positivity conditions, proximity conditions, and duality reduction condition. This section examines how to enlarge the step size under these restrictions. First, from (13.108) and (13.117), $\mu(\alpha) > 0$ is required for positivity conditions $(\mathbf{p}(\alpha), \omega(\alpha)) > 0$ and $(\mathbf{p}^{k+1}, \omega^{k+1}) > 0$ to hold. Since $\sin(\bar{\alpha})$ estimated in Corollary 13.1 is conservative, a better selection of $\bar{\alpha}$ is directly from (13.54), Lemmas 13.2 and 13.8: $$\mu(\alpha) \geq \mu(1-\sin(\alpha)) - \frac{1}{2n}\dot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\dot{\mathbf{x}}\left((1-\cos(\alpha))^{2} + \sin^{2}(\alpha)\right)$$ $$\geq \mu(1-\sin(\alpha)) - \frac{1}{2n}(\dot{\mathbf{p}}^{\mathrm{T}}\dot{\boldsymbol{\omega}})\left(\sin^{4}(\alpha) + \sin^{2}(\alpha)\right)$$ $$:= f(\sin(\alpha)) = \sigma, \tag{13.86}$$ where $\sigma > 0$ is a small number, and $f(\sin(\alpha))$ is a monotonic decreasing function of $\sin(\alpha)$ with $f(\sin(0)) = \mu$ and $f(\sin(\frac{\pi}{2})) < 0$. Therefore, equation (13.86) has a unique positive real solution for $\alpha \in [0, \frac{\pi}{2}]$. Since (13.86) is a quartic function of $\sin(\alpha)$, the cost of finding the smallest positive solution is negligible [206]. Second, in view of (13.116), the proximity condition for $$(\mathbf{x}^{k+1}, \mathbf{v}^{k+1}, \mathbf{z}^{k+1}, \lambda^{k+1}, \gamma^{k+1}) \in \mathcal{N}_2(\boldsymbol{\theta})$$ holds for $\theta \le 0.19$ without further restriction. The proximity condition (13.107) is met for $\sin(\alpha) \in [0, \sin(\tilde{\alpha})]$, where $\sin(\tilde{\alpha})$ is the smallest positive solution of (13.56) and it is estimated very conservatively in Lemma 13.15. An efficient implementation should use $\sin(\tilde{\alpha})$, the smallest positive solution of (13.56). Actually, there exist a α which is normally larger than $\tilde{\alpha}$ such that the proximity condition (13.107) is met for $\sin(\alpha) \in [0, \sin(\alpha)]$. Let $$b_0 = -\theta \mu < 0$$, $$b_{1} = \theta \mu > 0,$$ $$b_{3} = \left\| \dot{\mathbf{p}} \circ \ddot{\boldsymbol{\omega}} + \dot{\boldsymbol{\omega}} \circ \ddot{\mathbf{p}} - \frac{1}{2n} (\dot{\mathbf{p}}^{T} \ddot{\boldsymbol{\omega}} + \dot{\boldsymbol{\omega}}^{T} \ddot{\mathbf{p}}) \mathbf{e} \right\| + \frac{\theta}{n} \left(\dot{\mathbf{p}}^{T} \ddot{\boldsymbol{\omega}} + \ddot{\mathbf{p}}^{T} \dot{\boldsymbol{\omega}} \right),$$ $$b_{4} = \left\| \ddot{\mathbf{p}} \circ \ddot{\boldsymbol{\omega}} - \dot{\boldsymbol{\omega}} \circ \dot{\mathbf{p}} - \frac{1}{2n} (\ddot{\mathbf{p}}^{T} \ddot{\boldsymbol{\omega}} - \dot{\boldsymbol{\omega}}^{T} \dot{\mathbf{p}})
\mathbf{e} \right\| - \frac{\theta}{n} \left(\ddot{\mathbf{p}}^{T} \ddot{\boldsymbol{\omega}} - \dot{\mathbf{p}}^{T} \dot{\boldsymbol{\omega}} \right),$$ and $$p(\alpha) := b_4 (1 - \cos(\alpha))^2 + b_3 \sin(\alpha) (1 - \cos(\alpha)) + b_1 \sin(\alpha) + b_0.$$ (13.87) Applying the second inequality of (13.45) to $\frac{\theta}{n} (\dot{\mathbf{p}}^T \ddot{\boldsymbol{\omega}} + \ddot{\mathbf{p}}^T \dot{\boldsymbol{\omega}}) \sin(\alpha) (1 - \cos(\alpha))$, one can easily show that $$p(\alpha) \leq q(\alpha)$$, where $q(\alpha)$ is defined in (13.56). Therefore, the smallest positive solution α of $p(\alpha)$ is larger than the smallest positive solution $\tilde{\alpha}$ of $q(\alpha)$. Hence, the goal is to show that for $\sin(\alpha) \in [0, \sin(\alpha)]$, the proximity condition (13.107) holds. Since for $\sin(\alpha) \in [0, \sin(\alpha)]$, $p(\alpha) \leq 0$, it must have $$\begin{aligned} & \left\| \ddot{\mathbf{p}} \circ \ddot{\boldsymbol{\omega}} - \dot{\boldsymbol{\omega}} \circ \dot{\mathbf{p}} - \frac{1}{2n} (\ddot{\mathbf{p}}^{\mathrm{T}} \ddot{\boldsymbol{\omega}} - \dot{\boldsymbol{\omega}}^{\mathrm{T}} \dot{\mathbf{p}}) \mathbf{e} \right\| (1 - \cos(\alpha))^{2} \\ & + \left\| \dot{\mathbf{p}} \circ \ddot{\boldsymbol{\omega}} + \dot{\boldsymbol{\omega}} \circ \ddot{\mathbf{p}} - \frac{1}{2n} (\dot{\mathbf{p}}^{\mathrm{T}} \ddot{\boldsymbol{\omega}} + \dot{\boldsymbol{\omega}}^{\mathrm{T}} \ddot{\mathbf{p}}) \mathbf{e} \right\| \sin(\alpha) (1 - \cos(\alpha)) \\ & \leq (2\theta) \left(\frac{1}{2n} \left(\ddot{\mathbf{p}}^{\mathrm{T}} \ddot{\boldsymbol{\omega}} - \dot{\mathbf{p}}^{\mathrm{T}} \dot{\boldsymbol{\omega}} \right) (1 - \cos(\alpha))^{2} - \frac{1}{2n} \left(\dot{\mathbf{p}}^{\mathrm{T}} \ddot{\boldsymbol{\omega}} + \ddot{\mathbf{p}}^{\mathrm{T}} \dot{\boldsymbol{\omega}} \right) \sin(\alpha) (1 - \cos(\alpha)) \right) \\ & + \theta \mu (1 - \sin(\alpha)). \end{aligned} \tag{13.88}$$ Substituting this inequality into (13.106) gives $$\begin{aligned} & \left\| \mathbf{p}(\alpha) \circ \omega(\alpha) - \mu(\alpha) \mathbf{e} \right\| \\ & \leq & 2\theta \left[\mu (1 - \sin(\alpha)) + \frac{1}{2n} \left(\ddot{\mathbf{x}}^{\mathrm{T}} (\ddot{\gamma} - \ddot{\lambda}) - \dot{\mathbf{x}}^{\mathrm{T}} (\dot{\gamma} - \dot{\lambda}) \right) (1 - \cos(\alpha))^{2} \\ & - & \frac{1}{2n} \left(\dot{\mathbf{x}}^{\mathrm{T}} (\ddot{\gamma} - \ddot{\lambda}) + \ddot{\mathbf{x}}^{\mathrm{T}} (\dot{\gamma} - \dot{\lambda}) \right) \sin(\alpha) (1 - \cos(\alpha)) \right] = 2\theta \mu(\alpha). \end{aligned}$$ $$(13.89)$$ This is the proximity condition for $(\mathbf{x}(\alpha), \mathbf{y}(\alpha), \mathbf{z}(\alpha), \lambda(\alpha), \gamma(\alpha))$. Denote $\hat{b}_0 = b_0$, $\hat{b}_1 = b_1$, $$\hat{b}_3 = \begin{cases} b_3 & \text{if } b_3 \ge 0, \\ 0 & \text{if } b_3 < 0, \end{cases} \qquad \hat{b}_4 = \begin{cases} b_4 & \text{if } b_4 \ge 0, \\ 0 & \text{if } b_4 < 0, \end{cases}$$ and $$\hat{p}(\alpha) := \hat{b}_4 (1 - \cos(\alpha))^2 + \hat{b}_3 \sin(\alpha) (1 - \cos(\alpha)) + \hat{b}_1 \sin(\alpha) + \hat{b}_0. \quad (13.90)$$ Since $\hat{p}(\alpha) > p(\alpha)$, the smallest positive solution $\hat{\alpha}$ of $\hat{p}(\alpha)$ is smaller than smallest positive solution $\dot{\alpha}$ of $p(\alpha)$. To estimate the smallest solution of $\dot{\alpha}$, by noticing that $\hat{p}(\alpha)$ is a monotonic increasing function of α and $\hat{p}(0) = -\theta \mu < 0$, one can simply use the bisection method. The computational cost is independent of the problem size n and is negligible. Since both estimated step sizes α and $\tilde{\alpha}$ guarantee the proximity condition for $(\mathbf{x}(\alpha), \mathbf{y}(\alpha), \mathbf{z}(\alpha), \lambda(\alpha), \gamma(\alpha))$ to hold, one can select $\check{\alpha} = \max\{\check{\alpha}, \tilde{\alpha}\} \geq \tilde{\alpha}$ which guarantees the polynomiality claim to hold. Third, from (C.76a) and Lemmas 13.11, 13.8, and 13.2, it must have $$\mu^{k+1} \leq \mu^{k} \left[1 + \frac{\theta^{2}(1+2\theta)}{n(1-2\theta)^{2}} - \left(1 + \frac{\theta^{2}(1+2\theta)}{n(1-2\theta)^{2}} \right) \sin(\alpha) + \left(1 + \frac{\theta^{2}(1+2\theta)}{n(1-2\theta)^{2}} \right) \frac{\ddot{\mathbf{p}}^{\mathsf{T}} \ddot{\boldsymbol{\omega}}}{2n\mu} \left(\sin^{2}(\alpha) + \sin^{4}(\alpha) \right) \right]. \quad (13.91)$$ For $\mu^{k+1} \leq \mu^k$ to hold, one needs $$\begin{split} &\frac{\theta^2(1+2\theta)}{n(1-2\theta)^2} - \left(1 + \frac{\theta^2(1+2\theta)}{n(1-2\theta)^2}\right)\sin(\alpha) \\ &+ \left(1 + \frac{\theta^2(1+2\theta)}{n(1-2\theta)^2}\right) \frac{\ddot{\mathbf{p}}^T \ddot{\boldsymbol{\omega}}}{2n\mu} \left(\sin^2(\alpha) + \sin^4(\alpha)\right) \leq 0. \end{split}$$ For the sake of convenience in convergence analysis, a conservative estimate is used in Lemma 13.19. For efficient implementation, the following solution should be adopted. Denote $u = \frac{\theta^2(1+2\theta)}{n(1-2\theta)^2} > 0$, $v = \frac{\ddot{\mathbf{p}}^T\ddot{\omega}}{2nu} > 0$, $z = \sin(\alpha) \in [0,1]$, and $$F(z) = (1+u)vz^4 + (1+u)vz^2 - (1+u)z + u.$$ For $z \in [0,1]$ and $v \le \frac{1}{6}$, $F'(z) = (1+u)(4vz^3 + 2vz - 1) \le 0$; therefore, the upper bound of the duality measure is a monotonic decreasing function of $sin(\alpha)$ for $\alpha \in [0, \frac{\pi}{2}]$. The larger α is, the smaller the upper bound of the duality measure will be. For $v > \frac{1}{6}$, to minimize the upper bound of the duality measure, one can find the solution of F'(z) = 0. It is easy to check from discriminator [206] that the cubic polynomial F'(z) has only one real solution which is given by (see Lemma 13.5) $$\sin(\breve{\alpha}) = \sqrt[3]{\frac{n\mu}{4\ddot{\mathbf{p}}^{\mathrm{T}}\ddot{\omega}} + \sqrt{\left(\frac{n\mu}{4\ddot{\mathbf{p}}^{\mathrm{T}}\ddot{\omega}}\right)^{2} + \left(\frac{1}{6}\right)^{3}} + \sqrt[3]{\frac{n\mu}{4\ddot{\mathbf{p}}^{\mathrm{T}}\ddot{\omega}} - \sqrt{\left(\frac{n\mu}{4\ddot{\mathbf{p}}^{\mathrm{T}}\ddot{\omega}}\right)^{2} + \left(\frac{1}{6}\right)^{3}}}.$$ Since $F''(\sin(\check{\alpha})) = (1+u)(12v\sin^2(\check{\alpha}) + 2v) > 0$ at $\sin(\check{\alpha}) \in [0,1)$, the upper bound of the duality measure is minimized. Therefore, one can define $$\check{\alpha} = \begin{cases} \frac{\pi}{2}, & \text{if } \frac{\ddot{\mathbf{p}}^{\mathsf{T}} \ddot{\omega}}{2n\mu} \leq \frac{1}{6} \\ \sin^{-1} \left(\sqrt[3]{\frac{n\mu}{4\ddot{\mathbf{p}}^{\mathsf{T}} \ddot{\omega}}} + \sqrt{\left(\frac{n\mu}{4\ddot{\mathbf{p}}^{\mathsf{T}} \ddot{\omega}}\right)^2 + \left(\frac{1}{6}\right)^3} + \sqrt[3]{\frac{n\mu}{4\ddot{\mathbf{p}}^{\mathsf{T}} \ddot{\omega}}} - \sqrt{\left(\frac{n\mu}{4\ddot{\mathbf{p}}^{\mathsf{T}} \ddot{\omega}}\right)^2 + \left(\frac{1}{6}\right)^3} \right), & \text{if } \frac{\ddot{\mathbf{p}}^{\mathsf{T}} \ddot{\omega}}{2n\mu} > \frac{1}{6}. \end{cases}$$ (13.92) It is worthwhile to note that for $\alpha < \check{\alpha}$, $F'(\sin(\alpha)) < 0$, i.e., $F(\sin(\alpha))$ is a monotonic decreasing function of $\alpha \in [0, \check{\alpha}]$. The step size selection process is therefore a simple algorithm as follows. # Algorithm 13.2 # (Step Size Selection) Data: $\sigma > 0$. Step 1: Find the positive real solution of (13.86) to get $\sin(\bar{\alpha})$. Step 2: Find the smallest positive real solution of (13.90) to get $\sin(\alpha)$, the smallest positive real solution of (13.56) to get $\sin(\tilde{\alpha})$, and set $\sin(\check{\alpha}) =$ $\max\{\sin(\tilde{\alpha}),\sin(\dot{\alpha})\}.$ Step 3: Calculate $\check{\alpha}$ given by (13.92). Step 4: The step size is obtained as $\sin(\alpha) = \min\{\sin(\bar{\alpha}), \sin(\bar{\alpha}), \sin(\bar{\alpha})\}$. #### The practical implementation 13.6.4 Therefore, Algorithm 13.1 can be implemented as follows: # Algorithm 13.3 # (Arc-search path-following) *Data*: **H** \geq **0**, **c**, *n*, $\theta = 0.19$, $\varepsilon > \sigma > 0$. Step 0: Find initial point $(\mathbf{x}^0, \mathbf{p}^0, \omega^0) \in \mathcal{N}_2(\theta)$ using (13.84), κ using (13.83), and μ^0 using (13.85). while $\kappa > \varepsilon$ Step 1: Compute $(\dot{\mathbf{x}}, \dot{\mathbf{p}}, \dot{\boldsymbol{\omega}})$ and $(\ddot{\mathbf{x}}, \ddot{\mathbf{p}}, \ddot{\boldsymbol{\omega}})$ using (13.27) and (13.28). Step 2: Select $\sin(\alpha)$ using Algorithm 13.2. Update $(\mathbf{x}(\alpha), \mathbf{p}(\alpha), \omega(\alpha))$ and $\mu(\alpha)$ using (13.57) and (13.58). Step 3: Compute $(\Delta \mathbf{x}, \Delta \mathbf{p}, \Delta \omega)$ using (13.63), update $(\mathbf{x}^{k+1}, \mathbf{p}^{k+1}, \omega^{k+1})$ and μ^{k+1} using (13.64) and (13.65). Step 4: Computer κ using (13.83). Step 5: Set $k+1 \rightarrow k$. Go back to Step 1. end (while) Remark 13.4 The condition $\mu > \sigma$ guarantees that the equation (13.86) has a positive solution before termination criterion is met. #### 13.7 A design example In this section, OrbView-2 spacecraft orbit-raising design example discussed in Chapter 12 is used to demonstrate the effectiveness and efficiency of the proposed algorithm. Let $\mathbf{w} = (w_x, w_y, w_z)$ be the spacecraft body rate with respect to the reference frame expressed in the body frame, $\bar{\mathbf{q}} = (q_0, q_1, q_2, q_3)$ be the quaternion of the spacecraft attitude with respect to the reference frame represented in the body frame and $\mathbf{q} = (q_1, q_2, q_3)$ be the reduced quaternion, $\mathbf{J} = \operatorname{diag}(J_x, J_y, J_z)$ be the spacecraft inertia matrix, and h_w be the angular momentum produced by a momentum wheel. Orbit-raising is performed by 4 fixed thrusters (1 Newton) with on/off switches which are mounted on the anti-nadir face of the spacecraft in each corner of a square with a side length of 2d meter. The thrusters point to +z direction and canted 5 degree from z-axis. (more details were provided in Chapter 12). The matrices of the thruster
force direction F and moment arms **R** in the body frame are given as $$\mathbf{F} = [\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3, \mathbf{f}_4] = \begin{bmatrix} -a & -a & a & a \\ a & -a & -a & a \\ 1 & 1 & 1 & 1 \end{bmatrix}$$ $$\mathbf{R}_a = [\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4] = \begin{bmatrix} -d & -d & d & d \\ -d & d & d & -d \\ -\ell & -\ell & -\ell & -\ell \end{bmatrix}.$$ Let $\mathbf{x} = (w_x, w_y, w_z, q_1, q_2, q_3)$ the states of the attitude and $\mathbf{u} = (T_1, T_2, T_3, T_4)$ be the control variable with T_1, T_2, T_3, T_4 the thrust level of the four thrusters. The linear time-invariant system under consideration is represented in a reduced quaternion model (see Chapter 12). $$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 0 & \frac{h_w}{J_x} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ \frac{h_w}{J_z} & 0 & 0 & 0 & 0 & 0\\ 0.5 & 0 & 0 & 0 & 0 & 0\\ 0 & 0.5 & 0 & 0 & 0 & 0\\ 0 & 0 & 0.5 & 0 & 0 & 0 \end{bmatrix} \mathbf{x}$$ with the control constraints $$-\mathbf{e} \le \mathbf{u} = (T_1, T_2, T_3, T_4) \le \mathbf{e}.$$ (13.94) The problem is converted to a discrete model using Matlab function c2d with sampling time 1 second. The design is to minimize $$J = \min_{\mathbf{u}_0, \mathbf{u}_1, \dots, \mathbf{u}_{N-1}} \frac{1}{2} \mathbf{x}_N^{\mathrm{T}} \mathbf{P} \mathbf{x}_N + \frac{1}{2} \sum_{k=0}^{N-1} \left[\mathbf{x}_k^{\mathrm{T}} \mathbf{Q} \mathbf{x}_k + \mathbf{u}_k^{\mathrm{T}} \mathbf{R} \mathbf{u}_k, \right]$$ (13.95) where the horizon number N = 30, the matrices **P**, **Q**, and **R** are given by $$\mathbf{P} = \mathbf{Q} = \begin{bmatrix} \frac{1}{2.5} \mathbf{I}_3 & \mathbf{0} \\ \mathbf{0} & 10000 \mathbf{I}_3 \end{bmatrix}, \quad \mathbf{R} = \mathbf{I}_6.$$ Other spacecraft parameters (d = 0.248m, $\ell = 0.815\text{m}$, $I_x = 189kg.m^2$, $I_y = 159kg.m^2$, and $I_z = 114kg.m^2$, and $h_w = -2.8N.m.s$) are the same as the ones of Chapter 12 and are taken from [248]. The algorithm is implemented in Matlab. In our implementation of Algorithm 13.3, $\varepsilon = 10^{-6}$ and $\sigma = 10^{-10}$ are selected. Since Matlab is an interpreted language (meaning that in the execution, every line has to be translated into machine language before the computer executes this line), Matlab code is normally magnitudes slower than compiled languages such as C, C++, and Fortran. But it turns out that even this Matlab code is very fast. In 0.88 second, after 20 iterations, the algorithm converges (any intermediate result can be used in real time because they are all feasible). Using the optimal control inputs, we can calculate the state space response from (13.93). The control inputs and state space response are displayed in Figures 13.1, 13.2, and 13.3. # 13.8 Proofs of technical lemmas Proof of Lemma 13.8: From (13.30), we have $$\begin{split} \dot{\mathbf{x}}^{T}(\dot{\gamma} - \dot{\lambda}) &= \dot{\mathbf{z}}^{T}\dot{\gamma} + \dot{\mathbf{y}}^{T}\dot{\lambda} = \dot{\mathbf{p}}^{T}\dot{\omega}, \\ \ddot{\mathbf{x}}^{T}(\ddot{\gamma} - \ddot{\lambda}) &= \ddot{\mathbf{z}}^{T}\ddot{\gamma} + \ddot{\mathbf{y}}^{T}\ddot{\lambda} = \ddot{\mathbf{p}}^{T}\ddot{\omega}, \end{split}$$ Figure 13.1: Optimal control with saturation constraint. Figure 13.2: spacecraft body rate response. $$\ddot{\mathbf{x}}^{T}(\dot{\boldsymbol{\gamma}} - \dot{\boldsymbol{\lambda}}) = \ddot{\mathbf{p}}^{T}\dot{\boldsymbol{\omega}},$$ and $$\dot{\mathbf{x}}^{\mathrm{T}}(\ddot{\boldsymbol{\gamma}} - \ddot{\boldsymbol{\lambda}}) = \dot{\mathbf{p}}^{\mathrm{T}} \ddot{\boldsymbol{\omega}}.$$ Figure 13.3: spacecraft quaternion response. Pre-multiplying $\dot{\mathbf{x}}^{T}$ and $\ddot{\mathbf{x}}^{T}$ to (13.29) gives $$\begin{split} \dot{\boldsymbol{x}}^T(\dot{\boldsymbol{\gamma}} - \dot{\boldsymbol{\lambda}}) &= \dot{\boldsymbol{x}}^T \boldsymbol{H} \dot{\boldsymbol{x}}, \\ \ddot{\boldsymbol{x}}^T(\ddot{\boldsymbol{\gamma}} - \ddot{\boldsymbol{\lambda}}) &= \ddot{\boldsymbol{x}}^T \boldsymbol{H} \ddot{\boldsymbol{x}}, \\ \ddot{\boldsymbol{x}}^T(\dot{\boldsymbol{\gamma}} - \dot{\boldsymbol{\lambda}}) &= \ddot{\boldsymbol{x}}^T \boldsymbol{H} \dot{\boldsymbol{x}} = \dot{\boldsymbol{x}}^T(\ddot{\boldsymbol{\gamma}} - \ddot{\boldsymbol{\lambda}}). \end{split}$$ Equations (13.41) and (13.42) follow from the first two equations and the fact that **H** is positive definite. The last equation is equivalent to (13.43). Using (13.41), (13.42), and (13.43) gives $$\begin{split} & (\dot{\mathbf{x}}(1-\cos(\alpha)) + \ddot{\mathbf{x}}\sin(\alpha))^T\mathbf{H}(\dot{\mathbf{x}}(1-\cos(\alpha)) + \ddot{\mathbf{x}}\sin(\alpha)) \\ = & (\dot{\mathbf{x}}^T\mathbf{H}\dot{\mathbf{x}})(1-\cos(\alpha))^2 + 2(\dot{\mathbf{x}}^T\mathbf{H}\ddot{\mathbf{x}})\sin(\alpha)(1-\cos(\alpha)) + (\ddot{\mathbf{x}}^T\mathbf{H}\ddot{\mathbf{x}})\sin^2(\alpha) \\ = & (\dot{\mathbf{x}}^T\mathbf{H}\dot{\mathbf{x}})(1-\cos(\alpha))^2 + (\ddot{\mathbf{x}}^T\mathbf{H}\ddot{\mathbf{x}})\sin^2(\alpha) \\ + & (\ddot{\mathbf{x}}^T(\dot{\gamma}-\dot{\lambda}) + \dot{\mathbf{x}}^T(\ddot{\gamma}-\ddot{\lambda}))\sin(\alpha)(1-\cos(\alpha)) \geq 0, \end{split}$$ which is the first inequality of (13.44). Using (13.41), (13.42), and (13.43) also gives $$\begin{split} & (\dot{\mathbf{x}}(1-\cos(\alpha)) - \ddot{\mathbf{x}}\sin(\alpha))^{\mathrm{T}}\mathbf{H}(\dot{\mathbf{x}}(1-\cos(\alpha)) - \ddot{\mathbf{x}}\sin(\alpha)) \\ = & (\dot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\dot{\mathbf{x}})(1-\cos(\alpha))^{2} - 2(\dot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\ddot{\mathbf{x}})\sin(\alpha)(1-\cos(\alpha)) + (\ddot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\ddot{\mathbf{x}})\sin^{2}(\alpha) \\ = & (\dot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\dot{\mathbf{x}})(1-\cos(\alpha))^{2} + (\ddot{\mathbf{x}}^{\mathrm{T}}\mathbf{H}\ddot{\mathbf{x}})\sin^{2}(\alpha) \\ & - (\ddot{\mathbf{x}}^{\mathrm{T}}(\dot{\gamma}-\dot{\lambda}) + \dot{\mathbf{x}}^{\mathrm{T}}(\ddot{\gamma}-\ddot{\lambda}))\sin(\alpha)(1-\cos(\alpha)) \geq 0, \end{split}$$ which is the second inequality of (13.44). Replacing $\dot{\mathbf{x}}(1-\cos(\alpha))$ and $\ddot{\mathbf{x}}\sin(\alpha)$ by $\dot{\mathbf{x}}\sin(\alpha)$ and $\ddot{\mathbf{x}}(1-\cos(\alpha))$, and using the same method, one can obtain equation (13.45). # Proof of Lemma 13.9: From the last two rows of (13.27) or equivalently (13.31), it must have $$\Lambda \dot{\mathbf{y}} + \mathbf{Y} \dot{\lambda} = \Lambda \mathbf{Y} \mathbf{e},$$ $$\Gamma \dot{\mathbf{z}} + \mathbf{Z} \dot{\gamma} = \Gamma \mathbf{Z} \mathbf{e}.$$ Pre-multiplying $\mathbf{Y}^{-\frac{1}{2}} \Lambda^{-\frac{1}{2}}$ on both sides of the first equality gives $$\mathbf{Y}^{-\frac{1}{2}}\boldsymbol{\Lambda}^{\frac{1}{2}}\dot{\mathbf{y}} + \mathbf{Y}^{\frac{1}{2}}\boldsymbol{\Lambda}^{-\frac{1}{2}}\dot{\boldsymbol{\lambda}} = \mathbf{Y}^{\frac{1}{2}}\boldsymbol{\Lambda}^{\frac{1}{2}}\mathbf{e}.$$ Pre-multiplying $\mathbf{Z}^{-\frac{1}{2}}\Gamma^{-\frac{1}{2}}$ on both sides of the second equality gives $$\mathbf{Z}^{-\frac{1}{2}}\Gamma^{\frac{1}{2}}\dot{\mathbf{z}} + \mathbf{Z}^{\frac{1}{2}}\Gamma^{-\frac{1}{2}}\dot{\gamma} = \mathbf{Z}^{\frac{1}{2}}\Gamma^{\frac{1}{2}}\mathbf{e}.$$ (13.96) $$\text{Let } \mathbf{u} = \left[\begin{array}{c} \mathbf{Y}^{-\frac{1}{2}} \boldsymbol{\Lambda}^{\frac{1}{2}} \dot{\mathbf{y}} \\ \mathbf{Z}^{-\frac{1}{2}} \boldsymbol{\Gamma}^{\frac{1}{2}} \dot{\mathbf{z}} \end{array} \right], \mathbf{v} = \left[\begin{array}{c} \mathbf{Y}^{\frac{1}{2}} \boldsymbol{\Lambda}^{-\frac{1}{2}} \dot{\boldsymbol{\lambda}} \\ \mathbf{Z}^{\frac{1}{2}} \boldsymbol{\Gamma}^{-\frac{1}{2}} \dot{\boldsymbol{\gamma}} \end{array} \right], \text{ and } \mathbf{w} = \left[\begin{array}{c} \mathbf{Y}^{\frac{1}{2}} \boldsymbol{\Lambda}^{\frac{1}{2}} \mathbf{e} \\ \mathbf{Z}^{\frac{1}{2}} \boldsymbol{\Gamma}^{\frac{1}{2}} \mathbf{e} \end{array} \right], \text{ using (13.30)}$$ and Lemma 13.8 yields $\mathbf{u}^{\mathrm{T}}\mathbf{v} = \dot{\mathbf{v}}^{\mathrm{T}}\dot{\lambda} + \dot{\mathbf{z}}^{\mathrm{T}}\dot{\gamma} = \dot{\mathbf{x}}^{\mathrm{T}}(\dot{\gamma} - \dot{\lambda}) > 0$. Using Lemma 13.3 and (13.23) yields $$\|\mathbf{u}\|^{2} + \|\mathbf{v}\|^{2} = \sum_{i=1}^{n} \left(\frac{\dot{y}_{i}^{2} \lambda_{i}}{y_{i}} + \frac{\dot{z}_{i}^{2} \gamma_{i}}{z_{i}} \right) + \sum_{i=1}^{n} \left(\frac{\dot{\lambda}_{i}^{2} y_{i}}{\lambda_{i}} + \frac{\dot{\gamma}_{i}^{2} z_{i}}{\gamma_{i}} \right)$$ $$\leq \sum_{i=1}^{n} (y_{i} \lambda_{i} + z_{i} \gamma_{i}) = \sum_{i=1}^{2n} p_{i} \omega_{i} = 2n\mu.$$ (13.97) Since $p_i > 0$ and $\omega_i > 0$, dividing both sides of the inequality by $\min_i p_i \omega_i$ and using (13.25) gives $$\sum_{i=1}^{n} \left(\frac{\dot{y}_{i}^{2}}{y_{i}^{2}} + \frac{\dot{z}_{i}^{2}}{z_{i}^{2}} \right) + \sum_{i=1}^{n} \left(\frac{\dot{\gamma}_{i}^{2}}{\gamma_{i}^{2}} + \frac{\dot{\lambda}_{i}^{2}}{\lambda_{i}^{2}} \right) = \left\| \frac{\dot{\mathbf{p}}}{\mathbf{p}} \right\|^{2} + \left\| \frac{\dot{\boldsymbol{\omega}}}{\boldsymbol{\omega}} \right\|^{2} \le \frac{2n\mu}{\min_{j} p_{i} \omega_{i}} \le \frac{2n}{1 - \theta}.$$ (13.98) This proves (13.47). Combining (13.47) and Lemma 13.1 yields $$\left\|\frac{\dot{\mathbf{p}}}{\mathbf{p}}\right\|^2 \left\|\frac{\dot{\boldsymbol{\omega}}}{\boldsymbol{\omega}}\right\|^2 \le \left(\frac{n}{(1-\theta)}\right)^2.$$ This leads to, $$\left\| \frac{\dot{\mathbf{p}}}{\mathbf{p}} \right\| \left\| \frac{\dot{\boldsymbol{\omega}}}{\boldsymbol{\omega}} \right\| \le \frac{n}{(1 - \boldsymbol{\theta})}. \tag{13.99}$$ Therefore, using (13.25) and Cauchy-Schwarz inequality yields $$\frac{\dot{\mathbf{p}}^{\mathrm{T}}\dot{\boldsymbol{\omega}}}{\mu} \leq \frac{|\dot{\mathbf{p}}|^{\mathrm{T}}|\dot{\boldsymbol{\omega}}|}{\mu} \leq (1+\theta) \frac{|\dot{\mathbf{p}}|^{\mathrm{T}}|\dot{\boldsymbol{\omega}}|}{\max_{i} p_{i} \omega_{i}} \leq (1+\theta) \left(\frac{|\dot{\mathbf{p}}|}{\mathbf{p}}\right)^{\mathrm{T}} \left(\frac{|\dot{\boldsymbol{\omega}}|}{\boldsymbol{\omega}}\right) \\ \leq (1+\theta)
\left\|\frac{\dot{\mathbf{p}}}{\mathbf{p}}\right\| \left\|\frac{\dot{\boldsymbol{\omega}}}{\boldsymbol{\omega}}\right\| \leq \frac{1+\theta}{1-\theta} n, \tag{13.100}$$ which is the second inequality of (13.49). From Lemma 13.8, $\dot{\mathbf{p}}^T \dot{\boldsymbol{\omega}} = \dot{\mathbf{x}}^T (\dot{\gamma} - \dot{\lambda}) = \dot{\mathbf{x}}^T \mathbf{H} \dot{\mathbf{x}} \ge 0$, the first inequality of (13.49) follows. Proof of Lemma 13.10: Similar to the proof of Lemma 13.9, from (13.32), it must have $$\begin{split} \Lambda \ddot{\boldsymbol{y}} + \boldsymbol{Y} \ddot{\boldsymbol{\lambda}} &= -2 \left(\dot{\boldsymbol{y}} \circ \dot{\boldsymbol{\lambda}} \right) \\ \iff & \boldsymbol{Y}^{-\frac{1}{2}} \Lambda^{\frac{1}{2}} \ddot{\boldsymbol{y}} + \boldsymbol{Y}^{\frac{1}{2}} \Lambda^{-\frac{1}{2}} \ddot{\boldsymbol{\lambda}} = -2 \boldsymbol{Y}^{-\frac{1}{2}} \Lambda^{-\frac{1}{2}} \left(\dot{\boldsymbol{y}} \circ \dot{\boldsymbol{\lambda}} \right), \end{split}$$ and $$\Gamma \ddot{\mathbf{z}} + \mathbf{Z} \ddot{\gamma} = -2 \left(\dot{\mathbf{z}} \circ \dot{\gamma} \right)$$ $$\iff \mathbf{Z}^{-\frac{1}{2}} \Gamma^{\frac{1}{2}} \ddot{\mathbf{z}} + \mathbf{Z}^{\frac{1}{2}} \Gamma^{-\frac{1}{2}} \ddot{\gamma} = -2 \mathbf{Z}^{-\frac{1}{2}} \Gamma^{-\frac{1}{2}} \left(\dot{\mathbf{z}} \circ \dot{\gamma} \right).$$ $$\text{Let } \mathbf{u} = \left[\begin{array}{c} \mathbf{Y}^{-\frac{1}{2}} \boldsymbol{\Lambda}^{\frac{1}{2}} \ddot{\mathbf{y}} \\ \mathbf{Z}^{-\frac{1}{2}} \boldsymbol{\Gamma}^{\frac{1}{2}} \ddot{\mathbf{z}} \end{array} \right], \, \mathbf{v} = \left[\begin{array}{c} \mathbf{Y}^{\frac{1}{2}} \boldsymbol{\Lambda}^{-\frac{1}{2}} \ddot{\boldsymbol{\lambda}} \\ \mathbf{Z}^{\frac{1}{2}} \boldsymbol{\Gamma}^{-\frac{1}{2}} \ddot{\boldsymbol{\gamma}} \end{array} \right], \, \text{and } \mathbf{w} = \left[\begin{array}{c} -2 \mathbf{Y}^{-\frac{1}{2}} \boldsymbol{\Lambda}^{-\frac{1}{2}} \left(\dot{\mathbf{y}} \circ \dot{\boldsymbol{\lambda}} \right) \\ -2 \mathbf{Z}^{-\frac{1}{2}} \boldsymbol{\Gamma}^{-\frac{1}{2}} \left(\dot{\mathbf{z}} \circ \dot{\boldsymbol{\gamma}} \right) \end{array} \right],$$ using (13.30) and Lemma 13.8 yields $\mathbf{u}^T\mathbf{v} = \ddot{\mathbf{y}}^T\ddot{\lambda} + \ddot{\mathbf{z}}^T\ddot{\gamma} = \ddot{\mathbf{x}}^T(\ddot{\gamma} - \ddot{\lambda}) \geq 0$. Using Lemma 13.3 yields $$\begin{aligned} \|\mathbf{u}\|^{2} + \|\mathbf{v}\|^{2} &= \sum_{i=1}^{n} \left(\frac{\dot{y}_{i}^{2} \lambda_{i}}{y_{i}} + \frac{\ddot{z}_{i}^{2} \gamma_{i}}{z_{i}} \right) + \sum_{i=1}^{n} \left(\frac{\ddot{\lambda}_{i}^{2} y_{i}}{\lambda_{i}} + \frac{\ddot{\gamma}_{i}^{2} z_{i}}{\gamma_{i}} \right) \\ &\leq \left\| -2\mathbf{Y}^{-\frac{1}{2}} \mathbf{\Lambda}^{-\frac{1}{2}} \left(\dot{\mathbf{y}} \circ \dot{\lambda} \right) \right\|^{2} + \left\| -2\mathbf{Z}^{-\frac{1}{2}} \mathbf{\Gamma}^{-\frac{1}{2}} \left(\dot{\mathbf{z}} \circ \dot{\gamma} \right) \right\|^{2} \\ &= 4 \sum_{i=1}^{n} \left(\frac{\dot{y}_{i}^{2}}{y_{i}} \frac{\dot{\lambda}_{i}^{2}}{\lambda_{i}} + \frac{\dot{z}_{i}^{2}}{z_{i}} \frac{\ddot{\gamma}_{i}^{2}}{\gamma_{i}} \right). \end{aligned}$$ Dividing both sides of the inequality by μ and using (13.25) gives $$(1 - \theta) \left(\sum_{i=1}^{n} \left(\frac{\ddot{y}_{i}^{2}}{y_{i}^{2}} + \frac{\ddot{z}_{i}^{2}}{z_{i}^{2}} \right) + \sum_{i=1}^{n} \left(\frac{\ddot{\lambda}_{i}^{2}}{\lambda_{i}^{2}} + \frac{\ddot{\gamma}_{i}^{2}}{\gamma_{i}^{2}} \right) \right)$$ $$= (1 - \theta) \left(\left\| \frac{\ddot{\mathbf{p}}}{\mathbf{p}} \right\|^{2} + \left\| \frac{\ddot{\boldsymbol{\omega}}}{\boldsymbol{\omega}} \right\|^{2} \right)$$ $$\leq 4(1+\theta)\left(\sum_{i=1}^n\left(\frac{\dot{y}_i^2}{y_i^2}\frac{\dot{\lambda}_i^2}{\lambda_i^2}+\frac{\dot{z}_i^2}{z_i^2}\frac{\dot{\gamma}_i^2}{\gamma_i^2}\right)\right),$$ in view of Lemma 13.9, this leads to $$\left\|\frac{\ddot{\mathbf{p}}}{\mathbf{p}}\right\|^{2} + \left\|\frac{\ddot{\boldsymbol{\omega}}}{\boldsymbol{\omega}}\right\|^{2} \leq 4\frac{1+\theta}{1-\theta}\left\|\frac{\dot{\mathbf{p}}}{\mathbf{p}}\circ\frac{\dot{\boldsymbol{\omega}}}{\boldsymbol{\omega}}\right\|^{2} \leq 4\frac{1+\theta}{1-\theta}\left\|\frac{\dot{\mathbf{p}}}{\mathbf{p}}\right\|^{2}\left\|\frac{\dot{\boldsymbol{\omega}}}{\boldsymbol{\omega}}\right\|^{2} \leq \frac{4(1+\theta)n^{2}}{(1-\theta)^{3}}.$$ (13.101) This proves (13.50). Combining (13.50) and Lemma 13.1 yields $$\left\|\frac{\ddot{\mathbf{p}}}{\mathbf{p}}\right\|^2 \left\|\frac{\ddot{\boldsymbol{\omega}}}{\boldsymbol{\omega}}\right\|^2 \le \left(\frac{2(1+\theta)n^2}{(1-\theta)^3}\right)^2.$$ Using (13.25) and Cauchy-Schwarz inequality yields $$\begin{split} \frac{\ddot{\mathbf{p}}^{\mathrm{T}} \ddot{\boldsymbol{\omega}}}{\mu} & \leq & \frac{|\ddot{\mathbf{p}}|^{\mathrm{T}} |\ddot{\boldsymbol{\omega}}|}{\mu} \leq (1+\theta) \frac{|\ddot{\mathbf{p}}|^{\mathrm{T}} |\ddot{\boldsymbol{\omega}}|}{\max_{i} p_{i} \boldsymbol{\omega}_{i}} \leq (1+\theta) \left(\frac{|\ddot{\mathbf{p}}|}{\mathbf{p}}\right)^{\mathrm{T}} \left(\frac{|\ddot{\boldsymbol{\omega}}|}{\boldsymbol{\omega}}\right) \\ & \leq & (1+\theta) \left\|\frac{\ddot{\mathbf{p}}}{\mathbf{p}}\right\| \left\|\frac{\ddot{\boldsymbol{\omega}}}{\boldsymbol{\omega}}\right\| \leq \frac{2n^{2}(1+\theta)^{2}}{(1-\theta)^{3}}, \end{split}$$ which is the second inequality of (13.52). Using (13.30) and Lemma 13.8, one must have $\ddot{\mathbf{p}}^T \ddot{\boldsymbol{\omega}} = \ddot{\mathbf{y}}^T \ddot{\boldsymbol{\lambda}} + \ddot{\mathbf{z}}^T \ddot{\boldsymbol{\gamma}} = \ddot{\mathbf{x}}^T (\ddot{\boldsymbol{\gamma}} - \ddot{\boldsymbol{\lambda}}) = \ddot{\mathbf{x}}^T \mathbf{H} \ddot{\mathbf{x}} \geq 0$. This proves the first inequality of (13.52). Finally, using (13.25), Cauchy-Schwarz inequality, (13.47), and (13.50) yields $$\begin{split} \frac{\left|\dot{\mathbf{p}}^{\mathrm{T}}\ddot{\boldsymbol{\omega}}\right|}{\mu} &\leq \frac{|\dot{\mathbf{p}}|^{\mathrm{T}}|\ddot{\boldsymbol{\omega}}|}{\mu} \leq (1+\theta) \frac{|\dot{\mathbf{p}}|^{\mathrm{T}}|\ddot{\boldsymbol{\omega}}|}{\max_{i} p_{i} \omega_{i}} \leq (1+\theta) \left(\frac{|\dot{\mathbf{p}}|}{\mathbf{p}}\right)^{\mathrm{T}} \left(\frac{|\ddot{\boldsymbol{\omega}}|}{\boldsymbol{\omega}}\right) \\ &\leq (1+\theta) \left\|\frac{\dot{\mathbf{p}}}{\mathbf{p}}\right\| \left\|\frac{\ddot{\boldsymbol{\omega}}}{\boldsymbol{\omega}}\right\| \leq (1+\theta) \left(\frac{2n}{1-\theta}\right)^{\frac{1}{2}} \left(\frac{4(1+\theta)n^{2}}{(1+\theta)^{3}}\right)^{\frac{1}{2}} \leq \frac{(2n(1+\theta))^{\frac{3}{2}}}{(1-\theta)^{2}}. \end{split}$$ This proves the first inequality of (13.53). Replacing $\dot{\mathbf{p}}$ by $\ddot{\mathbf{p}}$ and $\ddot{\omega}$ by $\dot{\omega}$, then using the same reasoning, one can prove the second inequality of (13.53). Proof of Lemma 13.11: Using (13.34), (13.36), (13.31), and (13.32), one must have $$\begin{split} &\mathbf{y}^{T}(\alpha)\lambda(\alpha) \\ = & \left(\mathbf{y}^{T} - \dot{\mathbf{y}}^{T}\sin(\alpha) + \ddot{\mathbf{y}}^{T}(1 - \cos(\alpha))\right) \left(\lambda - \dot{\lambda}\sin(\alpha) + \ddot{\lambda}(1 - \cos(\alpha))\right) \\ = & \mathbf{y}^{T}\lambda - \mathbf{y}^{T}\dot{\lambda}\sin(\alpha) + \mathbf{y}^{T}\ddot{\lambda}(1 - \cos(\alpha)) \\ & - \dot{\mathbf{y}}^{T}\lambda\sin(\alpha) + \dot{\mathbf{y}}^{T}\dot{\lambda}\sin^{2}(\alpha) - \dot{\mathbf{y}}^{T}\ddot{\lambda}\sin(\alpha)(1 - \cos(\alpha)) \\ & + \ddot{\mathbf{y}}^{T}\lambda(1 - \cos(\alpha)) - \ddot{\mathbf{y}}^{T}\dot{\lambda}\sin(\alpha)(1 - \cos(\alpha)) + \ddot{\mathbf{y}}^{T}\ddot{\lambda}(1 - \cos(\alpha))^{2} \end{split}$$ $$=\mathbf{y}^{\mathrm{T}}\boldsymbol{\lambda} - (\mathbf{y}^{\mathrm{T}}\dot{\boldsymbol{\lambda}} + \boldsymbol{\lambda}^{\mathrm{T}}\dot{\mathbf{y}})\sin(\alpha) + (\mathbf{y}^{\mathrm{T}}\ddot{\boldsymbol{\lambda}} + \boldsymbol{\lambda}^{\mathrm{T}}\ddot{\mathbf{y}})(1 - \cos(\alpha))$$ $$- (\dot{\mathbf{y}}^{\mathrm{T}}\ddot{\boldsymbol{\lambda}} + \dot{\boldsymbol{\lambda}}^{\mathrm{T}}\ddot{\mathbf{y}})\sin(\alpha)(1 - \cos(\alpha)) + \dot{\mathbf{y}}^{\mathrm{T}}\dot{\boldsymbol{\lambda}}\sin^{2}(\alpha) + \ddot{\mathbf{y}}^{\mathrm{T}}\ddot{\boldsymbol{\lambda}}(1 - \cos(\alpha))^{2}$$ $$=\mathbf{y}^{\mathrm{T}}\boldsymbol{\lambda}(1 - \sin(\alpha)) - 2\dot{\mathbf{y}}^{\mathrm{T}}\dot{\boldsymbol{\lambda}}(1 - \cos(\alpha))$$ $$- (\dot{\mathbf{y}}^{\mathrm{T}}\ddot{\boldsymbol{\lambda}} + \dot{\boldsymbol{\lambda}}^{\mathrm{T}}\ddot{\mathbf{y}})\sin(\alpha)(1 - \cos(\alpha))$$ $$+ \dot{\mathbf{y}}^{\mathrm{T}}\dot{\boldsymbol{\lambda}}(1 - \cos^{2}(\alpha)) + \ddot{\mathbf{y}}^{\mathrm{T}}\ddot{\boldsymbol{\lambda}}(1 - \cos(\alpha))^{2}$$ $$= \mathbf{y}^{\mathrm{T}}\boldsymbol{\lambda}(1 - \sin(\alpha)) + (\ddot{\mathbf{y}}^{\mathrm{T}}\ddot{\boldsymbol{\lambda}} - \dot{\mathbf{y}}^{\mathrm{T}}\dot{\boldsymbol{\lambda}})(1 - \cos(\alpha))^{2}$$ $$- (\dot{\mathbf{y}}^{\mathrm{T}}\ddot{\boldsymbol{\lambda}} + \dot{\boldsymbol{\lambda}}^{\mathrm{T}}\ddot{\mathbf{y}})\sin(\alpha)(1 - \cos(\alpha)). \tag{13.102}$$ Using (13.35), (13.37), (13.31), (13.32), and a similar derivation of (13.102), one gets $$\mathbf{z}^{\mathrm{T}}(\alpha)\gamma(\alpha) = \mathbf{z}^{\mathrm{T}}\gamma(1-\sin(\alpha)) + (\ddot{\mathbf{z}}^{\mathrm{T}}\ddot{\gamma} - \dot{\mathbf{z}}^{\mathrm{T}}\dot{\gamma})(1-\cos(\alpha))^{2} - (\dot{\mathbf{z}}^{\mathrm{T}}\ddot{\gamma} + \dot{\gamma}^{\mathrm{T}}\ddot{\mathbf{z}})\sin(\alpha)(1-\cos(\alpha)). \tag{13.103}$$ Combining (13.102) and (13.103), then using (13.30) and (13.44) yield $$2n\mu(\alpha) = \mathbf{p}^{T}(\alpha)\omega(\alpha)$$ $$= \mathbf{y}^{T}(\alpha)\lambda(\alpha) + \mathbf{z}^{T}(\alpha)\gamma(\alpha)$$ $$= (\mathbf{y}^{T}\lambda + \mathbf{z}^{T}\gamma)(1 - \sin(\alpha)) + (\ddot{\mathbf{y}}^{T}\ddot{\lambda} + \ddot{\mathbf{z}}^{T}\ddot{\gamma} - \dot{\mathbf{y}}^{T}\dot{\lambda} - \dot{\mathbf{z}}^{T}\dot{\gamma})(1 - \cos(\alpha))^{2}$$ $$- (\dot{\mathbf{y}}^{T}\ddot{\lambda} +
\dot{\mathbf{z}}^{T}\ddot{\gamma} + \ddot{\mathbf{y}}^{T}\dot{\lambda} + \ddot{\mathbf{z}}^{T}\dot{\gamma})\sin(\alpha)(1 - \cos(\alpha))$$ $$= (\mathbf{y}^{T}\lambda + \mathbf{z}^{T}\gamma)(1 - \sin(\alpha)) + (\ddot{\mathbf{x}}^{T}(\ddot{\gamma} - \ddot{\lambda}) - \dot{\mathbf{x}}^{T}(\dot{\gamma} - \dot{\lambda}))(1 - \cos(\alpha))^{2}$$ $$- (\dot{\mathbf{x}}^{T}(\ddot{\gamma} - \ddot{\lambda}) + \ddot{\mathbf{x}}^{T}(\dot{\gamma} - \dot{\lambda}))\sin(\alpha)(1 - \cos(\alpha)) \qquad (13.104)$$ $$\leq (\mathbf{y}^{T}\lambda + \mathbf{z}^{T}\gamma)(1 - \sin(\alpha)) + (\ddot{\mathbf{x}}^{T}\mathbf{H}\ddot{\mathbf{x}} - \dot{\mathbf{x}}^{T}\mathbf{H}\dot{\mathbf{x}})(1 - \cos(\alpha))^{2}$$ $$+ \dot{\mathbf{x}}^{T}\mathbf{H}\dot{\mathbf{x}}(1 - \cos(\alpha))^{2} + \ddot{\mathbf{x}}^{T}\mathbf{H}\ddot{\mathbf{x}}\sin^{2}(\alpha)$$ $$= (\mathbf{y}^{T}\lambda + \mathbf{z}^{T}\gamma)(1 - \sin(\alpha)) + \ddot{\mathbf{x}}^{T}\mathbf{H}\ddot{\mathbf{x}}(1 - \cos(\alpha))^{2} + \ddot{\mathbf{x}}^{T}\mathbf{H}\ddot{\mathbf{x}}\sin^{2}(\alpha).$$ Dividing both sides by 2n proves the second inequality of the lemma. Combining (13.104) and (13.45) proves the first inequality of the lemma. Proof of Lemma 13.12: From the second inequality of (13.54), it must have $$\mu(\alpha) - \mu \le \mu \sin(\alpha) \left(-1 + \frac{\ddot{\mathbf{x}}^{\mathrm{T}} \mathbf{H} \ddot{\mathbf{x}}}{2n\mu} \sin(\alpha) + \frac{\ddot{\mathbf{x}}^{\mathrm{T}} \mathbf{H} \ddot{\mathbf{x}}}{2n\mu} \sin^{3}(\alpha) \right).$$ Clearly, if $\frac{\ddot{\mathbf{x}}^T\mathbf{H}\ddot{\mathbf{x}}}{2n\mu} \leq \frac{1}{2}$, for any $\alpha \in [0, \frac{\pi}{2}]$, the function $$f(\alpha) := \left(-1 + \frac{\ddot{\mathbf{x}}^{\mathrm{T}} \mathbf{H} \ddot{\mathbf{x}}}{2n\mu} \sin(\alpha) + \frac{\ddot{\mathbf{x}}^{\mathrm{T}} \mathbf{H} \ddot{\mathbf{x}}}{2n\mu} \sin^{3}(\alpha)\right) \leq 0,$$ and $\mu(\alpha) \leq \mu$. If $\frac{\ddot{\mathbf{x}}^T \mathbf{H} \ddot{\mathbf{x}}}{2n\mu} > \frac{1}{2}$, using Lemma 13.5, the function f has one real solution $\sin(\alpha) \in (0,1)$. The solution is given as $$\sin(\hat{\alpha}) = \sqrt[3]{\frac{n\mu}{\ddot{\mathbf{x}}^T\mathbf{H}\ddot{\mathbf{x}}} + \sqrt{\left(\frac{n\mu}{\ddot{\mathbf{x}}^T\mathbf{H}\ddot{\mathbf{x}}}\right)^2 + \left(\frac{1}{3}\right)^3}} + \sqrt[3]{\frac{n\mu}{\ddot{\mathbf{x}}^T\mathbf{H}\ddot{\mathbf{x}}} - \sqrt{\left(\frac{n\mu}{\ddot{\mathbf{x}}^T\mathbf{H}\ddot{\mathbf{x}}}\right)^2 + \left(\frac{1}{3}\right)^3}}.$$ This proves the Lemma. # Proof of Lemma 13.13: Since $\sin(\tilde{\alpha})$ is the only positive real solution of (13.56) in [0,1] and q(0) < 0, substituting a_0, a_1, a_2, a_3 and a_4 into (13.56) yields, for all $\sin(\alpha) \le \sin(\tilde{\alpha})$, $$\left(\left\|\ddot{\mathbf{p}}\circ\ddot{\boldsymbol{\omega}}-\dot{\boldsymbol{\omega}}\circ\dot{\mathbf{p}}-\frac{1}{2n}(\ddot{\mathbf{p}}^{\mathrm{T}}\ddot{\boldsymbol{\omega}}-\dot{\boldsymbol{\omega}}^{\mathrm{T}}\dot{\mathbf{p}})\mathbf{e}\right\|\right)\sin^{4}(\alpha) +\left(\left\|\dot{\mathbf{p}}\circ\ddot{\boldsymbol{\omega}}+\dot{\boldsymbol{\omega}}\circ\ddot{\mathbf{p}}-\frac{1}{2n}(\dot{\mathbf{p}}^{\mathrm{T}}\ddot{\boldsymbol{\omega}}+\dot{\boldsymbol{\omega}}^{\mathrm{T}}\ddot{\mathbf{p}})\mathbf{e}\right\|\right)\sin^{3}(\alpha) \leq -\left(2\theta\frac{\dot{\mathbf{p}}^{\mathrm{T}}\dot{\boldsymbol{\omega}}}{2n}\right)\sin^{4}(\alpha)-\left(2\theta\frac{\dot{\mathbf{p}}^{\mathrm{T}}\dot{\boldsymbol{\omega}}}{2n}\right)\sin^{2}(\alpha)+\theta\mu(1-\sin(\alpha)). \quad (13.105)$$ Using (13.38), (13.39), (13.31), (13.32), (13.58), Lemma 13.2, (13.105), and the first inequality of (13.54) yields $$\begin{aligned} & \left\| \mathbf{p}(\alpha) \circ \omega(\alpha) - \mu(\alpha) \mathbf{e} \right\| \\ &= \left\| \left(\mathbf{p} - \dot{\mathbf{p}} \sin(\alpha) + \ddot{\mathbf{p}} (1 - \cos(\alpha)) \right) \circ \left(\omega - \dot{\omega} \sin(\alpha) + \ddot{\omega} (1 - \cos(\alpha)) \right) - \mu(\alpha) \mathbf{e} \right\| \\ &= \left\| \left(\mathbf{p} \circ \omega - \mu \mathbf{e} \right) (1 - \sin(\alpha)) + \left(\ddot{\mathbf{p}} \circ \ddot{\omega} - \dot{\mathbf{p}} \circ \dot{\omega} - \frac{1}{2n} (\ddot{\mathbf{p}}^T \ddot{\omega} - \dot{\mathbf{p}}^T \dot{\omega}) \mathbf{e} \right) (1 - \cos(\alpha))^2 \\ &- \left(\dot{\mathbf{p}} \circ \ddot{\omega} + \dot{\omega} \circ \ddot{\mathbf{p}} - \frac{1}{2n} (\dot{\mathbf{p}}^T \ddot{\omega} + \ddot{\mathbf{p}}^T \dot{\omega}) \mathbf{e} \right) \sin(\alpha) (1 - \cos(\alpha)) \right\| \\ &\leq (1 - \sin(\alpha)) \left\| \mathbf{p} \circ \omega - \mu \mathbf{e} \right\| + \left\| (\ddot{\mathbf{p}} \circ \ddot{\omega} - \dot{\mathbf{p}} \circ \dot{\omega} - \frac{1}{2n} (\ddot{\mathbf{p}}^T \ddot{\omega} - \dot{\mathbf{p}}^T \dot{\omega})) \mathbf{e} \right\| (1 - \cos(\alpha))^2 \\ &+ \left\| (\dot{\mathbf{p}} \circ \ddot{\omega} + \dot{\omega} \circ \ddot{\mathbf{p}} - \frac{1}{2n} (\dot{\mathbf{p}}^T \ddot{\omega} + \ddot{\mathbf{p}}^T \dot{\omega}) \mathbf{e} \right\| \sin(\alpha) (1 - \cos(\alpha)) \end{aligned} \tag{13.106}$$ $$&\leq \theta \mu (1 - \sin(\alpha)) + \left\| (\ddot{\mathbf{p}} \circ \ddot{\omega} - \dot{\mathbf{p}} \circ \dot{\omega} - \frac{1}{2n} (\ddot{\mathbf{p}}^T \ddot{\omega} - \dot{\mathbf{p}}^T \dot{\omega})) \mathbf{e} \right\| \sin^4(\alpha) + a_3 \sin^3(\alpha)$$ $$&\leq 2\theta \mu (1 - \sin(\alpha)) - \left(2\theta \frac{\dot{\mathbf{p}}^T \dot{\omega}}{2n} \right) (\sin^4(\alpha) + \sin^2(\alpha))$$ $$&\leq 2\theta \left(\mu (1 - \sin(\alpha)) - \left(\frac{\dot{\mathbf{x}}^T \mathbf{H} \dot{\mathbf{x}}}{2n} \right) \left((1 - \cos(\alpha))^2 + \sin^2(\alpha) \right) \right)$$ $$&\leq 2\theta \mu (\alpha). \tag{13.107}$$ Hence, the point $(\mathbf{x}(\alpha), \mathbf{p}(\alpha), \boldsymbol{\omega}(\alpha))$ satisfies the proximity condition for $\mathcal{N}_2(2\theta)$. To check the positivity condition $(\mathbf{p}(\alpha), \boldsymbol{\omega}(\alpha)) > 0$, in view of the initial condition $(\mathbf{p}, \boldsymbol{\omega}) > 0$, it follows from (13.107) and Corollary 13.1 that, for $\sin(\alpha) \leq \sin(\bar{\alpha})$ and $\theta < 0.5$, $$p_i(\alpha)\omega_i(\alpha) \ge (1 - 2\theta)\mu(\alpha) > 0. \tag{13.108}$$ Therefore, it cannot have $p_i(\alpha) = 0$ or $\omega_i(\alpha) = 0$ for any index i when $\alpha \in [0, \sin^{-1}(\bar{\alpha})]$. This proves $(\mathbf{p}(\alpha), \omega(\alpha)) > 0$. **Remark 13.5** It is worthwhile to note, by examining the proof of Lemma 13.13, that $\sin(\tilde{\alpha})$ is selected for the proximity condition (13.107) to hold, and $\sin(\bar{\alpha})$ is selected for $\mu(\alpha) > 0$, thereby assuring the positivity condition (13.108) to hold. Proof of Lemma 13.14: Since $$\left\|\frac{\dot{\mathbf{p}}}{\mathbf{p}}\right\|^2 = \sum_{i=1}^{2n} \left(\frac{\dot{p}_i}{p_i}\right)^2, \quad \left\|\frac{\dot{\boldsymbol{\omega}}}{\boldsymbol{\omega}}\right\|^2 = \sum_{i=1}^{2n} \left(\frac{\dot{\boldsymbol{\omega}}_i}{\boldsymbol{\omega}_i}\right)^2,$$ from Lemma 13.9 and (13.25), it must have $$\left(\frac{n}{1-\theta}\right)^{2}$$ $$\geq \left\|\frac{\dot{\mathbf{p}}}{\mathbf{p}}\right\|^{2} \left\|\frac{\dot{\boldsymbol{\omega}}}{\boldsymbol{\omega}}\right\|^{2} = \left(\sum_{i=1}^{2n} \left(\frac{\dot{p}_{i}}{p_{i}}\right)^{2}\right) \left(\sum_{i=1}^{2n} \left(\frac{\dot{\omega}_{i}}{\boldsymbol{\omega}_{i}}\right)^{2}\right)$$ $$\geq \sum_{i=1}^{2n} \left(\frac{\dot{p}_{i}}{p_{i}}\frac{\dot{\omega}_{i}}{\boldsymbol{\omega}_{i}}\right)^{2} = \left\|\frac{\dot{\mathbf{p}}}{\mathbf{p}} \circ \frac{\dot{\boldsymbol{\omega}}}{\boldsymbol{\omega}}\right\|^{2}$$ $$\geq \sum_{i=1}^{2n} \left(\frac{\dot{p}_{i}\dot{\omega}_{i}}{(1+\theta)\mu}\right)^{2} = \frac{1}{(1+\theta)^{2}\mu^{2}} \left\|\dot{\mathbf{p}} \circ \dot{\boldsymbol{\omega}}\right\|^{2},$$ i.e., $$\left\|\dot{\mathbf{p}}\circ\dot{\boldsymbol{\omega}}\right\|^2 \leq \left(\frac{1+\theta}{1-\theta}n\mu\right)^2.$$ This proves (13.59). Using $$\left\|\frac{\ddot{\mathbf{p}}}{\mathbf{p}}\right\|^2 = \sum_{i=1}^{2n} \left(\frac{\ddot{p}_i}{p_i}\right)^2, \quad \left\|\frac{\ddot{\boldsymbol{\omega}}}{\boldsymbol{\omega}}\right\|^2 = \sum_{i=1}^{2n} \left(\frac{\ddot{\boldsymbol{\omega}}_i}{\boldsymbol{\omega}_i}\right)^2,$$ and Lemma 13.10, then following the same procedure, it is easy to verify (13.60). From (13.47) and (13.50), one obtains $$\left(\frac{2n}{(1-\theta)}\right) \left(\frac{4(1+\theta)n^{2}}{(1-\theta)^{3}}\right) \geq \left(\left\|\frac{\dot{\mathbf{p}}}{\mathbf{p}}\right\|^{2} + \left\|\frac{\dot{\omega}}{\omega}\right\|^{2}\right) \left(\left\|\frac{\ddot{\mathbf{p}}}{\mathbf{p}}\right\|^{2} + \left\|\frac{\dot{\omega}}{\omega}\right\|^{2}\right)$$ $$\geq \left\|\frac{\ddot{\mathbf{p}}}{\mathbf{p}}\right\|^{2} \left\|\frac{\dot{\omega}}{\omega}\right\|^{2} + \left\|\frac{\dot{\mathbf{p}}}{\mathbf{p}}\right\|^{2} \left\|\frac{\ddot{\omega}}{\omega}\right\|^{2}$$ $$= \left(\sum_{i=1}^{2n} \left(\frac{\ddot{p}_{i}}{p_{i}}\right)^{2}\right) \left(\sum_{i=1}^{2n} \left(\frac{\dot{\omega}_{i}}{\omega_{i}}\right)^{2}\right) + \left(\sum_{i=1}^{2n} \left(\frac{\dot{p}_{i}}{p_{i}}\right)^{2}\right) \left(\sum_{i=1}^{2n} \left(\frac{\ddot{\omega}_{i}}{\omega_{i}}\right)^{2}\right)$$ $$\geq \sum_{i=1}^{2n} \left(\frac{\ddot{p}_{i}\dot{\omega}_{i}}{p_{i}\omega_{i}}\right)^{2} + \sum_{i=1}^{2n} \left(\frac{\dot{p}_{i}\ddot{\omega}_{i}}{p_{i}\omega_{i}}\right)^{2}$$ $$\geq \sum_{i=1}^{2n} \left(\frac{\ddot{p}_{i}\dot{\omega}_{i}}{(1+\theta)\mu}\right)^{2} + \sum_{i=1}^{2n} \left(\frac{\dot{p}_{i}\ddot{\omega}_{i}}{(1+\theta)\mu}\right)^{2}$$ $$= \frac{1}{(1+\theta)^{2}\mu^{2}} \left(\left\|\ddot{\mathbf{p}}\circ\dot{\boldsymbol{\omega}}\right\|^{2} + \left\|\dot{\mathbf{p}}\circ\ddot{\boldsymbol{\omega}}\right\|^{2}\right), \tag{13.109}$$ i.e., $$\left\|\ddot{\mathbf{p}}\circ\dot{\boldsymbol{\omega}}\right\|^2 + \left\
\dot{\mathbf{p}}\circ\ddot{\boldsymbol{\omega}}\right\|^2 \leq \frac{(2n)^3(1+\theta)^3}{(1-\theta)^4}\mu^2.$$ This proves the lemma. # Proof of Lemma 13.15: First notice that $q(\sin(\alpha))$ is a monotonic increasing function of $\sin(\alpha)$ for $\alpha \in$ $[0,\frac{\pi}{2}]$ and $q(\sin(0)) < 0$, therefore, one needs only to show that $q(\frac{\theta}{\sqrt{n}}) < 0$ for $\theta \le 0.22$. Using Lemma 13.6 yields $$\begin{split} \left\| \dot{\mathbf{p}} \circ \ddot{\boldsymbol{\omega}} + \dot{\boldsymbol{\omega}} \circ \ddot{\mathbf{p}} - \frac{1}{2n} (\dot{\mathbf{p}}^{\mathrm{T}} \ddot{\boldsymbol{\omega}} + \dot{\boldsymbol{\omega}}^{\mathrm{T}} \ddot{\mathbf{p}}) \mathbf{e} \right\| &\leq \left\| \dot{\mathbf{p}} \circ \ddot{\boldsymbol{\omega}} \right\| + \left\| \dot{\boldsymbol{\omega}} \circ \ddot{\mathbf{p}} \right\|, \\ \left\| \ddot{\mathbf{p}} \circ \ddot{\boldsymbol{\omega}} - \dot{\boldsymbol{\omega}} \circ \dot{\mathbf{p}} - \frac{1}{2n} (\ddot{\mathbf{p}}^{\mathrm{T}} \ddot{\boldsymbol{\omega}} - \dot{\boldsymbol{\omega}}^{\mathrm{T}} \dot{\mathbf{p}}) \mathbf{e} \right\| &\leq \left\| \ddot{\mathbf{p}} \circ \ddot{\boldsymbol{\omega}} \right\| + \left\| \dot{\boldsymbol{\omega}} \circ \dot{\mathbf{p}} \right\|. \end{split}$$ In view of Lemmas 13.14, 13.9, and 13.10, from (13.56), it must have, for $\alpha \in [0, \frac{\pi}{2}],$ $$q(\sin(\alpha)) \le \left(\left\| \ddot{\mathbf{p}} \circ \ddot{\boldsymbol{\omega}} \right\| + \left\| \dot{\boldsymbol{\omega}} \circ \dot{\mathbf{p}} \right\| + 2\theta \frac{\dot{\mathbf{p}}^{T} \dot{\boldsymbol{\omega}}}{2n} \right) \sin^{4}(\alpha)$$ $$+ \left(\left\| \dot{\mathbf{p}} \circ \ddot{\boldsymbol{\omega}} \right\| + \left\| \dot{\boldsymbol{\omega}} \circ \ddot{\mathbf{p}} \right\| \right) \sin^{3}(\alpha)$$ $$+ 2\theta \frac{\dot{\mathbf{p}}^{T} \dot{\boldsymbol{\omega}}}{2n} \sin^{2}(\alpha) + \theta \mu \sin(\alpha) - \theta \mu$$ $$\begin{split} & \leq \mu \left(\left(\frac{2(1+\theta)^2}{(1-\theta)^3} n^2 + \frac{n(1+\theta)}{(1-\theta)} + \frac{\theta(1+\theta)}{(1-\theta)} \right) \sin^4(\alpha) \\ & + 4\sqrt{2} \frac{(1+\theta)^{\frac{3}{2}}}{(1-\theta)^2} n^{\frac{3}{2}} \sin^3(\alpha) \\ & + \frac{\theta(1+\theta)}{(1-\theta)} \sin^2(\alpha) + \theta \sin(\alpha) - \theta \right). \end{split}$$ Since $n \ge 1$ and $\theta > 0$, substituting $\sin(\alpha) = \frac{\theta}{\sqrt{n}}$ gives $$q\left(\frac{\theta}{\sqrt{n}}\right) \leq \mu\left(\left(\frac{2(1+\theta)^{2}}{(1-\theta)^{3}}n^{2} + \frac{n(1+\theta)}{(1-\theta)} + \frac{\theta(1+\theta)}{(1-\theta)}\right)\frac{\theta^{4}}{n^{2}} + 4\sqrt{2}\frac{(1+\theta)^{\frac{3}{2}}n^{\frac{3}{2}}}{(1-\theta)^{2}}\frac{\theta^{3}}{n^{\frac{3}{2}}} + \frac{\theta(1+\theta)}{(1-\theta)}\frac{\theta^{2}}{n} + \theta\frac{\theta}{\sqrt{n}} - \theta\right)$$ $$= \theta\mu\left(\frac{2\theta^{3}(1+\theta)^{2}}{(1-\theta)^{3}} + \frac{\theta^{3}(1+\theta)}{n(1-\theta)} + \frac{\theta^{4}(1+\theta)}{(1-\theta)n^{2}} + \frac{4\sqrt{2}\theta^{2}(1+\theta)^{\frac{3}{2}}}{(1-\theta)^{2}} + \frac{\theta^{2}(1+\theta)}{n(1-\theta)} + \frac{\theta}{\sqrt{n}} - 1\right)$$ $$\leq \theta\mu\left(\frac{2\theta^{3}(1+\theta)^{2}}{(1-\theta)^{3}} + \frac{\theta^{3}(1+\theta)}{(1-\theta)} + \frac{\theta^{4}(1+\theta)}{(1-\theta)} + \frac{\theta^{4}(1+\theta)}{(1-\theta)} + \frac{4\sqrt{2}\theta^{2}(1+\theta)^{\frac{3}{2}}}{(1-\theta)^{2}} + \frac{\theta^{2}(1+\theta)}{(1-\theta)} + \theta - 1\right) := \theta\mu p(\theta). \quad (13.110)$$ Since $p(\theta)$ is monotonic increasing function of $\theta \in [0,1)$, p(0) < 0, and it is easy to verify that p(0.22) < 0, this proves the lemma. Proof of Lemma 13.16: Using Lemma 13.6 yields $$0 \le \left\| \Delta \mathbf{p} \circ \Delta \omega - \frac{1}{2n} (\Delta \mathbf{p}^{\mathsf{T}} \Delta \omega) \mathbf{e} \right\|^{2} \le \|\Delta \mathbf{p} \circ \Delta \omega\|^{2}. \tag{13.111}$$ Pre-multiplying $\left(\mathbf{P}(\alpha)\Omega(\alpha)\right)^{-\frac{1}{2}}$ on the both sides of (13.66) yields $$\mathbf{D}\Delta\boldsymbol{\omega} + \mathbf{D}^{-1}\Delta\mathbf{p} = \left(\mathbf{P}(\boldsymbol{\alpha})\Omega(\boldsymbol{\alpha})\right)^{-\frac{1}{2}} \left(\mu(\boldsymbol{\alpha})\mathbf{e} - \mathbf{P}(\boldsymbol{\alpha})\Omega(\boldsymbol{\alpha})\mathbf{e}\right).$$ Let $\mathbf{u} = \mathbf{D}\Delta\omega$, $\mathbf{v} = \mathbf{D}^{-1}\Delta\mathbf{p}$, from (13.63), it must have $$\mathbf{u}^{\mathsf{T}}\mathbf{v} = \Delta \mathbf{p}^{\mathsf{T}}\Delta \omega = \Delta \mathbf{y}^{\mathsf{T}}\Delta \lambda + \Delta \mathbf{z}^{\mathsf{T}}\Delta \gamma = \Delta \mathbf{x}^{\mathsf{T}}(\Delta \gamma - \Delta \lambda) = \Delta \mathbf{x}^{\mathsf{T}}\mathbf{H}\Delta \mathbf{x} \ge 0. \quad (13.112)$$ Using Lemma 13.4 and the assumption of $(\mathbf{x}(\alpha), \mathbf{p}(\alpha), \boldsymbol{\omega}(\alpha)) \in \mathcal{N}_2(2\theta)$ yields $$\|\Delta \mathbf{p} \circ \Delta \boldsymbol{\omega}\| = \|\mathbf{u} \circ \mathbf{v}\| \leq 2^{-\frac{3}{2}} \| \left(\mathbf{P}(\boldsymbol{\alpha}) \Omega(\boldsymbol{\alpha}) \right)^{-\frac{1}{2}} \left(\mu(\boldsymbol{\alpha}) \mathbf{e} - \mathbf{P}(\boldsymbol{\alpha}) \Omega(\boldsymbol{\alpha}) \mathbf{e} \right) \|^{2}$$ $$= 2^{-\frac{3}{2}} \sum_{i=1}^{2n} \frac{(\mu(\boldsymbol{\alpha}) - p_{i}(\boldsymbol{\alpha}) \omega_{i}(\boldsymbol{\alpha}))^{2}}{p_{i}(\boldsymbol{\alpha}) \omega_{i}(\boldsymbol{\alpha})}$$ $$\leq 2^{-\frac{3}{2}} \frac{\|\mu(\boldsymbol{\alpha}) \mathbf{e} - \mathbf{p}(\boldsymbol{\alpha}) \circ \omega(\boldsymbol{\alpha})\|^{2}}{\min_{i} p_{i}(\boldsymbol{\alpha}) \omega_{i}(\boldsymbol{\alpha})}$$ $$\leq 2^{-\frac{3}{2}} \frac{(2\theta)^{2} \mu(\boldsymbol{\alpha})^{2}}{(1 - 2\theta) \mu(\boldsymbol{\alpha})} = 2^{\frac{1}{2}} \frac{\theta^{2} \mu(\boldsymbol{\alpha})}{(1 - 2\theta)}. \tag{13.113}$$ Define $(\mathbf{p}^{k+1}(t), \boldsymbol{\omega}^{k+1}(t)) = (\mathbf{p}(\boldsymbol{\alpha}), \boldsymbol{\omega}(\boldsymbol{\alpha})) + t(\Delta \mathbf{p}, \Delta \boldsymbol{\omega})$. From (13.66) and (13.40), one gets $$\mathbf{p}(\alpha)^{\mathrm{T}} \Delta \omega + \omega(\alpha)^{\mathrm{T}} \Delta \mathbf{p} = 2n\mu - \sum_{i=1}^{2n} p_i(\alpha) \omega_i(\alpha) = 0.$$ (13.114) Therefore, $$\mu^{k+1}(t) = \frac{\left(\mathbf{p}(\alpha) + t\Delta\mathbf{p}\right)^{\mathrm{T}} \left(\omega(\alpha) + t\Delta\omega\right)}{2n}$$ $$= \frac{\mathbf{p}(\alpha)^{\mathrm{T}}\omega(\alpha) + t^{2}\Delta\mathbf{p}^{\mathrm{T}}\Delta\omega}{2n} = \mu(\alpha) + t^{2}\frac{\Delta\mathbf{p}^{\mathrm{T}}\Delta\omega}{2n}. (13.115)$$ Since $\Delta \mathbf{p}^{T} \Delta \omega = \Delta \mathbf{x}^{T} \mathbf{H} \Delta \mathbf{x} \geq 0$, it must have $\mu^{k+1}(t) \geq \mu(\alpha)$. Using (13.115), (13.66), (13.111), and (13.113) yields $$\begin{aligned} & \left\| \mathbf{p}^{k+1}(t) \circ \boldsymbol{\omega}^{k+1}(t) - \boldsymbol{\mu}^{k+1}(t) \mathbf{e} \right\| \\ &= \left\| \left(\mathbf{p}(\boldsymbol{\alpha}) + t \Delta \mathbf{p} \right) \circ \left(\boldsymbol{\omega}(\boldsymbol{\alpha}) + t \Delta \boldsymbol{\omega} \right) - \boldsymbol{\mu}(\boldsymbol{\alpha}) \mathbf{e} - \frac{t^{2}}{2n} \left(\Delta \mathbf{p}^{T} \Delta \boldsymbol{\omega} \right) \mathbf{e} \right\| \\ &= \left\| \mathbf{p}(\boldsymbol{\alpha}) \circ \boldsymbol{\omega}(\boldsymbol{\alpha}) + t \left[\boldsymbol{\omega}(\boldsymbol{\alpha}) \circ \Delta \mathbf{p} + \mathbf{p}(\boldsymbol{\alpha}) \circ \Delta \boldsymbol{\omega} \right] + t^{2} \Delta \mathbf{p} \circ \Delta \boldsymbol{\omega} - \boldsymbol{\mu}(\boldsymbol{\alpha}) \mathbf{e} - \frac{t^{2}}{2n} \left(\Delta \mathbf{p}^{T} \Delta \boldsymbol{\omega} \right) \mathbf{e} \right\| \\ &= \left\| \mathbf{p}(\boldsymbol{\alpha}) \circ \boldsymbol{\omega}(\boldsymbol{\alpha}) + t \left[\boldsymbol{\mu}(\boldsymbol{\alpha}) \mathbf{e} - \mathbf{p}(\boldsymbol{\alpha}) \circ \boldsymbol{\omega}(\boldsymbol{\alpha}) \right] + t^{2} \Delta \mathbf{p} \circ \Delta \boldsymbol{\omega} - \boldsymbol{\mu}(\boldsymbol{\alpha}) \mathbf{e} - \frac{t^{2}}{2n} \left(\Delta \mathbf{p}^{T} \Delta \boldsymbol{\omega} \right) \mathbf{e} \right\| \\ &= \left\| \left(1 - t \right) \left[\mathbf{p}(\boldsymbol{\alpha}) \circ \boldsymbol{\omega}(\boldsymbol{\alpha}) - \boldsymbol{\mu}(\boldsymbol{\alpha}) \mathbf{e} \right] + t^{2} \left(\Delta \mathbf{p} \circ \Delta \boldsymbol{\omega} - \frac{1}{2n} \left(\Delta \mathbf{p}^{T} \Delta \boldsymbol{\omega} \right) \mathbf{e} \right) \right\| \\ &\leq \left(1 - t \right) (2\theta) \boldsymbol{\mu}(\boldsymbol{\alpha}) + t^{2} \frac{2^{\frac{1}{2}} \theta^{2}}{(1 - 2\theta)} \boldsymbol{\mu}(\boldsymbol{\alpha}) \\ &\leq \left(\left(1 - t \right) (2\theta) + t^{2} \frac{2^{\frac{1}{2}} \theta^{2}}{(1 - 2\theta)} \right) \boldsymbol{\mu}^{k+1} := f(t, \theta) \boldsymbol{\mu}^{k+1}. \end{aligned} \tag{13.116}$$ Therefore, taking t=1 gives $\left\|\mathbf{p}^{k+1}\circ\boldsymbol{\omega}^{k+1}-\boldsymbol{\mu}^{k+1}\mathbf{e}\right\|\leq \frac{2^{\frac{1}{2}}\theta^2}{(1-2\theta)}\boldsymbol{\mu}^{k+1}$. It is easy to see that, for $\theta \le 0.29$, $$\frac{2^{\frac{1}{2}}\theta^2}{(1-2\theta)} = 0.2832 < \theta.$$ For $\theta \le 0.29$ and $t \in [0, 1]$, noticing $$0 \le f(t, \theta) \le f(t, 0.29) \le 0.58(1-t) + 0.2832t^2 < 1$$ and using Corollary 13.1, one gets, for an additional condition $\sin(\alpha)$ $\sin^{-1}(\bar{\alpha})$, $$\begin{aligned} p_i^{k+1}(t)\boldsymbol{\omega}_i^{k+1}(t) &\geq (1 - f(t, \boldsymbol{\theta}))\,\boldsymbol{\mu}^{k+1}(t) \\ &= (1 - f(t, \boldsymbol{\theta}))\left(\boldsymbol{\mu}(\boldsymbol{\alpha}) + \frac{t^2}{n}\Delta p^{\mathsf{T}}\Delta\boldsymbol{\omega}\right) \\ &\geq (1 - f(t, \boldsymbol{\theta}))\,\boldsymbol{\mu}(\boldsymbol{\alpha}) \\ &> 0, \end{aligned} \tag{13.117}$$ Therefore, $(\mathbf{p}^{k+1}(t), \omega^{k+1}(t)) > 0$ for $t \in [0, 1]$, i.e., $(\mathbf{p}^{k+1}, \omega^{k+1}) > 0$. This finishes the proof. #
Proof of Lemma 13.17: The first inequality of (13.67) follows from (13.112). Pre-multiplying both sides of (13.66) by $\mathbf{P}^{-\frac{1}{2}}(\alpha)\Omega^{-\frac{1}{2}}(\alpha)$ gives $$\mathbf{P}^{-\frac{1}{2}}(\alpha)\Omega^{\frac{1}{2}}(\alpha)\Delta\mathbf{p} + \mathbf{P}^{\frac{1}{2}}(\alpha)\Omega^{-\frac{1}{2}}(\alpha)\Delta\omega = \mathbf{P}^{-\frac{1}{2}}(\alpha)\Omega^{-\frac{1}{2}}(\alpha)\left(\mu(\alpha)\mathbf{e} - \mathbf{P}(\alpha)\Omega(\alpha)\mathbf{e}\right).$$ Let $$\mathbf{u} = \mathbf{P}^{-\frac{1}{2}}(\alpha)\Omega^{\frac{1}{2}}(\alpha)\Delta\mathbf{p},$$ $$\mathbf{v} = \mathbf{P}^{\frac{1}{2}}(\alpha)\Omega^{-\frac{1}{2}}(\alpha)\Delta\mathbf{m}.$$ and $$\mathbf{w} = \mathbf{P}^{-\frac{1}{2}}(\alpha)\Omega^{-\frac{1}{2}}(\alpha) \Big(\mu(\alpha)\mathbf{e} - \mathbf{P}(\alpha)\Omega(\alpha)\mathbf{e}\Big),$$ in view of (13.112), it must have $$\mathbf{u}^{\mathrm{T}}\mathbf{v} = \Delta \mathbf{p}^{\mathrm{T}}\Delta \boldsymbol{\omega} \geq 0.$$ Using Lemma 13.3 and the assumption of $(\mathbf{x}(\alpha), \mathbf{p}(\alpha), \omega(\alpha)) \in \mathcal{N}_2(2\theta)$ yields $$\|\mathbf{u}\|^{2} + \|\mathbf{v}\|^{2} = \sum_{i=1}^{2n} \left(\frac{(\Delta p_{i})^{2} \omega_{i}(\alpha)}{p_{i}(\alpha)} + \frac{(\Delta \omega_{i})^{2} p_{i}(\alpha)}{\omega_{i}(\alpha)} \right)$$ $$\leq \|\mathbf{w}\|^{2} = \sum_{i=1}^{2n} \frac{(\mu(\alpha) - p_{i}(\alpha)\omega_{i}(\alpha))^{2}}{p_{i}(\alpha)\omega_{i}(\alpha)}$$ $$\leq \frac{\sum_{i=1}^{2n} (\mu(\alpha) - p_{i}(\alpha)\omega_{i}(\alpha))^{2}}{\min_{i} p_{i}(\alpha)\omega_{i}(\alpha)}$$ $$\leq \frac{(2\theta)^{2} \mu^{2}(\alpha)}{(1 - 2\theta)\mu(\alpha)} = \frac{(2\theta)^{2} \mu(\alpha)}{(1 - 2\theta)}.$$ (13.118) Dividing both sides by $\mu(\alpha)$ and using $p_i(\alpha)\omega_i(\alpha) \ge \mu(\alpha)(1-2\theta)$ yields $$\sum_{i=1}^{2n} (1 - 2\theta) \left(\frac{(\Delta p_i)^2}{p_i^2(\alpha)} + \frac{(\Delta \omega_i)^2}{\omega_i^2(\alpha)} \right)$$ $$= (1 - 2\theta) \left(\left\| \frac{\Delta \mathbf{p}}{\mathbf{p}(\alpha)} \right\|^2 + \left\| \frac{\Delta \omega}{\omega(\alpha)} \right\|^2 \right)$$ $$\leq \frac{(2\theta)^2}{(1 - 2\theta)},$$ (13.119) i.e., $$\left\| \frac{\Delta \mathbf{p}}{\mathbf{p}(\alpha)} \right\|^2 + \left\| \frac{\Delta \omega}{\omega(\alpha)} \right\|^2 \le \left(\frac{2\theta}{1 - 2\theta} \right)^2. \tag{13.120}$$ Invoking Lemma 13.1, one gets $$\left\| \frac{\Delta \mathbf{p}}{\mathbf{p}(\alpha)} \right\|^2 \cdot \left\| \frac{\Delta \omega}{\omega(\alpha)} \right\|^2 \le \frac{1}{4} \left(\frac{2\theta}{1 - 2\theta} \right)^4. \tag{13.121}$$ This gives $$\left\| \frac{\Delta \mathbf{p}}{\mathbf{p}(\alpha)} \right\| \cdot \left\| \frac{\Delta \omega}{\omega(\alpha)} \right\| \le \frac{2\theta^2}{(1 - 2\theta)^2}.$$ (13.122) Using Cauchy-Schwarz inequality leads to $$\frac{(\Delta \mathbf{p})^{\mathrm{T}}(\Delta \omega)}{\mu(\alpha)}$$ $$\leq \sum_{i=1}^{2n} \frac{|\Delta p_i| |\Delta \omega_i|}{\mu(\alpha)}$$ $$\leq (1+2\theta) \sum_{i=1}^{2n} \frac{|\Delta p_i|}{p_i(\alpha)} \frac{|\Delta \omega_i|}{\omega_i(\alpha)}$$ $$= (1+2\theta) \left| \frac{\Delta \mathbf{p}}{\mathbf{p}(\alpha)} \right|^{\mathrm{T}} \left| \frac{\Delta \omega}{\omega(\alpha)} \right|$$ $$\leq (1+2\theta) \left\| \frac{\Delta \mathbf{p}}{\mathbf{p}(\alpha)} \right\| \cdot \left\| \frac{\Delta \omega}{\omega(\alpha)} \right\|$$ $$\leq \frac{2\theta^2 (1+2\theta)}{(1-2\theta)^2}.$$ (13.123) Therefore, $$\frac{(\Delta \mathbf{p})^{\mathrm{T}}(\Delta \boldsymbol{\omega})}{2n} \le \frac{\theta^2 (1 + 2\theta)}{n(1 - 2\theta)^2} \mu(\boldsymbol{\alpha}). \tag{13.124}$$ This proves the lemma. Proof of Lemma 13.19: Using Lemmas 13.18, 13.11, 13.2, 13.8, 13.9, and 13.10, and noticing $\ddot{\mathbf{p}}^T \ddot{\boldsymbol{\omega}} \ge 0$ and $\dot{\mathbf{p}}^T \dot{\boldsymbol{\omega}} \ge 0$ yields $$\mu^{k+1} \leq \mu(\alpha) \left(1 + \frac{\theta^{2}(1+2\theta)}{n(1-2\theta)^{2}} \right) = \mu(\alpha) \left(1 + \frac{\delta_{0}}{n} \right)$$ $$= \mu^{k} \left[1 - \sin(\alpha) + \left(\frac{\ddot{\mathbf{p}}^{T} \ddot{\omega}}{2n\mu} - \frac{\dot{\mathbf{p}}^{T} \dot{\omega}}{2n\mu} \right) (1 - \cos(\alpha))^{2} \right.$$ $$- \left(\frac{\dot{\mathbf{p}}^{T} \ddot{\omega}}{2n\mu} + \frac{\dot{\omega}^{T} \ddot{\mathbf{p}}}{2n\mu} \right) \sin(\alpha) (1 - \cos(\alpha)) \right] \left(1 + \frac{\delta_{0}}{n} \right)$$ $$\leq \mu^{k} \left(1 - \sin(\alpha) + \frac{\ddot{\mathbf{p}}^{T} \ddot{\omega}}{2n\mu} \sin^{4}(\alpha) + \left(\left| \frac{\dot{\mathbf{p}}^{T} \ddot{\omega}}{2n\mu} \right| + \left| \frac{\dot{\omega}^{T} \ddot{\mathbf{p}}}{2n\mu} \right| \right) \sin^{3}(\alpha) \right) \left(1 + \frac{\delta_{0}}{n} \right)$$ $$\leq \mu^{k} \left(1 - \sin(\alpha) + \frac{n(1+\theta)^{2}}{(1-\theta)^{3}} \sin^{4}(\alpha) + \frac{2(2n)^{\frac{1}{2}}(1+\theta)^{\frac{3}{2}}}{(1-\theta)^{2}} \sin^{3}(\alpha) \right) \left(1 + \frac{\delta_{0}}{n} \right).$$ $$(13.125b)$$ Substituting $\sin(\alpha) = \frac{\theta}{\sqrt{n}}$ into (13.125b) gives $$\begin{split} \mu^{k+1} \leq & \mu^{k} \left(1 - \frac{\theta}{\sqrt{n}} + \frac{n(1+\theta)^{2}}{(1-\theta)^{3}} \frac{\theta^{4}}{n^{2}} + \frac{2(2n)^{\frac{1}{2}}(1+\theta)^{\frac{3}{2}}}{(1-\theta)^{2}} \frac{\theta^{3}}{n^{\frac{3}{2}}} \right) \left(1 + \frac{\delta_{0}}{n} \right) \\ = & \mu^{k} \left(1 - \frac{\theta}{\sqrt{n}} + \frac{\theta^{4}(1+\theta)^{2}}{n(1-\theta)^{3}} + \frac{2^{\frac{3}{2}}\theta^{3}(1+\theta)^{\frac{3}{2}}}{n(1-\theta)^{2}} \right) \left(1 + \frac{\delta_{0}}{n} \right) \\ = & \mu^{k} \left(1 - \frac{\theta}{\sqrt{n}} + \frac{\delta_{0}}{n} + \frac{\theta^{4}(1+\theta)^{2}}{n(1-\theta)^{3}} + \frac{2^{\frac{3}{2}}\theta^{3}(1+\theta)^{\frac{3}{2}}}{n(1-\theta)^{2}} - \frac{\theta\delta_{0}}{n^{\frac{3}{2}}} \right. \\ & + \frac{\delta_{0}}{n} \left[\frac{\theta^{4}(1+\theta)^{2}}{n(1-\theta)^{3}} + \frac{2^{\frac{3}{2}}\theta^{3}(1+\theta)^{\frac{3}{2}}}{n(1-\theta)^{2}} \right] \right) \\ = & \mu^{k} \left(1 - \frac{\theta}{\sqrt{n}} \left[1 - \frac{\delta_{0}}{\sqrt{n}\theta} - \frac{\theta^{3}(1+\theta)^{2}}{\sqrt{n}(1-\theta)^{3}} - \frac{2^{\frac{3}{2}}\theta^{2}(1+\theta)^{\frac{3}{2}}}{\sqrt{n}(1-\theta)^{2}} \right] \right. \\ & - \frac{\theta\delta_{0}}{n^{\frac{3}{2}}} \left[1 - \frac{\theta^{3}(1+\theta)^{2}}{\sqrt{n}(1-\theta)^{3}} - \frac{2^{\frac{3}{2}}\theta^{2}(1+\theta)^{\frac{3}{2}}}{\sqrt{n}(1-\theta)^{2}} \right] \right). \end{split}$$ Since $$\begin{aligned} &1 - \frac{\theta^3 (1+\theta)^2}{\sqrt{n} (1-\theta)^3} - \frac{2^{\frac{3}{2}} \theta^2 (1+\theta)^{\frac{3}{2}}}{\sqrt{n} (1-\theta)^2} \\ & \geq &1 - \frac{\theta^3 (1+\theta)^2}{(1-\theta)^3} - \frac{2^{\frac{3}{2}} \theta^2 (1+\theta)^{\frac{3}{2}}}{(1-\theta)^2} := f(\theta), \end{aligned}$$ where $f(\theta)$ is a monotonic decreasing function of θ , and for $\theta \le 0.37$, $f(\theta) > 0$. Therefore, for $\theta \le 0.37$, the following relation holds. $$\mu^{k+1} \leq \mu^{k} \left(1 - \frac{\theta}{\sqrt{n}} \left[1 - \frac{\delta_{0}}{\sqrt{n}\theta} - \frac{\theta^{3}(1+\theta)^{2}}{\sqrt{n}(1-\theta)^{3}} - \frac{2^{\frac{3}{2}}\theta^{2}(1+\theta)^{\frac{3}{2}}}{\sqrt{n}(1-\theta)^{2}} \right] \right)$$ $$= \mu^{k} \left(1 - \frac{\theta}{\sqrt{n}} \left[1 - \frac{\theta(1+2\theta)}{\sqrt{n}(1-2\theta)^{2}} - \frac{\theta^{3}(1+\theta)^{2}}{\sqrt{n}(1-\theta)^{3}} - \frac{2^{\frac{3}{2}}\theta^{2}(1+\theta)^{\frac{3}{2}}}{\sqrt{n}(1-\theta)^{2}} \right] \right). \tag{13.126}$$ Since $$1 - \frac{\theta(1+2\theta)}{\sqrt{n}(1-2\theta)^{2}} - \frac{\theta^{3}(1+\theta)^{2}}{\sqrt{n}(1-\theta)^{3}} - \frac{2^{\frac{3}{2}}\theta^{2}(1+\theta)^{\frac{3}{2}}}{\sqrt{n}(1-\theta)^{2}}$$ $$\geq 1 - \frac{\theta(1+2\theta)}{(1-2\theta)^{2}} - \frac{\theta^{3}(1+\theta)^{2}}{(1-\theta)^{3}} - \frac{2^{\frac{3}{2}}\theta^{2}(1+\theta)^{\frac{3}{2}}}{(1-\theta)^{2}} := g(\theta), (13.127)$$ where $g(\theta)$ is a monotonic decreasing function of θ , one can conclude, for $\theta \le 0.19$, $g(\theta) > 0.0976 > 0$. For $\theta = 0.19$, it must have $\theta g(\theta) > 0.0185$ and $$\mu^{k+1} \leq \mu^k \left(1 - \frac{0.0185}{\sqrt{n}}\right).$$ This proves (13.70). # Chapter 14 # **Spacecraft Control Using CMG** Control Moment Gyros (CMGs) are an important type of actuators used in space-craft control because of their well-known torque amplification property [127]. The conventional use of CMG keeps the flywheel spinning at a constant speed, while torques of the CMG are produced by changing the gimbal's rotational speed [107]. A more complicated operational concept is the so-called variable-speed control moment gyros (VSCMG) in which the flywheel's speed of the CMG is allowed to be changed too. This idea was first proposed by Ford in his Ph.D dissertation [68] where he derived a mathematical model for VSCMGs which is now widely used in literature. Because of the extra freedom of VSCMG, it can generate torques on a plane perpendicular to the gimbal axis while the conventional CMG can only generate a torque in a single direction at any instant of time [333]. The existing designs of spacecraft control systems using CMG or VSCMG rely on the calculation of the desired torques and then determines the VSCMG's gimbal speed and flywheel speed. These designs have a fundamental problem because there are *singular points* where the gimbal speed and flywheel speed cannot be found given the desired torques. Extensive literature focuses on this difficulty of implementation in the last few decades, for example, Oh and Vadali [189] proposed singularity-robust steering law which avoids failure but produces an errant torque; Junkins and Kim [108] enhanced the pseudo-inverse technical using singular value decomposition (SVD); Ford and Hall [70] extended SVD analysis to singular direction avoidance; Zhang et al. [340] formulated the singularity avoidance problem as a nonlinear optimization problem. Gui et al. [81] adopted a modified
direct-inverse steering law. There are good survey papers [128, 287] that include extensive references. Another difficulty associated with the control system design using CMG or VSCMG is that the nonlinear dynamical models for these types of actuators are much more complicated than other types of actuators used for spacecraft attitude control systems. Most proposed designs, for example [69, 70, 81, 103, 107, 158, 227, 331, 333], use Lyapunov stability theory for nonlinear systems. There are two shortcomings of this design method: first, there is no systematic way to find the desired Lyapunov function, and second, the design does not consider the system performance but only stability. In this chapter, we propose a different operational concept for VSCMG: the flywheels of the cluster of the VSCMG do not always spin at high speed, they spin at high speed only when they need to. The same is true for the gimbals. This operational strategy makes the origin (the state variables at zero) an equilibrium point of the nonlinear system which can be regarded as an equivalent linear time-varying (LTV) system. Therefore, some mature linear system design methods can be used and system performance can be part of the design by using these linear system design methods. Additional advantages of the proposed operational concept are: (a) energy saving due to normally reduced spin speed of flywheels and gimbals, (b) singularity-free because the control of the spacecraft is always achievable by accelerating or decelerating the flywheels and gimbals, therefore, there is no inverse from desired torques to the speeds of the gimbals and flywheels. It is worthwhile to point out that the nonlinear model can be viewed as a linear time-varying (LTV) system. The design methods for linear time-invariant (LTI) systems may be repeatedly applied to LTV systems. A popular design method for LTV systems is the so-called gain scheduling design method, which has been discussed for several decades, for example, [133, 219, 221, 231]. The basic idea is to fix the time-varying model in a number of "frozen" models and use a linear system design method for each of these "frozen" linear time-invariant systems. When the parameters of the LTV system are not in these "frozen" points, interpolation is used to calculate the feedback gain matrix. Although, gain scheduling design has been proven to be effective for many applications of LTV systems, it has an intrinsic limitation for some time-varying systems that have many independent time-varying variables, which is the case for spacecraft control using VSCMGs. We can observe if a control system model has many independent time-varying parameters, then the computation for the gain scheduling design will be too expensive to be feasible. Therefore, we will consider another popular control system design method, the so-called model predictive control (MPC) [8]. To meet some required stability conditions imposed on the LTV system [220], we propose using the robust pole assignment design [263, 328] for the MPC design and establish the condition of uniformly exponential stability. The content of this chapter is based on [319]. # 14.1 Spacecraft model using variable-speed CMG Assuming that there are N variable-speed CMGs installed in a spacecraft, following the notations of [68], we define a matrix $\mathbf{A}_s = [\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_N]$ such that the columns of \mathbf{A}_s , \mathbf{s}_j ($j = 1, \dots, N$), specify the unit spin axes of the flywheels in the spacecraft body frame. Similarly, we define $\mathbf{A}_g = [\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_N]$ the matrix whose columns are the unit gimbal axes and $\mathbf{A}_t = [\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_N]$ the matrix whose columns are the unit axes of the transverse (torque) directions, both are represented in the spacecraft body frame. Whereas \mathbf{A}_g is a constant matrix, the matrices \mathbf{A}_s and \mathbf{A}_t depend on the gimbal angles. Let $\mathbf{\gamma} = [\gamma_1, \dots, \gamma_N]^T \in [0, 2\pi] \times \dots \times [0, 2\pi] := \Pi$ be the vector of N gimbal angles, and $$[\dot{\gamma}_1, \dots, \dot{\gamma}_N]^{\mathrm{T}} = \dot{\gamma} := \omega_g = [\omega_{g_1}, \dots, \omega_{g_N}]^{\mathrm{T}}$$ $$(14.1)$$ be the vector of N gimbal speed, then the following relations hold [332] (see Figure 14.1). $$\dot{\mathbf{s}}_i = \dot{\gamma}_i \mathbf{t}_i = \omega_{g_i} \mathbf{t}_i, \quad \dot{\mathbf{t}}_i = -\dot{\gamma}_i \mathbf{s}_i = -\omega_{g_i} \mathbf{s}_i, \quad \dot{\mathbf{g}}_i = 0. \tag{14.2}$$ Figure 14.1: Spacecraft body with a single VSCMG. Denote $$\Gamma^c = \operatorname{diag}(\cos(\gamma)), \quad \Gamma^s = \operatorname{diag}(\sin(\gamma)).$$ (14.3) A different but related expression is given in [68] ¹. Let \mathbf{A}_{s_0} and \mathbf{A}_{t_0} be initial spin axes and gimbal axes matrices at $\gamma_0 = \mathbf{0}$, then $$\mathbf{A}_{s}(\gamma) = \mathbf{A}_{s_0} \Gamma^c + \mathbf{A}_{t_0} \Gamma^s, \tag{14.4a}$$ $$\mathbf{A}_{t}(\gamma) = \mathbf{A}_{t_0} \Gamma^c - \mathbf{A}_{s_0} \Gamma^s. \tag{14.4b}$$ ¹There are some typos in the signs in [68] which are corrected in (14.4) and (14.5). This gives $$\dot{\mathbf{A}}_{s} = \mathbf{A}_{t} \operatorname{diag}(\dot{\gamma}) = \mathbf{A}_{t} \operatorname{diag}(\boldsymbol{\omega}_{e}), \tag{14.5a}$$ $$\dot{\mathbf{A}}_t = -\mathbf{A}_s \operatorname{diag}(\dot{\gamma}) = -\mathbf{A}_s \operatorname{diag}(\boldsymbol{\omega}_g),$$ (14.5b) which are identical to the formulas of (14.2). Let J_{s_j} , J_{g_j} , and J_{t_j} be the wheel spin axis inertia, the gimbal axis inertia, and the transverse axis inertia of the *j*-th CMG, let three $N \times N$ matrices be defined as $$\mathbf{J}_s = \operatorname{diag}(J_{s_i}), \quad \mathbf{J}_g = \operatorname{diag}(J_{g_i}), \quad \mathbf{J}_t = \operatorname{diag}(J_{t_i}). \tag{14.6}$$ Let $\omega = [\omega_1, \omega_2, \omega_3]^T$ be the spacecraft body angular rate with respect to the inertial frame, $\beta = [\beta_1, \dots, \beta_N]^T$ be the vector of N flywheel angles, and $$[\dot{\beta}_1, \dots, \dot{\beta}_N]^{\mathrm{T}} = \dot{\beta} := \omega_s = [\omega_{s_1}, \dots, \omega_{s_N}]^{\mathrm{T}}$$ $$(14.7)$$ be the vector of N flywheel speeds. Denote $$\mathbf{h}_s = [J_{s_1} \dot{\beta}_1, \dots, J_{s_N} \dot{\beta}_N]^{\mathrm{T}} = \mathbf{J}_s \boldsymbol{\omega}_s, \tag{14.8}$$ $$\mathbf{h}_{g} = [J_{g_1} \dot{\gamma}_1, \dots, J_{g_N} \dot{\gamma}_N]^{\mathrm{T}} = \mathbf{J}_{g} \boldsymbol{\omega}_{g}, \tag{14.9}$$ and \mathbf{h}_t be the *N*-dimensional vectors representing the components of absolute angular momentum of the VSCMGs about their spin axes, gimbal axes, and transverse axes respectively. Note that the angular momentum generated by the *i*th flywheel represented in the body frame is given by $\mathbf{s}_i J_{s_i} \dot{\beta}_i$ and the angular momentum generated by the *i*th gimbal represented in the body frame is given by $\mathbf{g}_i J_{g_i} \dot{\gamma}_i$, the total angular momentum of the spacecraft with a cluster of VSCMGs represented in the body frame is given as $$\mathbf{h} = \mathbf{J}_{b}\boldsymbol{\omega} + \sum_{i=1}^{N} \mathbf{s}_{i} J_{s_{i}} \dot{\boldsymbol{\beta}}_{i} + \sum_{i=1}^{N} \mathbf{g}_{i} J_{g_{i}} \dot{\boldsymbol{\gamma}}_{i} = \mathbf{J}_{b}\boldsymbol{\omega} + \mathbf{A}_{s} \mathbf{h}_{s} + \mathbf{A}_{g} \mathbf{h}_{g}$$ $$= \mathbf{J}_{b}\boldsymbol{\omega} + \mathbf{A}_{s} \mathbf{J}_{s} \boldsymbol{\omega}_{s} + \mathbf{A}_{g} \mathbf{J}_{g} \boldsymbol{\omega}_{g}. \tag{14.10}$$ Taking derivative of (14.10) and using (14.2) and $\dot{\mathbf{J}} = 0$, noticing that gimbal axes are fixed, we have $$\dot{\mathbf{h}} = \mathbf{J}_{b}\dot{\boldsymbol{\omega}} + \sum_{i=1}^{N} \left(\dot{\mathbf{s}}_{i} J_{s_{i}} \dot{\boldsymbol{\beta}}_{i} + \mathbf{s}_{i} J_{s_{i}} \ddot{\boldsymbol{\beta}}_{i} \right) + \sum_{i=1}^{N} \left(\dot{\mathbf{g}}_{i} J_{g_{i}} \dot{\boldsymbol{\gamma}}_{i} + \mathbf{g}_{i} J_{g_{i}} \dot{\boldsymbol{\gamma}}_{i} \right)$$ $$= \mathbf{J}_{b}\dot{\boldsymbol{\omega}} + \sum_{i=1}^{N} \left(\dot{\boldsymbol{\gamma}}_{i} \mathbf{t}_{i} J_{s_{i}} \dot{\boldsymbol{\beta}}_{i} + \mathbf{s}_{i} J_{s_{i}} \ddot{\boldsymbol{\beta}}_{i} \right) + \sum_{i=1}^{N} \mathbf{g}_{i} J_{g_{i}} \ddot{\boldsymbol{\gamma}}_{i}$$ $$= -\boldsymbol{\omega} \times \mathbf{h} + \mathbf{t}_{e}, \tag{14.11}$$ where \mathbf{t}_e is the external torque. Denote $\Omega_s = \operatorname{diag}(\omega_s)$ and $\Omega_g = \operatorname{diag}(\omega_g)$. This equation can be written as a compact form as follows. $$\mathbf{J}_{b}\dot{\boldsymbol{\omega}} + \mathbf{A}_{t}\mathbf{J}_{s}\Omega_{s}\boldsymbol{\omega}_{g} + \mathbf{A}_{s}\mathbf{J}_{s}\dot{\boldsymbol{\omega}}_{s} + \mathbf{A}_{g}\mathbf{J}_{g}\dot{\boldsymbol{\omega}}_{g}$$ $$= -\boldsymbol{\omega} \times (\mathbf{J}_{b}\boldsymbol{\omega} + \mathbf{A}_{s}\mathbf{J}_{s}\boldsymbol{\omega}_{s} + \mathbf{A}_{g}\mathbf{J}_{g}\boldsymbol{\omega}_{g}) + \mathbf{t}_{e}, \qquad (14.12)$$ Note that the torques generated by wheel acceleration or deceleration in the directions defined by A_s are given by $$\mathbf{t}_s = -\mathbf{J}_s \dot{\boldsymbol{\omega}}_s = [t_{s_1}, \dots, t_{s_N}]^{\mathrm{T}}$$ (14.13) (note that vectors \mathbf{t}_i in \mathbf{A}_t are axes and scalars t_{s_i} in \mathbf{t}_s are torques) and the torques generated by gimbals' acceleration or deceleration in the directions defined by \mathbf{A}_g are given by $$\mathbf{t}_{g} = -\mathbf{J}_{g}\dot{\boldsymbol{\omega}}_{g} = [t_{g_{1}}, \dots, t_{g_{N}}]^{\mathrm{T}}, \tag{14.14}$$ the dynamical equation can be expressed as $$\mathbf{J}_b \dot{\boldsymbol{\omega}} + \mathbf{A}_t \mathbf{J}_s \Omega_s \boldsymbol{\omega}_g + \boldsymbol{\omega} \times (\mathbf{J}_b \boldsymbol{\omega} + \mathbf{A}_s \mathbf{J}_s \boldsymbol{\omega}_s +
\mathbf{A}_g \mathbf{J}_g \boldsymbol{\omega}_g) = \mathbf{A}_s \mathbf{t}_s + \mathbf{A}_g \mathbf{t}_g + \mathbf{t}_e. \quad (14.15)$$ Let $$\bar{\mathbf{q}} = [q_0, q_1, q_2, q_3]^{\mathrm{T}} = [q_0, \mathbf{q}^{\mathrm{T}}]^{\mathrm{T}} = \left[\cos(\frac{\alpha}{2}), \hat{\mathbf{e}}^{\mathrm{T}}\sin(\frac{\alpha}{2})\right]^{\mathrm{T}}$$ (14.16) be the quaternion representing the rotation of the body frame relative to the inertial frame, where $\hat{\mathbf{e}}$ is the unit length rotational axis and α is the rotation angle about $\hat{\mathbf{e}}$. Therefore, in view of (4.9), the reduced kinematics equation becomes $$\begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} f & -q_3 & q_2 \\ q_3 & f & -q_1 \\ -q_2 & q_1 & f \end{bmatrix} \begin{bmatrix} \boldsymbol{\omega}_1 \\ \boldsymbol{\omega}_2 \\ \boldsymbol{\omega}_3 \end{bmatrix}$$ $$= \mathbf{g}(q_1, q_2, q_3, \boldsymbol{\omega}) = \frac{1}{2} \left(\sqrt{1 - q_1^2 - q_2^2 - q_3^2} \mathbf{I}_3 + \mathbf{q}^{\times} \right) \boldsymbol{\omega},$$ where $f = \sqrt{1 - q_1^2 - q_2^2 - q_3^2}$, or simply $$\dot{\mathbf{q}} = \mathbf{g}(\mathbf{q}, \boldsymbol{\omega}). \tag{14.17}$$ The nonlinear time-varying spacecraft control system model can be written as follows: $$\begin{bmatrix} \dot{\omega}_{g} \\ \dot{\omega}_{s} \\ \dot{\omega} \\ \dot{\mathbf{q}} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ -\mathbf{J}_{b}^{-1} \left[\mathbf{A}_{t} \mathbf{J}_{s} \Omega_{s} \omega_{g} + \boldsymbol{\omega} \times (\mathbf{J}_{b} \boldsymbol{\omega} + \mathbf{A}_{s} \mathbf{J}_{s} \omega_{s} + \mathbf{A}_{g} \mathbf{J}_{g} \omega_{g}) \right] \\ \mathbf{g}(\mathbf{q}, \boldsymbol{\omega}) \end{bmatrix} + \begin{bmatrix} -\mathbf{J}_{g}^{-1} \mathbf{t}_{g} \\ -\mathbf{J}_{s}^{-1} \mathbf{t}_{s} \\ \mathbf{J}_{b}^{-1} \left(\mathbf{A}_{s} \mathbf{t}_{s} + \mathbf{A}_{g} \mathbf{t}_{g} + \mathbf{t}_{e} \right) \\ \mathbf{0} \end{bmatrix}$$ $$= \mathbf{F}(\boldsymbol{\omega}, \boldsymbol{\omega}_{\sigma}, \boldsymbol{\omega}_{s}, \mathbf{q}, t) + \mathbf{G}(\mathbf{t}_{s}, \mathbf{t}_{\sigma}, \mathbf{t}_{e}, t), \tag{14.18}$$ or simply $$\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}, \gamma(t)) + \mathbf{G}(\mathbf{u}, \mathbf{t}_e, \gamma(t)), \tag{14.19}$$ where the state variable vector is $\mathbf{x} = [\boldsymbol{\omega}_g^T, \boldsymbol{\omega}_s^T, \boldsymbol{\omega}^T, \mathbf{q}^T]^T$, the control variable vector is $\mathbf{u} = [\mathbf{t}_g^T, \mathbf{t}_s^T]^T$, disturbance torque vector is \mathbf{t}_e , and \mathbf{F} and \mathbf{G} are functions of time t because the parameters of $\boldsymbol{\omega}$, $\boldsymbol{\omega}_s$, $\boldsymbol{\omega}_g$, \mathbf{q} , \mathbf{A}_s and \mathbf{A}_t are functions of time t. The system dimension is n = 2N + 6. The control input dimension is 2N. Clearly, an equilibrium of (14.18) is $\mathbf{x}_e = \mathbf{0} = [\boldsymbol{\omega}^T, \boldsymbol{\omega}_s^T, \boldsymbol{\omega}_e^T, \mathbf{q}^T]^T$. Notice that $$\mathbf{A}_{t}\mathbf{J}_{s}\Omega_{s}\boldsymbol{\omega}_{g} = \frac{1}{2}\left(\mathbf{A}_{t}\mathbf{J}_{s}\Omega_{s}\boldsymbol{\omega}_{g} + \mathbf{A}_{t}\mathbf{J}_{s}\Omega_{g}\boldsymbol{\omega}_{s}\right),\tag{14.20}$$ and $$\boldsymbol{\omega} \times (\mathbf{J}_{b}\boldsymbol{\omega} + \mathbf{A}_{s}\mathbf{J}_{s}\boldsymbol{\omega}_{s} + \mathbf{A}_{g}\mathbf{J}_{g}\boldsymbol{\omega}_{g})$$ $$= (\boldsymbol{\omega} \times \mathbf{J}_{b})\boldsymbol{\omega} + \frac{1}{2}\left[(\boldsymbol{\omega} \times \mathbf{A}_{s}\mathbf{J}_{s})\boldsymbol{\omega}_{s} + (\boldsymbol{\omega} \times \mathbf{A}_{g}\mathbf{J}_{g})\boldsymbol{\omega}_{g} - (\mathbf{A}_{s}\mathbf{J}_{s}\boldsymbol{\omega}_{s} + \mathbf{A}_{g}\mathbf{J}_{g}\boldsymbol{\omega}_{g})^{\times}\boldsymbol{\omega}\right].$$ (14.21) Let $$\mathbf{F}_{31} = -\frac{1}{2} \mathbf{J}_b^{-1} \left[\mathbf{A}_t \mathbf{J}_s \Omega_s + \boldsymbol{\omega} \times \mathbf{A}_g \mathbf{J}_g \right], \tag{14.22}$$ $$\mathbf{F}_{32} = -\frac{1}{2} \mathbf{J}_b^{-1} \left[\mathbf{A}_t \mathbf{J}_s \Omega_g + \boldsymbol{\omega} \times \mathbf{A}_s \mathbf{J}_s \right], \tag{14.23}$$ $$\mathbf{F}_{33} = \mathbf{J}_b^{-1} \left[(\mathbf{J}_b \boldsymbol{\omega})^{\times} + \frac{1}{2} (\mathbf{A}_s \mathbf{J}_s \boldsymbol{\omega}_s + \mathbf{A}_g \mathbf{J}_g \boldsymbol{\omega}_g)^{\times} \right], \tag{14.24}$$ and $$\mathbf{F}_{43} = \frac{1}{2} \left(\sqrt{1 - q_1^2 - q_2^2 - q_3^2} \mathbf{I}_3 + \mathbf{q}^{\times} \right). \tag{14.25}$$ Then, Eq. (14.18) can be written as the following linear time-varying model $$\begin{bmatrix} \dot{\omega}_{g} \\ \dot{\omega}_{s} \\ \dot{\omega} \\ \dot{\mathbf{q}} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{F}_{31} & \mathbf{F}_{32} & \mathbf{F}_{33} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{F}_{43} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \omega_{g} \\ \omega_{s} \\ \omega \\ \mathbf{q} \end{bmatrix} + \begin{bmatrix} -\mathbf{J}_{g}^{-1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{J}_{s}^{-1} \\ \mathbf{J}_{b}^{-1} \mathbf{A}_{g} & \mathbf{J}_{b}^{-1} \mathbf{A}_{s} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{t}_{g} \\ \mathbf{t}_{s} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{J}_{b}^{-1} \\ \mathbf{0} \end{bmatrix} \mathbf{t}_{e}$$ $$= \mathbf{A}(t)\mathbf{x} + \mathbf{B}(t)\mathbf{u} + \mathbf{C}\mathbf{t}_{e}, \tag{14.26}$$ where **C** is a time-invariant matrix. The linear system is time-varying because ω , ω_s , ω_g , **q**, **A**_s and **A**_t in **A** and **B** are all functions of t. Given \mathbf{A}_{s_0} , \mathbf{A}_{t_0} , and $\boldsymbol{\omega}_g$, then, \mathbf{A}_s and \mathbf{A}_t can be calculated by the integration of (14.5). But using (14.3) and (14.4) is a better method because it ensures that the columns of \mathbf{A}_s and \mathbf{A}_t are unit vectors as required. Notice that the *i*th column of \mathbf{A}_s and the *i*th column of \mathbf{A}_t , $i = 1, \dots, n$, must be perpendicular to each other, an even better method to update \mathbf{A}_t is to use the cross product $$\mathbf{t}_i = \mathbf{g}_i \times \mathbf{s}_i, \quad i = 1, \dots, n, \tag{14.27}$$ to prevent \mathbf{t}_i and \mathbf{s}_i from losing perpendicularity due to the numerical error accumulation. In simulation, the integration of (14.1) can be used to obtain γ which is needed in the computation of (14.3), but in engineering practice, the encoder measurement should be used to get γ . #### 14.2 Spacecraft attitude control using VSCMG Assuming that the closed-loop linear time-varying system is given by $$\dot{\mathbf{x}} = \bar{\mathbf{A}}(t)\mathbf{x}(t), \quad \mathbf{x}(t_0) = \mathbf{x}_0. \tag{14.28}$$ It is well-known that even if all the eigenvalues of $\bar{\mathbf{A}}(t)$, denoted by $\mathcal{R}_e[\lambda(t)]$, are in the left half complex plane for all t, the system may not be stable [220, pages 113–114]. But the following theorem (cf. [220, pages 117–119]) provides a nice stability criterion for the closed-loop system (14.28). #### Theorem 14.1 Suppose for the linear time-varying system (14.28) with $\bar{\mathbf{A}}(t)$ continuously differentiable there exist finite positive constants α , μ such that, for all t, $\|\bar{\mathbf{A}}(t)\| \leq \alpha$ and every point-wise eigenvalue of $\bar{\mathbf{A}}(t)$ satisfies $\mathcal{R}_e[\lambda(t)] \leq -\mu$. Then there exists a positive constant β such that if the time derivative of $\bar{\mathbf{A}}(t)$ satisfies $\|\bar{\mathbf{A}}(t)\| \leq \beta$ for all t, the state equation is uniformly exponentially stable. This theorem is the theoretical base for the linear time-varying control system design. We need at least that $\mathcal{R}_e[\lambda(t)] \leq -\mu$ holds for $t \geq 0$, which is the design criterion in this section. #### 14.2.1 Gain scheduling control Gain scheduling control design is fully discussed in [219], and it seems to apply to this LTV system. The main idea of gain scheduling is: (a) select a set of fixed parameters' values, which represent the range of the plant dynamics, each member in the fixed parameter set is called a "frozen model"; for each frozen model the gain is designed by a linear time-invariant design method, and all gains are installed in the computer on-board; (b) when spacecraft flies on orbit, in between operating points, the gain is interpolated using the designs for the fixed parameters' values that cover the operating points. As an example, for $i=1,\ldots,N$, let $\gamma_i \in \{2\pi/p_\gamma, 4\pi/p_\gamma, \cdots, 2\pi\}$ be a set of p_γ fixed points equally spread in $[0,2\pi]$. Then, for N VSCMGs, there are p_γ^N possible fixed parameters' combinations. For example, if N=4 and $p_\gamma=8$, we can represent the grid composed of these fixed points in a matrix form as follows: $$\begin{bmatrix} \pi/4 & \pi/2 & 3\pi/4 & \pi & 5\pi/4 & 3\pi/2 & 7\pi/4 & 2\pi \\ \pi/4 & \pi/2 & 3\pi/4 & \pi & 5\pi/4 & 3\pi/2 & 7\pi/4 & 2\pi \\ \pi/4 & \pi/2 & 3\pi/4 & \pi & 5\pi/4 & 3\pi/2 & 7\pi/4 & 2\pi \\ \pi/4 & \pi/2 & 3\pi/4 & \pi & 5\pi/4 & 3\pi/2 & 7\pi/4 & 2\pi \\ \pi/4 & \pi/2 & 3\pi/4 & \pi & 5\pi/4 & 3\pi/2 & 7\pi/4 & 2\pi \\ \end{bmatrix},$$ (14.29) and each fixed γ is a vector composed of γ_i (i = 1, 2, 3, 4) which can be any element of ith row. If γ is not one of those fixed points, we have $\gamma_i \in [\kappa(i), \kappa(i) + 1]$ for all $i \in [1, \dots, N]$. Assume that γ_i is in the interior of $(\kappa(i), \kappa(i) + 1)$ for all $i \in [1, \dots, N]$. Then, γ meets the following conditions: $$\gamma = \begin{bmatrix} \gamma_1 \in (\kappa(1), \kappa(1) + 1) \\ \vdots \\ \gamma_N \in (\kappa(N), \kappa(N) + 1) \end{bmatrix}.$$
(14.30) Using the example of (14.29), if $\gamma = \left[\frac{5\pi}{8}, \frac{3\pi}{8}, \frac{7\pi}{16}, \frac{15\pi}{8}\right]^T$, then $$\gamma \in \left[\left(\frac{\pi}{2}, \frac{3\pi}{4} \right), \left(\frac{\pi}{4}, \frac{\pi}{2} \right), \left(\frac{\pi}{4}, \frac{\pi}{2} \right), \left(\frac{7\pi}{4}, 2\pi \right) \right]^{\mathrm{T}}.$$ To use gain scheduling control, we need also to consider fixed points for ω , ω_s , ω_g , and \mathbf{q} in their possible operational ranges. Let p_w , p_{w_s} , p_{w_g} , and p_q be the number of the fixed points for ω , ω_s , ω_g , and \mathbf{q} . The total vertices for the entire polytope (including a grid of all possible time-varying parameters) will be $p_\gamma^N p_{w_s}^3 p_{w_s}^N p_{w_s}^N p_q^N$. For each of these $(p_{\gamma}^N p_w^3 p_{w_s}^N p_{w_s}^N p_q^3)$ fixed models, we need conduct a control design to calculate the feedback gain matrix for each "frozen" model. If the system (14.26) at time t happens to have all parameters equal to some fixed point, we can use a "frozen" feedback gain to control the system (14.26). Otherwise, we need to construct a gain matrix based on these "frozen" gain matrices. Assuming that each parameter has some moderate number of fixed points, say 8, and the control system has N=4 gimbals, the total number of the fixed models will be 8^{18} , each needs to compute a feedback matrix, an impossibly computational task. #### 14.2.2 Model predictive control Unlike the gain scheduling control design in which most computation is done off-line, model predictive control computes the feedback gain matrix on-line for the LTV system (14.26) in which **A** and **B** matrices are updated in every sampling period. It is straightforward to verify that for any given γ , if $\mathbf{x} \neq \mathbf{x}_e$, the frozen linear system (14.26) is controllable. In theory, one can use either robust pole assignment [328, 263], or LQR design [137], or \mathbf{H}_{∞} design [343] for the on-line design, but \mathbf{H}_{∞} design costs significant more computational time and should not be considered for this on-line design problem. Since LTV system design should meet the condition of $\mathcal{R}_e[\lambda(t)] \leq -\mu$ required in Theorem 14.1, robust pole assignment design is clearly a better choice than the LQR design for this purpose. Another attractive feature of the robust pole assignment design is that the perturbation of the closed loop eigenvalues between sampling period are expected to be small. It is worthwhile to note that a robust pole assignment design [263] minimizes an upper bound of \mathbf{H}_{∞} norm which means that the design is robust to the modeling error and reduces the impact of disturbance torques on the system output [305, 314]. Additional merits about this method, such as computational speed which is important for the on-line design, is discussed in [198]. Therefore, we use the method of [263] in the proposed design. The proposed design algorithm is given as follows: #### Algorithm 14.1 Data: \mathbf{J}_b , \mathbf{J}_s , \mathbf{J}_g , and \mathbf{A}_g . Initial condition: $\mathbf{x} = \mathbf{x}_0$, $\gamma = \gamma_0$, \mathbf{A}_{s_0} , and \mathbf{A}_{t_0} . Step 1: Update **A** and **B** based on the latest γ and **x**. Step 2: Calculate the gain \mathbf{K} using robust pole assignment algorithm robpole (cf. [263]). Step 3: Apply feedback $\mathbf{u} = \mathbf{K}\mathbf{x}$ to (14.18) or (14.26). Step 4: Update γ and $\mathbf{x} = [\boldsymbol{\omega}^T, \boldsymbol{\omega}_s^T, \boldsymbol{\omega}_\varrho^T, \mathbf{q}^T]^T$. Go back to Step 1. #### 14.2.3 Robust pole assignment Although robpole developed in [263] is the most efficient robust pole assignment algorithm [198], the efficiency of robpole in on-line application should be further improved by exploring the system structure of \mathbf{A} and the fact that \mathbf{J}_g , \mathbf{J}_b , and \mathbf{A}_g are constant matrices in (14.26). Let $\Lambda = \operatorname{diag}(\lambda_i)$ and $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]$ with $\|\mathbf{x}_i\| = 1$ such that $$(\mathbf{A} + \mathbf{B}\mathbf{K})\mathbf{X} = \mathbf{X}\Lambda. \tag{14.31}$$ The algorithm of robpole can be summarized as follows (for details, see Appendix C): #### Algorithm 14.2 robpole *Data:* **A**, **B**, and diagonal matrix $\Lambda = \text{diag}(\lambda_i)$ with λ_i being the desired closed-loop poles. Step 1: QR decomposition for **B** yields orthogonal $\mathbf{Q} = [\mathbf{Q}_0 \ \mathbf{Q}_1]$ and triangular **R** such that $$\mathbf{B} = \begin{bmatrix} \mathbf{Q}_0 & \mathbf{Q}_1 \end{bmatrix} \begin{bmatrix} \mathbf{R} \\ \mathbf{0} \end{bmatrix}. \tag{14.32}$$ Step 2: QR decomposition for $(\mathbf{A}^T - \lambda_i \mathbf{I})\mathbf{Q}_1$ yields orthogonal $\mathbf{V} = [\mathbf{V}_{0i} \ \mathbf{V}_{1i}]$ and triangular \mathbf{Y} such that $$(\mathbf{A}^{\mathrm{T}} - \lambda_{i} \mathbf{I}) \mathbf{Q}_{1} = [\mathbf{V}_{0i} \quad \mathbf{V}_{1i}] \begin{bmatrix} \mathbf{Y} \\ \mathbf{0} \end{bmatrix}, \quad i = 1, \dots, n.$$ (14.33) Step 3: Cyclically select one real or a pair of (real or complex conjugate) unit length eigenvectors such that $\mathbf{x}_i \in \mathcal{S}_i = span(\mathbf{V}_{1i})$ and the robustness measure $det(\mathbf{X})$ is maximized. Step 4: The feedback matrix is given by $$\mathbf{K} = \mathbf{R}^{-1} \mathbf{Q}_0^{\mathrm{T}} (\mathbf{X} \Lambda \mathbf{X}^{-1} - \mathbf{A}). \tag{14.34}$$ Step 3 in Algorithm 14.2 looks very complex but it turns out, by some careful investigation, that this step mainly involves two rank-one QR decomposition updates and a rank-two singular value decomposition (SVD). The rank-two SVD admits an analytical solution [263]. Since **A** in (14.26) has a lot of zeros, the calculation in parentheses in Steps 2 and 4 can save substantial flops, especially in Step 2 which is done for i = 1, ..., n. Another major saving can be achieved in Step 1 by using the fact that the first three columns of **B** are constant (not time-varying). Assume that $$\mathbf{B} = \begin{bmatrix} -\mathbf{J}_g^{-1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{J}_s^{-1} \\ \mathbf{J}_b^{-1} \mathbf{A}_g & \mathbf{J}_b^{-1} \mathbf{A}_s \\ \mathbf{0} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_0 & \mathbf{Q}_1 \end{bmatrix} \begin{bmatrix} \mathbf{R} \\ \mathbf{0} \end{bmatrix}, \tag{14.35}$$ or equivalently $$\mathbf{Q}^{\mathrm{T}}\mathbf{B} = \begin{bmatrix} \mathbf{Q}_{0}^{\mathrm{T}} \\ \mathbf{Q}_{1}^{\mathrm{T}} \end{bmatrix} \mathbf{B} = [\mathbf{R}_{1} \ \mathbf{R}_{2}]. \tag{14.36}$$ As time evolves and \mathbf{A}_s changes, $\mathbf{R}_2 = \mathbf{Q}^T \begin{bmatrix} \mathbf{0} & -\mathbf{J}_s^{-T} & \mathbf{A}_s^T \mathbf{J}_b^{-T} & \mathbf{0} \end{bmatrix}^T$ changes but \mathbf{R}_1 is constant and triangular. Therefore, the QR decomposition needs only to zero a few non-zeros in \mathbf{R}_2 to make \mathbf{R} triangular. This reduces significant amount of flops in every sampling time. #### 14.3 Simulation test The proposed design method is simulated using the model and data in [107, 332, 331]. We assume that the four VSCMGs are mounted in pyramid configuration² as shown in Figures 14.2 and 14.3. The angle of each pyramid side to its base is $\theta = 54.75$ degree; the inertia matrix of the spacecraft is given by [331] as $$\mathbf{J}_b = \begin{bmatrix} 15053 & 3000 & -1000 \\ 3000 & 6510 & 2000 \\ -1000 & 2000 & 11122 \end{bmatrix} \quad \text{kg} \cdot m^2. \tag{14.37}$$ Figure 14.2: VSCMG system with pyramid configuration concept. The spin axis inertial matrix is given by $\mathbf{J}_s = \operatorname{diag}(0.7, 0.7, 0.7, 0.7) \text{ kg} \cdot m^2$ and the gimbal axis inertia matrix is given by $\mathbf{J}_g = \operatorname{diag}(0.1, 0.1, 0.1, 0.1) \text{ kg} \cdot m^2$. The initial wheel speeds are 2π radians per second for all wheels. The ini- ²Pyramid configuration was extensively studied because four CMGs are the minimum having one degree of redundancy [127]. But detailed study [127] showed that CMG control using Pyramid configuration and inverse from torque to flywheel speed cannot avoid singularity. Figure 14.3: VSCMG system with pyramid configuration. tial gimbal speeds are all zeros. The initial spacecraft body rate vector is randomly generated by MATLAB® using $rand(3,1)*10^{-3}$ and the initial spacecraft attitude vector is a reduced quaternion randomly generated by Matlab using $rand(3,1)*10^{-1}$. The gimbal axis matrix is fixed and given by [332] (cf. Figures 14.2 and 14.3.) $$\mathbf{A}_{g} = \begin{bmatrix} \sin(\theta) & 0 & -\sin(\theta) & 0\\ 0 & \sin(\theta) & 0 & -\sin(\theta)\\ \cos(\theta) & \cos(\theta) & \cos(\theta) & \cos(\theta) \end{bmatrix}$$ (14.38) The initial flywheel axis matrix can be obtained using Figures 14.2 and 14.3 and is given by $$\mathbf{A}_{s} = \begin{bmatrix} 0 & -1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$ (14.39) The initial transverse matrix \mathbf{A}_t can be obtained by the formula of (14.27). The desired or designed closed-loop poles are selected as $$\{-3.0, -3.1, -2.9, -3.2, -2.1, -2.2, -2.0, -1.9, -3.4, -3.5, -3.3, -2.7, -2.6, -2.8\}.$$ The simulation test results for (14.26) using control Algorithm 3.1 are given in Figures 14.4–14.7. **Figure 14.4:** Gimbal wheel ω_g response. **Figure 14.5:** Spin wheel ω_s response. **Figure 14.6:** Spacecraft body rate ω response. **Figure 14.7:** Attitude q_0 , q_1 , q_2 , and q_3 response. **Remark 14.1** The simulation shows that the computational time for robust pole assignment design is very efficient. But if this algorithm does not meet the on-line computational requirement, a faster but not a robust pole assignment algorithm proposed by Misrikhanov and Ryabchenko is available [174], which is discussed in
Appendix C. ## Chapter 15 # **Spacecraft Rendezvous** and **Docking** #### 15.1 Introduction Spacecraft rendezvous is an important operation in many space missions. There is extensive research in this field and hundreds of successful rendezvous missions, see, for example, the survey paper [152] and references therein. The entire rendezvous process can be divided into several phases, including phasing, closerange rendezvous, final approaching, and docking. In the early phase, the chaser flies to the target with the aid from the ground station and orbital translation control is the main concern. For this purpose, the well-known Hill [94] or Clohessy and Wiltshire [45] equations are adequate for the control system design if the orbit is circular. However, in the final approaching and docking phase, coupled orbital and attitude control may be required. Moreover, it is desired to consider the case that the orbit of the target spacecraft is not circular. To achieve this requirement, more complex models introduced in [123, 196, 279] should be considered. Although these models are developed for more general purposes, they can be easily tailored for the use of spacecraft rendezvous and docking control. The research of spacecraft rendezvous has attracted renewed interest in recent years as a result of new developments in control theory and increased space missions involving rendezvous and soft docking. Various design methods have been considered for this control system design problem. For example, reachability was considered in [334]; an adaptive output feedback control was proposed for this purpose in [245]; a multi-objective robust H_{∞} control method was investigated in [73]; a Lyapunov differential equation approach was studied for elliptical orbital rendezvous with constrained controls [341]; a gain scheduled control of linear systems was applied to spacecraft rendezvous problem subject to actuator saturation [342]; and various control design methods were considered for 6 degree of freedom (DOF) spacecraft proximity operations [124, 140, 159, 169, 253, 255, 257, 258, 299, 339]. NASA is working on some concept validation flight tests [218]. All these methods have their merits in solving the challenging problem under various conditions, but none of them addressed a fundamental issue, i.e., to achieve soft docking. In this chapter, a recently proposed model in [123] is carefully examined. The measurable variables and controllable inputs in the mission of the final approaching and docking phase are then determined. Some reasonable assumptions that normally hold via engineering design are made clear. Because of the merits discussed in [307, 314], a reduced quaternion concept proposed in [307] is adopted, which slightly simplifies the model of [123]. To make the general model useful for the control system design, a thruster configuration is considered and modeled in the control system model. This control system model can be viewed either as a nonlinear model or a linear time-varying (LTV) model. Using the linear time-varying model is preferred because a linear system is easier to handle than a nonlinear system and the corresponding design methods are capable to consider the system performance which is very important as *soft docking does not allow oscillation crossing the horizontal line for the relative position and relative attitude (between the target and the chaser) in the spacecraft rendezvous and docking phase*. Two popular methods that deal with time-varying control system design with the consideration of system performance. The first one is gain scheduling [221] and the second one is model predictive control (MPC) [8]. A simple analysis in the previous chapter shows that the former is the most efficient when all time-varying parameters explicitly depend on time, and the latter is more appropriate when many parameters depend implicitly on time. The rendezvous and docking control falls into the second category. Therefore, we propose a MPCbased method to design the rendezvous and docking control. Although several LTI design methods, such as LQR, \mathbf{H}_{∞} , and robust pole assignment, take the performance into the design consideration and can be used in the MPC-based design, only robust pole assignment method can directly take system oscillation into the design consideration because oscillation is directly related to the closed-loop pole positions [56]. In addition, robust pole assignment guarantees that the closed-loop poles are not sensitive to the parameter changes in the system [198] which is important given the system is time-varying. Moreover, robust pole assignment design minimizes an upper bound of \mathbf{H}_{∞} norm which means that the design is robust to the modeling error and reduces the impact of disturbance forces on the system output (see Chapter 9 and [314]). Among many robust pole assignment algorithms, we suggest a globally convergent algorithm [263] because of its fast on-line computation and other merits [198]. We use two design examples and simulations to show the efficiency and effectiveness of the proposed method. This Chapter is mainly based on [321]. Section 2 summarizes the complete rendezvous model and its implication for rendezvous and docking control. Section 3 discusses the MPC-based method for spacecraft control using robust pole assignment. Section 4 provides some design examples and simulation results. #### 15.2 Spacecraft model for rendezvous In this section, we first present the model developed by Kristiansen et al. in [123]. We then discuss the assumptions derived from the application of final approaching and docking phase in the rendezvous process and present a simplified version to be used in this chapter. For the sake of simplicity, we use the scalar notation a for the magnitude of $\|\mathbf{a}\|$. We make the following assumption throughout the chapter. **Assumption 1** Chaser and target can exchange position, attitude and rotational rate information in real time. This assumption can be achieved by engineering design. But this assumption is not essential because extensive research for relative pose determination techniques has been performed and many of these techniques are expected to be used in the future missions (see a survey paper [191]). #### 15.2.1 The model for translation dynamics As shown in Figure 15.1, the inertial frame is defined by standard earth-centered inertial (ECI) frame \mathcal{F}_i with \mathbf{i}_x , \mathbf{i}_y , and \mathbf{i}_z being the coordinate axes. Let \mathbf{r}_t be the vector from the Earth center to the center of the mass of the target. Let the angular momentum vector of the target orbit be denoted by $\mathbf{h} = \mathbf{r}_t \times \dot{\mathbf{r}}_t$. The target orbital frame \mathcal{F}_{to} is the spacecraft RSW frame discussed in Chapter 3 with the origin at center of the mass of the target. The coordinate vectors of the RSW frame are $$\mathbf{e}_r = \mathbf{r}_t / r_t, \tag{15.1a}$$ $$\mathbf{e}_{w} = \mathbf{h}/h. \tag{15.1b}$$ $$\mathbf{e}_{s} = \mathbf{e}_{w} \times \mathbf{e}_{r}.\tag{15.1c}$$ Several other vectors are defined in RSW frame \mathcal{F}_{to} : \mathbf{e}_v is the vector in the spacecraft velocity direction. \mathbf{e}_n is defined to be orthogonal to \mathbf{e}_v and \mathbf{e}_w as $\mathbf{e}_n = \mathbf{e}_v \times \mathbf{e}_w$. If the spacecraft *orbit is circular*, then $\mathbf{e}_v = \mathbf{e}_s$ and $\mathbf{e}_n = \mathbf{e}_r$. The transformation from ECI frame to the RSW frame (the target orbit frame) is given in (3.16). The body frames of the target and chaser, \mathcal{F}_{tb} and \mathcal{F}_{cb} , have their origins at their centers of mass and their coordinate vectors are their principal axes of the inertia. Figure 15.1: Spacecraft coordinate frame. The relative position vector between target and chaser is defined by $$\mathbf{p} = \mathbf{r}_c - \mathbf{r}_t = x\mathbf{e}_r + y\mathbf{e}_s + z\mathbf{e}_w. \tag{15.2}$$ **p** is available in real time if GPS is installed in both spacecraft and Assumption 1 holds. Spacecraft acceleration can be written as $$\mathbf{a} = a_r \mathbf{e}_r + a_s \mathbf{e}_s + a_w \mathbf{e}_w = a_n \mathbf{e}_n + a_v \mathbf{e}_v + a_w \mathbf{e}_w. \tag{15.3}$$ The spacecraft velocity vector can be derived according to Figure 15.2 as follows. Let v_r and v_s be the velocity components in \mathbf{e}_r and \mathbf{e}_s . Than, $v_r = \dot{r}_t$, and $v_s = r_t \dot{\theta}$, where θ is the *true anomaly*. We will use equations (2.51), (2.14), and (2.29) which are listed below for easy reference: $$r_t = \frac{p}{1 + e\cos(\theta)} = \frac{a(1 - e^2)}{1 + e\cos(\theta)},$$ (15.4) where e is the eccentricity of the spacecraft orbit, a is the semi-major axis of the orbit, and p is semi-latus rectum, $$h = r_t^2 \frac{d\theta}{dt},\tag{15.5}$$ and $$r_t = \frac{h^2/\mu}{1 + e\cos(\theta)},\tag{15.6}$$ Figure 15.2: Spacecraft coordinate in orbital plane. where μ is the geocentric gravitational constant of the Earth. From aforementioned equations, the following relations follow: $$v_{r} = \dot{r}_{t} = \frac{a(1 - e^{2})e\sin(\theta)\dot{\theta}}{(1 + e\cos(\theta))^{2}}$$ $$= \frac{a(1 - e^{2})eh\sin(\theta)}{r_{t}^{2}(1 + e\cos(\theta))^{2}}$$ $$= \frac{eh\sin(\theta)}{r_{t}(1 + e\cos(\theta))}$$ $$= \frac{eh\sin(\theta)}{h^{2}/\mu}$$ $$= \frac{\mu}{h}e\sin(\theta). \tag{15.7}$$ Using (2.30) $p = \frac{h^2}{\mu}$ yields $$v_s = r_t \dot{\theta} = r_t h / r_t^2 = h / r_t = \frac{h^2 \mu}{h r_t \mu} = \frac{p \mu}{h r_t}.$$ (15.8) Combining (15.7) and (15.8) gives $$\mathbf{v} = \dot{\mathbf{r}}_t = \frac{\mu}{h} \left(e \sin(\theta) \mathbf{e}_r + \frac{p}{r_t} \mathbf{e}_s \right). \tag{15.9}$$ Since \mathbf{e}_{v} is pointing to the velocity vector, $$\mathbf{e}_{v} = \frac{\mathbf{v}}{v} = \frac{h}{pv} \left(e \sin(\theta) \mathbf{e}_{r} + \frac{p}{r_{t}} \mathbf{e}_{s} \right).
\tag{15.10}$$ Since \mathbf{e}_n is perpendicular to \mathbf{e}_v and \mathbf{e}_w (unit length in the direction of \mathbf{h}), $$\mathbf{e}_n = \mathbf{e}_v \times \mathbf{e}_w = \frac{h}{pv} \left(\frac{p}{r_t} \mathbf{e}_r - e \sin(\theta) \mathbf{e}_s \right). \tag{15.11}$$ The coordinate transformation between the orbit plane acceleration vector components can be found from above equations as $$\begin{bmatrix} a_r \\ a_s \end{bmatrix} = \frac{h}{pv} \begin{bmatrix} \frac{p}{r_r} & e\sin(\theta) \\ -e\sin(\theta) & \frac{p}{r_r} \end{bmatrix} \begin{bmatrix} a_n \\ a_v \end{bmatrix}$$ (15.12) so that $$\mathbf{C}_{a}^{l} = \frac{h}{pv} \begin{bmatrix} \frac{p}{r_{t}} & e\sin(\theta) & 0\\ -e\sin(\theta) & \frac{p}{r_{t}} & 0\\ 0 & 0 & \frac{pv}{h} \end{bmatrix}$$ (15.13) Note that \mathbf{C}_a^l is not in general a proper rotation matrix since $\det(\mathbf{C}_a^l) = 1 + e^2 + 2e\cos(\theta)$. When e = 0, \mathbf{C}_a^l is a rotational matrix. For the two-body problem, using equation (2.2) $\mathbf{f} = \frac{Gm_1m_2\mathbf{r}}{r^3}$ (m_1 is the mass of the Earth and m_2 is the mass of the spacecraft) and $\mathbf{a} = \frac{d\mathbf{r}^2}{dt^2}$, the fundamental differential equation can be found as $$\frac{d\mathbf{r}^2}{dt^2} + \frac{\mu}{r^3}\mathbf{r} = 0,\tag{15.14}$$ where $\mu = G(m_1 + m_2) \approx Gm_1$, $G = 6.669 * 10^{-11} m^3/kg - s^2$ is the universal constant of gravitation. This equation can be generalized to include force terms due to aerodynamic disturbances, gravitational forces from other bodies, solar radiation, magnetic fields and so on. In addition, it can be augmented to include control input vectors from on-board actuators. Accordingly, (15.14) should be expressed for the target and chaser spacecraft as $$\frac{d\mathbf{r}_t^2}{dt^2} = -\frac{\mu}{r_t^3}\mathbf{r}_t + \frac{\mathbf{f}_{dt}}{m_t} + \frac{\mathbf{f}_{at}}{m_t},\tag{15.15}$$ $$\frac{d\mathbf{r}_c^2}{dt^2} = -\frac{\mu}{r_c^3}\mathbf{r}_c + \frac{\mathbf{f}_{dc}}{m_c} + \frac{\mathbf{f}_{ac}}{m_c},\tag{15.16}$$ where \mathbf{f}_{dt} and \mathbf{f}_{dc} are the disturbance actions due to external effects; \mathbf{f}_{at} and \mathbf{f}_{ac} are the actuator forces of the target and chaser spacecraft, respectively. In addition, spacecraft masses are assumed to be small relative to the mass of the Earth. The second order derivative of the relative position vector is given by $$\ddot{\mathbf{p}} = \ddot{\mathbf{r}}_c - \ddot{\mathbf{r}}_t = -\frac{\mu}{r_c^3} \mathbf{r}_c + \frac{\mathbf{f}_{dc}}{m_c} + \frac{\mathbf{f}_{ac}}{m_c} + \frac{\mu}{r_t^3} \mathbf{r}_t - \frac{\mathbf{f}_{dt}}{m_t} - \frac{\mathbf{f}_{at}}{m_t}.$$ (15.17) Simple manipulating on the formula gives $$m_c \ddot{\mathbf{p}} = -m_c \mu \left(\frac{\mathbf{r}_t + \mathbf{p}}{(r_t + p)^3} - \frac{\mathbf{r}_t}{r_t^3} \right) + \mathbf{f}_{ac} + \mathbf{f}_{dc} - \frac{m_c}{m_t} \left(\mathbf{f}_{at} + \mathbf{f}_{dt} \right). \tag{15.18}$$ In view of (15.2), the dynamics of the chaser spacecraft relative to the target spacecraft, referenced in the target orbit frame \mathcal{F}_{to} , can be expressed as $$\mathbf{r}_c = \mathbf{r}_t + \mathbf{p} = (r_t + x)\mathbf{e}_r + y\mathbf{e}_s + z\mathbf{e}_w. \tag{15.19}$$ Taking derivative on this equation twice with respect to time yields $$\ddot{\mathbf{r}}_{c} = (\ddot{r}_{t} + \ddot{x})\mathbf{e}_{r} + 2(\dot{r}_{t} + \dot{x})\dot{\mathbf{e}}_{r} + (r_{t} + x)\ddot{\mathbf{e}}_{r} + \ddot{y}\mathbf{e}_{s} + 2\dot{y}\dot{\mathbf{e}}_{s} + y\ddot{\mathbf{e}}_{s} + \ddot{z}\mathbf{e}_{w} + 2\dot{z}\dot{\mathbf{e}}_{w} + z\ddot{\mathbf{e}}_{w}.$$ (15.20) By using the true anomaly θ of the target spacecraft, the following relationships hold. $$\dot{\mathbf{e}}_r = \dot{\theta}\mathbf{e}_s, \ \dot{\mathbf{e}}_s = -\dot{\theta}\mathbf{e}_r, \ \ddot{\mathbf{e}}_r = \ddot{\theta}\mathbf{e}_s - \dot{\theta}^2\mathbf{e}_r, \ \ddot{\mathbf{e}}_s = -\ddot{\theta}\mathbf{e}_r - \dot{\theta}^2\mathbf{e}_s. \tag{15.21}$$ Substituting of (15.21) into (15.20), while recognizing that no out-of-plane motion exists in the ideal case, and hence $\dot{\mathbf{e}}_w = \ddot{\mathbf{e}}_w = 0$, yields $$\mathbf{\ddot{r}}_{c} = \left[\ddot{r}_{t} + \ddot{x} - 2\dot{y}\dot{\theta} - \dot{\theta}^{2}(r_{t} + x) - y\ddot{\theta} \right] \mathbf{e}_{r} + \left[\ddot{y} + 2\dot{\theta}(\dot{r}_{t} + \dot{x}) + \ddot{\theta}(r_{t} + x) - y\dot{\theta}^{2} \right] \mathbf{e}_{s} + \ddot{z}\mathbf{e}_{w}.$$ (15.22) Moreover, the position of the target spacecraft can be expressed as $\mathbf{r}_t = r_t \mathbf{e}_r$, and taking derivative for this expression twice with respect to time and inserting (15.21), result in $$\ddot{\mathbf{r}}_t = \ddot{r}_t \dot{\mathbf{e}}_r + 2\dot{r}_t \dot{\mathbf{e}}_r + r_t \ddot{\mathbf{e}}_r = (\ddot{r}_t - r_t \dot{\theta}^2) \mathbf{e}_r + (2\dot{r}_t \dot{\theta} + r_t \ddot{\theta}) \mathbf{e}_s. \tag{15.23}$$ Subtracting (15.23) and (15.22) into (15.17) results in the formulation of the position vector acceleration represented in the \mathcal{F}_{to} frame: $$\ddot{\mathbf{p}} = \ddot{\mathbf{r}}_c - \ddot{\mathbf{r}}_t = (\ddot{x} - 2\dot{y}\dot{\theta} - \dot{\theta}^2x - \ddot{\theta}y)\mathbf{e}_r + (\ddot{y} + 2\dot{\theta}\dot{x} + \ddot{\theta}x - \dot{\theta}^2y)\mathbf{e}_s + \ddot{z}\mathbf{e}_w. \quad (15.24)$$ Substituting (15.24), (15.19), and (15.1) into (15.18) gives $$m_{c}\ddot{\mathbf{p}} = m_{c}\left(\ddot{x} - 2\dot{y}\dot{\theta} - \dot{\theta}^{2}x - \ddot{\theta}y\right)\mathbf{e}_{r} + \left(\ddot{y} + 2\dot{\theta}\dot{x} + \ddot{\theta}x - \dot{\theta}^{2}y\right)\mathbf{e}_{s} + \ddot{z}\mathbf{e}_{w}\right)$$ $$= -m_{c}\mu\left(\frac{\mathbf{r}_{c}}{r_{c}^{3}} - \frac{\mathbf{r}_{t}}{r_{t}^{3}}\right) + \mathbf{f}_{a} + \mathbf{f}_{d}$$ $$= -m_{c}\mu\left(\frac{(r_{t} + x)}{r_{c}^{3}}\mathbf{e}_{r} + \frac{y}{r_{c}^{3}}\mathbf{e}_{s} + \frac{z}{r_{c}^{3}}\mathbf{e}_{w} - \frac{1}{r_{t}^{2}}\mathbf{e}_{r}\right) + \mathbf{f}_{a} + \mathbf{f}_{d}, \qquad (15.25)$$ where $\mathbf{f}_a = \mathbf{f}_{ac}$ and $\mathbf{f}_d = \mathbf{f}_{dc}$ and forces on target spacecraft is omitted. Denoting $$\mathbf{d} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \dot{\mathbf{d}} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix}, \quad \ddot{\mathbf{d}} = \begin{bmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{bmatrix},$$ as in [302], we can rewrite the nonlinear model (15.25) of spacecraft translation dynamics as follows: $$m_c \ddot{\mathbf{d}} + \mathbf{C}_t(\dot{\boldsymbol{\theta}}) \dot{\mathbf{d}} + \mathbf{D}_t(\dot{\boldsymbol{\theta}}, \ddot{\boldsymbol{\theta}}, r_c) \mathbf{d} + \mathbf{n}_t(r_c, r_t) = \mathbf{f}_a + \mathbf{f}_d,$$ (15.26) where $$\mathbf{C}_{t}(\dot{\theta}) = 2m_{c}\dot{\theta} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$ (15.27) $$\mathbf{D}_{t}(\dot{\theta}, \ddot{\theta}, r_{c}) = m_{c} \begin{bmatrix} \frac{\mu}{r_{c}^{3}} - \dot{\theta}^{2} & -\ddot{\theta} & 0\\ \ddot{\theta} & \frac{\mu}{r_{c}^{3}} - \dot{\theta}^{2} & 0\\ 0 & 0 & \frac{\mu}{r_{c}^{3}} \end{bmatrix}$$ (15.28) $$\mathbf{n}_{t}(r_{c}, r_{t}) = m_{c} \mu \begin{bmatrix} r_{t}/r_{c}^{3} - 1/r_{t}^{2} \\ 0 \\ 0 \end{bmatrix},$$ (15.29) \mathbf{f}_a is the control force vector, and \mathbf{f}_d is the disturbance force vector, both are applied in chaser's body frame. It is worthwhile to note that $$\mathbf{n}_t(r_c, r_t)\big|_{r_c = r_t} = \mathbf{0}.$$ (15.30) The calculation of $\dot{\theta}$ is given by (15.5) $$\dot{\theta} = \frac{h}{r_t^2},$$ where h is a constant depending on the specific orbit, and r_t is provided by GPS. Case 1: If the orbit is circular, $\dot{\theta}$ is a constant because both h and r_t are constants. Hence, $\ddot{\theta} = 0$. Noticing that, during the docking phase, $r_c \approx r_t$ and the latter is a constant, therefore, $\mathbf{C}_t(\dot{\theta})$ and $\mathbf{D}_t(\dot{\theta}, \ddot{\theta}, r_c)$ are constants. Case 2: If the orbit is elliptic, using (15.4) gives $$\dot{\theta} = \frac{h}{r_t^2} = \frac{h(1 + e\cos(\theta))^2}{p^2} = \frac{h(1 + e\cos(\theta))^2}{a^2(1 - e^2)^2},$$ (15.31) where e, a, and p are all constants. Taking derivative for both sides of $r_t^2 \dot{\theta} = h$ and noticing that h is a constant yields $$2r_t\dot{r_t}\dot{\theta}+r_t^2\ddot{\theta}=0.$$ Substituting (15.4) and (15.7) into this equation gives $$\ddot{\theta} = -\frac{2\dot{r}_t\dot{\theta}}{r_t} = -\frac{2\mu e\sin(\theta)\dot{\theta}}{hr_t} = \frac{2\mu e\dot{\theta}\sin(\theta)(1+e\cos(\theta))}{ha(1-e^2)}.$$ (15.32) According to (15.31) and (15.32), to calculate $\dot{r}_t(t)$, $\dot{\theta}$ and $\ddot{\theta}$, one needs to know θ . Let t=0 be the time that the spacecraft passing from the perigee. A function of $\theta(t)$ can be found as follows: from (2.61) $$M = \frac{2\pi t}{T} = \psi - e\sin(\psi),$$ where T is the spacecraft orbital period, t is the time elapsed since the spacecraft passes the perigee, M is the mean anomaly, ψ is the eccentric anomaly. Therefore, given t, one can calculate M. Given M and e, one can calculate ψ by using Newton's method. Given ψ , one can calculate θ by using (2.50) which is given as follows: $$\tan\left(\frac{\theta}{2}\right) = \sqrt{\frac{1+e}{1-e}}\tan\left(\frac{\psi}{2}\right). \tag{15.33}$$ Therefore, according to Assumption 1, $\mathbf{C}_t(\dot{\theta})$, $\mathbf{D}_t(\dot{\theta}, \ddot{\theta}, r_c)$ and $\mathbf{n}_t(r_c, r_t)$ are known but in general are time-varying since r_c , r_t , θ , $\dot{\theta}$, and $\ddot{\theta}$ are all time-varying. #### 15.2.2 The model for attitude dynamics Let the unit quaternion $\bar{\mathbf{q}} = \left[q_0, \mathbf{q}^{\mathrm{T}}\right]^{\mathrm{T}}$ be the relative attitude of the target and chaser, where $$\mathbf{q}^{\mathrm{T}} = [q_1, q_2, q_3]. \tag{15.34}$$ The inverse of the quaternion is defined in (3.50) as
$\bar{\mathbf{q}}^{-1} = [q_0, -\mathbf{q}^T]^T$. Let $\bar{\mathbf{q}}_{i,cb} = [q_{c0}, q_{c1}, q_{c2}, q_{c3}]$ be the relative quaternion from chaser's body frame to the inertial frame, and $\bar{\mathbf{q}}_{i,tb} = [q_{t0}, q_{t1}, q_{t2}, q_{t3}]$ be the the relative quaternion from target's body frame to the inertial frame. Notice that $\bar{\mathbf{q}}_{i,cb}$ is measurable from the chaser and $\bar{\mathbf{q}}_{i,tb}$ is measurable from the target. Using the Assumption 1, equations (3.50) and (3.64), we have $$\bar{\mathbf{q}} = \bar{\mathbf{q}}_{i,cb}^{-1} \bar{\mathbf{q}}_{i,tb} = \begin{bmatrix} q_{t0} & -q_{t1} & -q_{t2} & -q_{t3} \\ q_{t1} & q_{t0} & q_{t3} & -q_{t2} \\ q_{t2} & -q_{t3} & q_{t0} & q_{t1} \\ q_{t3} & q_{t2} & -q_{t1} & q_{t0} \end{bmatrix} \begin{bmatrix} q_{c0} \\ -q_{c1} \\ -q_{c2} \\ -q_{c3} \end{bmatrix},$$ (15.35) which, according to Assumption 1, is measurable. The relative angular velocity between frames \mathcal{F}_{cb} and \mathcal{F}_{tb} expressed in frame \mathcal{F}_{cb} is given by $$\boldsymbol{\omega} = \boldsymbol{\omega}_{i,cb}^{cb} - \mathbf{R}_{tb}^{cb} \boldsymbol{\omega}_{i,tb}^{tb} = [\boldsymbol{\omega}_1, \boldsymbol{\omega}_2, \boldsymbol{\omega}_3]^{\mathrm{T}}, \tag{15.36}$$ where $\omega_{i,cb}^{cb}$ is the angular velocity of the chaser spacecraft body frame relative to the inertial frame, expressed in the chaser spacecraft body frame, $\omega_{i,cb}^{cb}$ is measurable from chaser; $\omega_{i,tb}^{tb}$ is the angular velocity of the target spacecraft body frame relative to the inertial frame, expressed in the target spacecraft body frame, $\omega_{i,tb}^{tb}$ is measurable from target; \mathbf{R}_{tb}^{cb} is the rotational matrix from \mathcal{F}_{tb} to \mathcal{F}_{cb} which is an equivalent rotation of $\bar{\mathbf{q}}$ and is given by (3.56) $$\mathbf{R}_{tb}^{cb} = (q_0^2 - \mathbf{q}^{\mathrm{T}} \mathbf{q}) \mathbf{I} + 2\mathbf{q} \mathbf{q}^{\mathrm{T}} - 2q_0 \mathbf{S}(\mathbf{q}), \tag{15.37}$$ where $\mathbf{S}(\mathbf{q}) = \mathbf{q}^{\times}$ is the cross product operator. Using Assumption 1 again, we conclude that $\boldsymbol{\omega}$ is available from measurements. Let \mathbf{J}_c and \mathbf{J}_t be the inertia matrices of the chaser and target, respectively. Assume that a quaternion $\bar{\mathbf{q}}$ rotates frame a to frame b, then the corresponding direction cosine matrix is given by (3.61) which is provided below for easy reference. $$\mathbf{R}_{a}^{b} = \begin{bmatrix} 2q_{0}^{2} - 1 + 2q_{1}^{2} & 2q_{1}q_{2} + 2q_{0}q_{3} & 2q_{1}q_{3} - 2q_{0}q_{2} \\ 2q_{1}q_{2} - 2q_{0}q_{3} & 2q_{0}^{2} - 1 + 2q_{2}^{2} & 2q_{2}q_{3} + 2q_{0}q_{1} \\ 2q_{1}q_{3} + 2q_{0}q_{2} & 2q_{2}q_{3} - 2q_{0}q_{1} & 2q_{0}^{2} - 1 + 2q_{3}^{2} \end{bmatrix}.$$ (15.38) Let $\omega_{i,sb}^{sb}$ be the angular velocity of the spacecraft relative to the inertial frame, expressed in the spacecraft body frame, where $s \in \{c,t\}$. In view of (4.2), the spacecraft dynamical model can be written as $$J_s \dot{\boldsymbol{\omega}}_{i,sb}^{sb} = -\mathbf{S}(\boldsymbol{\omega}_{i,sb}^{sb}) J_s \boldsymbol{\omega}_{i,sb}^{sb} + \mathbf{t}_{ds} + \mathbf{t}_{as}$$ (15.39) where \mathbf{t}_{ds} is the disturbance torque applied to the spacecraft body and expressed in the body frame, and \mathbf{t}_{as} is the control torque applied to the spacecraft body and expressed in the body frame. In view of (3.13), the derivative of the rotational matrix \mathbf{R}_{b}^{a} that rotates from b frame to a frame is given by $$\dot{\mathbf{R}}_b^a = -\mathbf{S}(\boldsymbol{\omega}_{a,b}^b)\mathbf{R}_b^a = \mathbf{S}(\boldsymbol{\omega}_{a,b}^a)\mathbf{R}_b^a. \tag{15.40}$$ Using definition of ω in (15.36), (15.40), and $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$, the relative attitude dynamics can be expressed as $$\mathbf{J}_{c}\dot{\boldsymbol{\omega}} = \mathbf{J}_{c} \left(\dot{\boldsymbol{\omega}}_{i,cb}^{cb} - \dot{\mathbf{R}}_{tb}^{cb} \boldsymbol{\omega}_{i,tb}^{tb} - \mathbf{R}_{tb}^{cb} \dot{\boldsymbol{\omega}}_{i,tb}^{tb} \right) = \mathbf{J}_{c} \dot{\boldsymbol{\omega}}_{i,cb}^{cb} - \mathbf{J}_{c} \mathbf{S} (\boldsymbol{\omega}_{cb,tb}^{cb}) \mathbf{R}_{tb}^{cb} \boldsymbol{\omega}_{i,tb}^{tb} - \mathbf{J}_{c} \mathbf{R}_{tb}^{cb} \dot{\boldsymbol{\omega}}_{i,tb}^{tb} = \mathbf{J}_{c} \dot{\boldsymbol{\omega}}_{i,cb}^{cb} - \mathbf{J}_{c} \mathbf{S} (\boldsymbol{\omega}_{cb,tb}^{cb}) \boldsymbol{\omega}_{i,tb}^{cb} - \mathbf{J}_{c} \mathbf{R}_{tb}^{cb} \dot{\boldsymbol{\omega}}_{i,tb}^{tb} = \mathbf{J}_{c} \dot{\boldsymbol{\omega}}_{i,cb}^{cb} + \mathbf{J}_{c} \mathbf{S} (\boldsymbol{\omega}_{i,tb}^{cb}) \boldsymbol{\omega}_{cb,tb}^{cb} - \mathbf{J}_{c} \mathbf{R}_{tb}^{cb} \dot{\boldsymbol{\omega}}_{i,tb}^{tb} = \mathbf{J}_{c} \dot{\boldsymbol{\omega}}_{i,cb}^{cb} - \mathbf{J}_{c} \mathbf{S} (\boldsymbol{\omega}_{i,tb}^{cb}) \boldsymbol{\omega}_{tb,cb}^{cb} - \mathbf{J}_{c} \mathbf{R}_{tb}^{cb} \dot{\boldsymbol{\omega}}_{i,tb}^{tb} = \mathbf{J}_{c} \dot{\boldsymbol{\omega}}_{i,cb}^{cb} - \mathbf{J}_{c} \mathbf{S} (\boldsymbol{\omega}_{i,tb}^{cb}) \boldsymbol{\omega} - \mathbf{J}_{c} \mathbf{R}_{tb}^{cb} \dot{\boldsymbol{\omega}}_{i,tb}^{tb}$$ $$(15.41)$$ where $\omega_{cb,cb}^{cb} = -\omega_{tb,cb}^{cb}$ and $\omega_{tb,cb}^{cb} = \omega$ are used in the last two equalities. Using $\omega_{i,cb}^{cb} = \omega + \mathbf{R}_{tb}^{cb}\omega_{i,tb}^{cb}$ and applying (15.39) to $\mathbf{J}_c\dot{\omega}_{i,cb}^{cb}$ yield $$\mathbf{J}_{c}\dot{\boldsymbol{\omega}}_{i,cb}^{cb} = -\mathbf{S}(\boldsymbol{\omega} + \mathbf{R}_{tb}^{cb}\boldsymbol{\omega}_{i,tb}^{tb})\mathbf{J}_{c}(\boldsymbol{\omega} + \mathbf{R}_{tb}^{cb}\boldsymbol{\omega}_{i,tb}^{tb}) + \mathbf{t}_{dc} + \mathbf{t}_{ac} = -\mathbf{S}(\boldsymbol{\omega})\mathbf{J}_{c}(\boldsymbol{\omega} + \mathbf{R}_{tb}^{cb}\boldsymbol{\omega}_{i,tb}^{tb}) - \mathbf{S}(\mathbf{R}_{tb}^{cb}\boldsymbol{\omega}_{i,tb}^{tb})\mathbf{J}_{c}(\boldsymbol{\omega} + \mathbf{R}_{tb}^{cb}\boldsymbol{\omega}_{i,tb}^{tb}) + \mathbf{t}_{dc} + \mathbf{t}_{ac} = \mathbf{S}(\mathbf{J}_{c}(\boldsymbol{\omega} + \mathbf{R}_{tb}^{cb}\boldsymbol{\omega}_{i,tb}^{tb}))\boldsymbol{\omega} - \mathbf{S}(\mathbf{R}_{tb}^{cb}\boldsymbol{\omega}_{i,tb}^{tb})\mathbf{J}_{c}(\boldsymbol{\omega} + \mathbf{R}_{tb}^{cb}\boldsymbol{\omega}_{i,tb}^{tb}) + \mathbf{t}_{dc} + \mathbf{t}_{ac} = [\mathbf{S}(\mathbf{J}_{c}(\boldsymbol{\omega} + \mathbf{R}_{tb}^{cb}\boldsymbol{\omega}_{i,tb}^{tb})) - \mathbf{S}(\mathbf{R}_{tb}^{cb}\boldsymbol{\omega}_{i,tb}^{tb})\mathbf{J}_{c}]\boldsymbol{\omega} - \mathbf{S}(\mathbf{R}_{tb}^{cb}\boldsymbol{\omega}_{i,tb}^{tb})\mathbf{J}_{c}(\mathbf{R}_{tb}^{cb}\boldsymbol{\omega}_{i,tb}^{tb}) + \mathbf{t}_{dc} + \mathbf{t}_{ac}. \tag{15.42}$$ It is straightforward to see that $$\mathbf{J}_{c}\mathbf{S}\left(\boldsymbol{\omega}_{i,tb}^{cb}\right)\boldsymbol{\omega} = \mathbf{J}_{c}\mathbf{S}\left(\mathbf{R}_{tb}^{cb}\boldsymbol{\omega}_{i,tb}^{tb}\right)\boldsymbol{\omega}.\tag{15.43}$$ Using (15.39) again gives $$\mathbf{J}_{c}\mathbf{R}_{tb}^{cb}\dot{\boldsymbol{\omega}}_{i,tb}^{tb} = \mathbf{J}_{c}\mathbf{R}_{tb}^{cb}\mathbf{J}_{t}^{-1}\mathbf{J}_{t}\dot{\boldsymbol{\omega}}_{i,tb}^{tb} = -\mathbf{J}_{c}\mathbf{R}_{tb}^{cb}\mathbf{J}_{t}^{-1}\mathbf{S}\left(\boldsymbol{\omega}_{i,tb}^{tb}\right)\mathbf{J}_{t}\boldsymbol{\omega}_{i,tb}^{tb} + \mathbf{J}_{c}\mathbf{R}_{tb}^{cb}\mathbf{J}_{t}^{-1}\mathbf{t}_{dt} + \mathbf{J}_{c}\mathbf{R}_{tb}^{cb}\mathbf{J}_{t}^{-1}\mathbf{t}_{at}. (15.44)$$ Substituting (15.42), (15.43), and (15.44) into (15.41), we get the model of relative attitude dynamics which is given in chaser's frame as follows (see also [123, 339]): $$\mathbf{J}_c \dot{\boldsymbol{\omega}} + \mathbf{C}_r(\boldsymbol{\omega}, \mathbf{q}) \boldsymbol{\omega} + \mathbf{n}_r(\boldsymbol{\omega}, \mathbf{q}) = \mathbf{t}_c + \mathbf{t}_d, \tag{15.45}$$ where $\mathbf{t}_c = \mathbf{t}_{ac} - \mathbf{J}_c \mathbf{R}_{tb}^{cb} \mathbf{J}_t^{-1} \mathbf{t}_{at}$ and $\mathbf{t}_d = \mathbf{t}_{dc} - \mathbf{J}_c \mathbf{R}_{tb}^{cb} \mathbf{J}_t^{-1} \mathbf{t}_{dt}$ are control torque and disturbance torque respectively, $\mathbf{C}_r(\omega)$ and $\mathbf{n}_r(\omega)$ are given as follows: $$\mathbf{C}_{r}(\boldsymbol{\omega}, \mathbf{q}) = \mathbf{J}_{c}\mathbf{S}(\mathbf{R}_{tb}^{cb}\boldsymbol{\omega}_{i,tb}^{tb}) + \mathbf{S}(\mathbf{R}_{tb}^{cb}\boldsymbol{\omega}_{i,tb}^{tb})\mathbf{J}_{c} - \mathbf{S}(\mathbf{J}_{c}(\boldsymbol{\omega} + \mathbf{R}_{tb}^{cb}\boldsymbol{\omega}_{i,tb}^{tb})), \quad (15.46)$$ $$\mathbf{n}_r(\boldsymbol{\omega}, \mathbf{q}) = \mathbf{S}(\mathbf{R}_{tb}^{cb} \boldsymbol{\omega}_{i,tb}^{tb}) \mathbf{J}_c \mathbf{R}_{tb}^{cb} \boldsymbol{\omega}_{i,tb}^{tb} - \mathbf{J}_c \mathbf{R}_{tb}^{cb} \mathbf{J}_t^{-1} \mathbf{S}(\boldsymbol{\omega}_{i,tb}^{tb}) \mathbf{J}_t \boldsymbol{\omega}_{i,tb}^{tb}.$$ (15.47) In the rest discussion, we consider the rendezvous and soft docking by controlling the chaser spacecraft. Therefore, $\mathbf{t}_c = \mathbf{t}_{ac}$ and $\mathbf{t}_d = \mathbf{t}_{dc}$. At the end of the docking phase, the rotation matrix satisfies $\mathbf{R}_{tb}^{cb} = \mathbf{I}$. If target spacecraft is aligned with the inertial frame, then $\omega_{i,tb}^{tb} = 0$, $\mathbf{C}_r(\omega, \mathbf{q}) = -\mathbf{S}(\mathbf{J}_c\omega)$, and $\mathbf{n}_r(\omega, \mathbf{q}) = 0$. In the final approaching and docking phase, using reduced quaternion dynamics equation as proposed in [307] can easily be justified because of the small attitude error. The attitude dynamics is given as follows: $$\begin{array}{lll} \dot{\mathbf{q}} & = & \left[\begin{array}{c} \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \end{array} \right] \\ & = & \frac{1}{2} \left[\begin{array}{cccc} \sqrt{1 - q_1^2 - q_2^2 - q_3^2} & -q_3 & q_2 \\ q_3 & \sqrt{1 - q_1^2 - q_2^2 - q_3^2} & -q_1 \\ -q_2 & q_1 & \sqrt{1 - q_1^2 - q_2^2 - q_3^2}
\end{array} \right] \left[\begin{array}{c} \omega_1 \\ \omega_2 \\ \omega_3 \end{array} \right] \end{array}$$ $$= \frac{1}{2}\mathbf{T}\boldsymbol{\omega}. \tag{15.48}$$ #### 15.2.3 A complete model for rendezvous and docking Let $$\mathbf{v} = \dot{\mathbf{d}},\tag{15.49}$$ which can be obtained by $\dot{\mathbf{d}} \approx \Delta \mathbf{d}/\Delta t$. Now, we can summarize the result by combining equations (15.49), (15.26), (15.45), and (15.48), which yields the complete model for rendezvous and docking: $$\dot{\mathbf{x}} = \begin{bmatrix} \dot{\mathbf{d}} \\ \dot{\mathbf{v}} \\ \dot{\mathbf{q}} \\ \dot{\omega} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{I} & \mathbf{0} & \mathbf{0} \\ -\frac{1}{m_c} \mathbf{D}_t & -\frac{1}{m_c} \mathbf{C}_t & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \frac{1}{2} \mathbf{T} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & -\mathbf{J}_c^{-1} \mathbf{C}_r \end{bmatrix} \begin{bmatrix} \mathbf{d} \\ \mathbf{v} \\ \mathbf{q} \\ \omega \end{bmatrix} \\ - \begin{bmatrix} \mathbf{0} \\ \frac{1}{m_c} \mathbf{n}_t \\ \mathbf{0} \\ \mathbf{J}_c^{-1} \mathbf{n}_r \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \frac{1}{m_c} \mathbf{f}_c \\ \mathbf{0} \\ \mathbf{J}_c^{-1} \mathbf{t}_c \end{bmatrix}.$$ (15.50) Since \mathbf{D}_t , \mathbf{C}_t , \mathbf{T} , \mathbf{C}_r , \mathbf{n}_t , and \mathbf{n}_r depend on \mathbf{q} , ω , r_c , r_t , θ which are all time-varying, equation (15.50) can be treated as a linear time-varying system. It is well-known that the control force vector and control torque vector depend on the thruster configurations and many configurations are reported in different systems, for example, [49, 300, 313]. Let \mathbf{F}_a and \mathbf{T}_a be the thruster configuration related matrices that define the control force vector and control torque vector, i.e., $$\mathbf{f}_c = \mathbf{F}_a \mathbf{f}_a, \quad \mathbf{t}_c = \mathbf{T}_a \mathbf{f}_a, \tag{15.51}$$ where \mathbf{f}_a is the vector of forces generated by thrusters. Substituting (15.51) into (15.50), we have $$\dot{\mathbf{x}} = \begin{bmatrix} \dot{\mathbf{d}} \\ \dot{\mathbf{v}} \\ \dot{\mathbf{q}} \\ \dot{\boldsymbol{\omega}} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{I} & \mathbf{0} & \mathbf{0} \\ -\frac{1}{m_c} \mathbf{D}_t & -\frac{1}{m_c} \mathbf{C}_t & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \frac{1}{2} \mathbf{T} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & -\mathbf{J}_c^{-1} \mathbf{C}_r \end{bmatrix} \begin{bmatrix} \mathbf{d} \\ \mathbf{v} \\ \mathbf{q} \\ \boldsymbol{\omega} \end{bmatrix}$$ $$- \begin{bmatrix} \mathbf{0} \\ \frac{1}{m_c} \mathbf{n}_t \\ \mathbf{0} \\ \mathbf{J}_c^{-1} \mathbf{n}_r \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \frac{1}{m_c} \mathbf{F}_a \\ \mathbf{0} \\ \mathbf{J}_c^{-1} \mathbf{T}_a \end{bmatrix} \mathbf{f}_a$$ $$= \mathbf{A}(t)\mathbf{x} - \mathbf{n}_d(t) + \mathbf{B}\mathbf{f}_a. \tag{15.52}$$ Assuming that the chaser's mass change due to fuel consumption is negligible, the matrix $\bf B$ is then time-invariant. For illustrative purpose, in the rest of Figure 15.3: Thrusters' locations and orientations. the discussion, it is assumed that the thrusters have the configuration considered in [339] which is described in Figure 15.3. But the same idea can be used in other thruster configurations. Therefore, the following relations are easily obtained from Figure 15.3. $$\mathbf{F}_{a} = \begin{bmatrix} 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 1 & -1 & 0 & 0 & 0 & 0 \end{bmatrix}, \tag{15.53}$$ and $$\mathbf{T}_{a} = \begin{bmatrix} \frac{L_{2}}{2} & \frac{L_{2}}{2} & 0 & 0 & \frac{L_{3}}{2} & \frac{L_{3}}{2} \\ -\frac{L_{1}}{2} & -\frac{L_{1}}{2} & \frac{L_{3}}{2} & \frac{L_{3}}{2} & 0 & 0 \\ 0 & 0 & -\frac{L_{2}}{2} & -\frac{L_{2}}{2} & \frac{L_{1}}{2} & \frac{L_{1}}{2} \end{bmatrix}.$$ (15.54) It is easy to check that the following matrix $$\mathbf{G} := \begin{bmatrix} \mathbf{F}_a \\ \mathbf{T}_a \end{bmatrix} \tag{15.55}$$ is full row rank matrix. As a matter of fact, in engineer practice, thruster configuration should always be designed to be able to fully control the translation and attitude operations. Therefore, we may make the following assumption in the rest of the chapter: **Assumption 2** *The configuration matrix* **G** *is always a full row rank matrix.* #### 15.3 Model predictive control system design Although it is difficult to analyze the close-loop stability for MPC control system designs, Theorem 14.1 (see also [220, pages 117–119]) provides a nice sufficient stability criterion for the linear time-varying system. This theorem is the theoretical base for the MPC design for the linear time-varying system. One of the main conditions of the theorem requires that the closed-loop system at every fixed time satisfies $\mathcal{R}_e[\lambda(t)] \leq -\mu$. Clearly, robust pole assignment design guarantees this condition holds at all sampling times. For any time between the fixed sampling time, robust pole assignment design minimizes the sensitivity of the closed-loop poles to the parameter changes. This is another reason we selected a robust pole assignment design over LQR design. The last and most important reason we select robust pole assignment design is that prescribed pole places are directly related to the closed-loop system performance. In rendezvous and soft docking control, we do not want the relative position and relative attitude response to have any oscillation crossing the horizontal line to avoid collision. Among various pole assignment algorithms, we choose the one proposed in [263, 328] because it converges faster than other popular algorithms [198], a critical requirement in MPC design. We will divide the control force into two parts. The first part is used to cancel $\mathbf{n}_d(t)$ in (15.52). This can be achieved simply by solving the following linear system of equations. $$\begin{bmatrix} \mathbf{F}_a \\ \mathbf{T}_a \end{bmatrix} \mathbf{u}_1 = \mathbf{G} \mathbf{u}_1 = \begin{bmatrix} \mathbf{n}_t(t) \\ \mathbf{n}_r(t) \end{bmatrix}, \tag{15.56}$$ which gives $$\mathbf{u}_1 = \mathbf{G}^{\dagger} \begin{bmatrix} \mathbf{n}_t(t) \\ \mathbf{n}_r(t) \end{bmatrix} := \mathbf{G}^{\dagger} \mathbf{n}, \tag{15.57}$$ where ${\bf G}^{\dagger}$ is pseudo-inverse of ${\bf G}$. In our example, equations (15.53) and (15.54) implies ${\bf G}^{\dagger}={\bf G}^{-1}$. The design of second part of the thruster force \mathbf{u}_2 is based on the following linear time-varying system: $$\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x} + \mathbf{B}\mathbf{u}_2,\tag{15.58}$$ where \mathbf{x} , $\mathbf{A}(t)$, and \mathbf{B} are defined as in (15.52). At every sampling time t, $\mathbf{A}(t)$ is evaluated based on the measurable variables. The robust pole assignment algorithm of [263] is called to get the feedback matrix $$\mathbf{u}_2 = \mathbf{K}(t)\mathbf{x}$$. The feedback force $\mathbf{f}_a = \mathbf{u}_1 + \mathbf{u}_2$ is applied to the linear time-varying system (15.52). The new variables are measured and the next $\mathbf{A}(t)$ is evaluated in the next sampling time, and the process is repeated. To avoid the oscillation crossing the horizontal line for relative position and relative attitude in the rendezvous and docking process, i.e., to achieve soft docking, the closed-loop poles should be assigned on the negative real axis, i.e., all the poles should be negative and real. The MPC algorithm using robust pole assignment is summarized as follows: #### Algorithm 15.1 Data: μ , m_c , L_1 , L_2 , L_3 , \mathbf{J}_c , \mathbf{J}_t , \mathbf{F}_a , \mathbf{T}_a , and \mathbf{B} . Initial condition: At time t_0 , take the measurements $\theta = \theta_0$, \mathbf{r}_c , \mathbf{r}_t , $\bar{\mathbf{q}}_{i,tb}$, $\bar{\mathbf{q}}_{i,cb}$, $\omega_{i,cb}^{cb}$, $\omega_{i,cb}^{tb}$, calculate \mathbf{d} , \mathbf{r} , \mathbf{q} , \mathbf{R}_{tb}^{cb} , ω , which gives $\mathbf{x} = \mathbf{x}_0$. Step 1: Update $\mathbf{n}_t(r_c, r_t)$, $\mathbf{n}_r(\boldsymbol{\omega}, \mathbf{q})$ which gives $\mathbf{n}_d(t)$; update $\mathbf{A}(t)$ using $\mathbf{D}_t(\dot{\boldsymbol{\theta}}, \ddot{\boldsymbol{\theta}}, \mathbf{r}_c)$, $\mathbf{C}_t(\dot{\boldsymbol{\theta}})$, $\mathbf{C}_r(\boldsymbol{\omega}, \mathbf{q})$, and $\mathbf{T}(\mathbf{q})$. Step 2: Calculate the gain **K** for the linear time-varying system (15.58) using robust pole assignment algorithm implemented as robpole (cf. Appendix C or [263]). Step 3: Apply the controlled thruster force $\mathbf{f}_a = \mathbf{u}_1 + \mathbf{u}_2 = \mathbf{G}^{\dagger} \mathbf{n} + \mathbf{K} \mathbf{x}$ to (15.52). Step 4: Take the measurements θ , \mathbf{r}_c , \mathbf{r}_t , $\bar{\mathbf{q}}_{i,tb}$, $\bar{\mathbf{q}}_{i,cb}$, $\omega^{cb}_{i,cb}$, $\omega^{tb}_{i,tb}$, calculate \mathbf{d} , \mathbf{r} , \mathbf{q} , \mathbf{R}^{cb}_{tb} , $\boldsymbol{\omega}$, which gives \mathbf{x} . Go back to Step 1. **Remark 15.1** It is worthwhile to emphasize that **B** in (15.58) is a constant matrix. This information can be used in robpole to reduce the computational burden for the MPC control scheme. #### 15.4 Simulation test In this section, two simulation test examples are presented to support the design idea. The simulation examples of [339, 341] and their parameters are used. The simulation results are compared to other designs to demonstrate the superiority of the proposed design. The first simulation test example is borrowed from [339]. The physics constants, such as, gravitational constant $\mu = 3.986004418*10^{14}m^3/(kg \cdot s^2)$, Earth radius 6371000 m, are taken from [283]. The rest parameters are taken from [339]: the target spacecraft orbit is circular and the altitude is 250 km, $L_1 = L_2 = L_3 = 2$ m, the mass of the chaser is 10 kg and its inertia matrix is $\mathbf{J}_c =
\mathrm{diag}[10,\ 10,\ 10] kg \cdot m^2$, the mass of the target is 10 kg and its inertia matrix is given as $$\mathbf{J}_t = \begin{bmatrix} 10 & 2.5 & 3.5 \\ 2.5 & 10 & 4.5 \\ 3.5 & 4.5 & 10 \end{bmatrix} kg \cdot m^2,$$ \mathbf{F}_a is given in (15.53), \mathbf{T}_a is given in (15.54). The initial condition is set as $$\mathbf{p}(0) = [10, -10, 10]^{\mathrm{T}} m,$$ $$\mathbf{d}(0) = [0, 0, 0]^{\mathrm{T}} m/s,$$ $$\mathbf{\bar{q}}(0) = [0.3772, -0.4329, 0.6645, 0.4783]^{\mathrm{T}},$$ $$\boldsymbol{\omega}(0) = [0, 0, 0]^{\mathrm{T}} rad/s.$$ To avoid the oscillation of relative distance and relative attitude to guarantee the soft docking, all closed-loop eigenvalues are assigned in negative real axis. Therefore, the proposed closed loop poles are set to $$\begin{array}{l} -0.0410, -0.0411, -0.0412, -0.0413, -0.0414, -0.0415, \\ -0.0416, -0.0417, -0.0418, -0.0419, -0.0420, -0.0421. \end{array}$$ Applying the on-line Algorithm 15.1 to this problem, the simulation is performed and the closed-loop responses are shown in Figures 15.4–15.6. Figure 15.4 is the response of the relative position between the chaser and the target and Figure 15.5 is the response of the relative attitude between the chaser and the target. These figures show that the design successfully avoids the oscillation crossing the horizontal line during the docking process and achieved the soft docking. Figure 15.6 depicts the forces in 6 thrusters used in this docking process, the maximum forces is about 0.17 Newton, which is much smaller than the maximum forces¹ used in the design of [339], which is in the range of 30 Newton. Comparing the simulation tests in [7, 8, 9, 10, 11, 12, 13, 14, 15], the simulation using the proposed method is the only one that does not have oscillation crossing the horizontal line in relative position and attitude responses, which is a clear indication that the design achieves soft docking. The on-line computational time for each call of robpole is about 0.1 second on a Dell PC with Intel Core i5-4440 CPU @ 3.10GHz and installed memory of 12GB. Since robpole is a MATLAB® code which is an interpreted code. Computational experience shows that a compiled code can be magnitude faster than interpreted code. Therefore, the algorithm will be fast enough in real-time application. ¹But much longer time is used than the design of [339]. Figure 15.4: Position response for the circular orbit. Figure 15.5: Attitude response for the circular orbit. The second simulation test example uses the same spacecraft parameters described in the first example but uses an elliptical orbit described in Table 1 of [341], where the semi-major axis $a = 2.4616 \times 10^7$ meters, the eccentricity e = 0.73074, the specific angular momentum $h = 6.762 \times 10^{10} m^2/s$, and the pe- Figure 15.6: Required forces for the circular orbit. Figure 15.7: Position response for the elliptical orbit. riod of the orbit is 38436 seconds. To show that the proposed method can achieve the performance of no oscillation crossing the horizontal line for the relative position and relative attitude between the target and chaser spacecraft with measurement error, control error, and external effect, the simulation is performed as Figure 15.8: Attitude response for the elliptical orbit. Figure 15.9: Required forces for the elliptical orbit. follows: the $\mathbf{x}(t)$ applied in feedback is up to 5% deviation from calculated true $\mathbf{x}(t)$. This deviation can be the result of either measurement error, control error, or disturbance force. The performance of the position responses and attitude responses in this simulation are provided in Figures 15.7 and 15.8, the required 299 force is given in Figure 15.9. Clearly, the performance of relative position and relative attitude responses meets the design requirement, i.e., there is no oscillation crossing the horizontal line. Also it has been seen that the design is insensitive to measurement error, control error, and external disturbance effect. ## Chapter 16 ## Modeling and Attitude Control of Multi-Body Space Systems Some most advanced space missions, such as the *James Webb Space Telescope* are *multi-body* system. This chapter discusses a symbolic *rigid multi-body* nonlinear model for such space systems using *Stoneking's implementation* of *Kane's method*. This symbolic nonlinear model is linearized using the MATLAB® symbolic functions diff and inv because the analytic linearization is intractable via manual derivation. The linearized analytic rigid model is convenient to design the controllers using both *linear quadratic regulator* (LQR) and *robust pole assignment* methods. A systematic methodology for modeling and attitude control is proposed. The idea is to use the *LQR* approach as an effective first design step that can inform the selection of real eigenvalues for the final robust pole assignment. We use a concept design for LUVOIR (which will be described shortly) as an example, but the systematic method can easily be applied to any rigid multibody systems, connected via rotary joints having arbitrary degrees of freedom, arranged in tree topologies. The materials of this chapter are from [250, 327]. #### 16.1 Introduction The Large UV Optical Infrared Surveyor (LUVOIR) (see Figure 16.1), to be placed at Sun-Earth L2 point, is a concept proposed for the key science goal of characterizing a wide range of exoplanets some of which are potentially habit- Figure 16.1: The concept of LUVOIR telescope. able. Although the telescope is still in the concept phase, NASA has engaged multiple engineering disciplines to conduct preliminary design studies [65]. The telescope is a typical *multi-body dynamical system*. Multi-body dynamical systems can be found in many applications including machine design, spacecraft dynamics, and robotics. Modern modeling techniques for multi-body dynamics are based on d'Alembert's principle in which dynamical systems were essentially converted into static ones through the introduction of inertial forces. In 1788, Lagrange formalized this approach by combining the fundamental ideas of d'Alembert's principle with explicit descriptions of virtual work and generalized coordinates [60]. An extension of d'Alembert's principle valid for holonomic systems was presented in 1909 by Jourdain [104]. As many engineering systems are nonholonomic, Kane extended d'Alembert's principle to this general case in 1961 [113]. Kane's method has many applications, particularly in robotics for systems of rigid bodies linked by rotational joints that have an arbitrary number of degrees of freedom (see [34, 38, 114]). Therefore, it is now included in a few engineering handbooks, such as [34, 228]. Although Kane's method has become popular, controversy exists surrounding its originality and efficiency when compared with the Gibbs-Appell equations [53, 136]. Recently, Piedboeuf indicated that Kane's equations are consistent with the *Jour*dain principle [204]. In [251], Stoneking demonstrated that Kane's method can be particularly useful in modeling the case of multiple rigid bodies connected via rotary joints, e.g., space telescopes. As this was a conference paper, it was limited in both scope as well as exposure. The implementation, however, is available as open source software [250]. Using Kane's method as described by Stoneking [251], Bentz and Lewis derived a two-body rigid dynamics model for the *LUVOIR telescope* and simulated the initial condition response of an LQR design [21]. This work was followed by similar testing of a higher fidelity three-body rigid dynamics model in [22]. As linked multi-body systems are widely seen in robotics and space applications, the preliminary research of [21, 22] was extended in [327]. Though the derivation is for a three-body model, the aim is to generate further exposure within the aerospace community of Stoneking's implementation of Kane's dynamics and analysis technique that can efficiently model rigid multiple bodies, connected via rotary joints having arbitrary degrees of freedom, arranged in tree topologies. Although plenty of flexible system modeling methods exist (for example [39, 146, 90]), we are particularly interested in the rigid model because the rigid model size is much smaller and its states are normally measurable. Therefore, the rigid model is more suitable for the control system design than flexible models, and using a rigid model for the controller design is widely used in practice. Our ultimate goal is to design a controller for the LUVOIR telescope in compliance with some arbitrary pointing requirements. As Kane's multi-body dynamics are nonlinear, and many powerful control techniques such as LQR and robust pole assignment are based upon linear models, we have chosen to linearize the symbolic model for the purpose of controller design. Two controllers are designed based on the linearized model and their performances are compared for both rigid and flexible models to give us some confidence that the designed controller will work for the real system. There are other multibody modeling methods in the literature. For example, Li et al. [139] discussed a flexible multibody spacecraft modeling having a center service module, supporting trusses, and a mirror module. It is assumed that the center service module and the mirror module are rigid but the trusses are flexible. In addition, the rigid center service module's translational motion is not considered, and the connection of the rigid center service module and the trusses is fixed. Therefore, their model is more specific than the one discussed in this chapter because we do consider translational motion for all bodies, and all connections are not fixed. Hu et al. [96] derived a more general flexible multi-body system modeling method, which has much more states. Therefore, the model is more suitable for validating the controller design but is not practical for the controller design. ####
16.2 Preliminary This section provides important concepts and formulas in dynamics theory to be used in this chapter and a brief discussion of Kane's method. #### 16.2.1 Basic concepts and important formulas Before we proceed, we present some basic concepts and important formulas which can be found in [114] and will be used repeatedly in the remainder of the chapter. Let $\mathbf{B}_{\mathcal{F}} = [\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3]$ be a set of *bases of the frame* \mathcal{F} , then a general vector $\vec{\mathbf{v}}$ resolved in frame \mathcal{F} can be written as: $$\vec{\mathbf{v}} = v_1 \mathbf{b}_1 + v_2 \mathbf{b}_2 + v_3 \mathbf{b}_3 = [\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3][v_1, v_2, v_3]^{\mathbf{T}} = \mathbf{B}_{\mathcal{F}} \mathbf{v},$$ (16.1) where $\mathbf{v} = [v_1, v_2, v_3]^{\mathbf{T}}$. Let $\vec{\omega}_{B/A}$ be the *angular rate* of frame B relative to frame A resolved in B. Invoking [114, (2.3.1)], for any moving vector $\vec{\mathbf{x}}$ resolved in B, its derivative in frame A and frame B can be related as: $$\frac{d\vec{\mathbf{x}}}{dt}\Big|_{A} = \frac{d\vec{\mathbf{x}}}{dt}\Big|_{B} + \vec{\omega}_{B/A} \times \vec{\mathbf{x}},\tag{16.2}$$ where \times denotes the *cross multiplication* of two vectors. If $\vec{\mathbf{x}}$ is fixed in frame B, then $\frac{d\vec{\mathbf{x}}}{dt}\Big|_{B} = \mathbf{0}$. Therefore, we obtain (see [114, (2.1.2)]), $$\frac{d\vec{\mathbf{x}}}{dt}\Big|_{A} = \vec{\omega}_{B/A} \times \vec{\mathbf{x}}.\tag{16.3}$$ The *angular velocity* of a rigid body B relative to a reference frame A can be expressed in the following form involving n auxiliary references A_1, \ldots, A_n [114, (2.4.1)]: $$\vec{\omega}_{B/A} = \vec{\omega}_{B/A_1} + \vec{\omega}_{A_1/A_2} + \dots + \vec{\omega}_{A_n/A}. \tag{16.4}$$ The angular acceleration of a rigid body B relative to a reference frame A is defined as the first time-derivative in A of the angular velocity of $\vec{\omega}_{B/A}$ as [114, (2.5.1)]: $$\vec{\alpha}_{B/A} = \frac{d\vec{\omega}_{B/A}}{dt}.$$ (16.5) If P and Q are two points fixed on a rigid body B having an angular velocity $\vec{\omega}_{B/A}$ relative to a reference frame A, then the velocity of P in A, denoted as $\vec{\mathbf{v}}_{P/A}$, and the velocity of Q in A, denoted as $\vec{\mathbf{v}}_{O/A}$, are related to each other as [114, (2.7.1)]: $$\vec{\mathbf{v}}_{P/A} = \vec{\mathbf{v}}_{Q/A} + \vec{\boldsymbol{\omega}}_{B/A} \times \vec{\mathbf{r}}, \tag{16.6}$$ where $\vec{\mathbf{r}}$ is the position vector from Q to P. The relationship between the acceleration of P in A, denoted as $\vec{\mathbf{a}}_{P/A}$, and the acceleration of Q in A, denoted as $\vec{\mathbf{a}}_{Q/A}$, is given as [114, (2.7.2)]: $$\vec{\mathbf{a}}_{P/A} = \vec{\mathbf{a}}_{O/A} + \vec{\omega}_{B/A} \times (\vec{\omega}_{B/A} \times \vec{\mathbf{r}}) + \vec{\alpha}_{B/A} \times \vec{\mathbf{r}}. \tag{16.7}$$ #### 16.2.2 Kane's method We will derive the *three-body* rigid nonlinear model for the *LUVOIR* telescope using Kane's method [251]. The notations in this section are defined in [114, 251] and will become clear to the readers who follow the derivation to the end of the next section. At that time, readers will see the beauty of *Stoneking's form* of Kane's method [251]. Let $\{\tau\}$ be the *general torque vector* of the system, [J] be the *general inertia matrix* of the system, $\{\alpha\}$ be the *general angular acceleration vector* of the system, $\{\omega\}$ be the *general angular rate vector* of the system, $\{\mathbf{h}\}$ be general angular momentum vector of the system, $\{\mathbf{f}\}$ be the *general force vector* of the system, [M] be the *general mass matrix* of the system, $\{\mathbf{a}\}$ be the *general linear acceleration vector* of the system, Ω be the *partial angular velocity dyad*, and Ω be the *partial velocity dyad* (Ω and Ω will be defined in (16.23) and (16.33)). The Kane's equation in matrix form can be expressed as $$\Omega^{\mathbf{T}}(\{\tau\} - [\mathbf{J}]\{\alpha\} - \{\omega \times \mathbf{h}\}) + \mathbf{V}^{\mathbf{T}}(\{\mathbf{f}\} - [\mathbf{M}]\{\mathbf{a}\}) = \mathbf{0}, \tag{16.8}$$ where the expression in the first parentheses is *Euler's equation*, and the expression in the second parentheses is *Newton's second low of motion*. Therefore, formula (16.8) appears at first glance to be trivial; however, there are some significant merits to using *Kane's equation* for multi-body models as discussed in [251]. We will see that the following relations hold in the rest development. $$\{\alpha\} = \Omega \dot{\mathbf{x}}_g + \{\alpha_r\},\tag{16.9a}$$ $$\{\mathbf{a}\} = \mathbf{V}\dot{\mathbf{x}}_g + \{\mathbf{a}_r\},\tag{16.9b}$$ where \mathbf{x}_g is the generalized speeds of the multi-body system, $\{\alpha_r\}$ and $\{\mathbf{a}_r\}$ are items that do not include $\dot{\mathbf{x}}_g$. Substituting equations (16.9a) and (16.9b) into (16.8), and then grouping on $\dot{\mathbf{x}}_g$ yields *Stoneking's form* of Kane's equation $$(\Omega^{T}[\mathbf{J}]\Omega + \mathbf{V}^{T}[\mathbf{M}]\mathbf{V})\dot{\mathbf{x}}_{g}$$ $$= \Omega^{T}(\{\tau\} - [\mathbf{J}]\{\alpha_{r}\} - \{\omega \times \mathbf{h}\})$$ $$+\mathbf{V}^{T}(\{\mathbf{f}\} - [\mathbf{M}]\{\mathbf{a}_{r}\}), \qquad (16.10)$$ which is the rigid multi-body system model. A similar idea was proposed and a similar formula to (16.10) is obtained by Hu et al. [96] in 2012 for flexible multi-body system modeling. The advantages of using Kane's method for multibody system modeling with tree structure was discussed in [243]. In the next section, we will provide details of using (16.10) for rigid multi-body system modeling. #### 16.3 Three-body rigid model for LUVOIR telescope The LUVOIR-A telescope model is assumed to be composed of *three rigid bodies* connected in serial by two *rotary joints* as illustrated in Figure 16.2. Figure 16.2: The description of the three bodies of the LUVOIR telescope. The three bodies are the spacecraft bus, the boom (tower, or payload articulation system), and the payload. Spacecraft bus includes many subsystems such as the electrical power system, propulsion, attitude control system, avionics, command and data handling, thermal management system, mechanical and structure. The boom can repoint the payload to any position in the sky. The payload includes optical telescope assembly, the high definition imager, the extreme coronagraph for living planetary system, and ultraviolet multi-object spectrograph [65]. Several frames of the LUVOIR telescope will be considered. Let the spacecraft body frame be denoted as $\mathcal{F}_s = [\mathbf{x}_s, \mathbf{y}_s, \mathbf{z}_s]$, the inertial frame be denoted as $\mathcal{F}_l = [\mathbf{x}_l, \mathbf{y}_l, \mathbf{z}_l]$, the boom body frame be denoted as $\mathcal{F}_b = [\mathbf{x}_b, \mathbf{y}_b, \mathbf{z}_b]$, the payload body frame be denoted as $\mathcal{F}_p = [\mathbf{x}_p, \mathbf{y}_p, \mathbf{z}_p]$. The spacecraft frame may be defined relative to the inertial frame by $$\mathcal{F}_{s}^{\mathbf{T}} = \mathcal{O}_{s/I} \mathcal{F}_{I}^{\mathbf{T}}. \tag{16.11}$$ where $\mathcal{O}_{s/I}$ is the orientation matrix whose subscript s/I represents that the orientation of \mathcal{F}_s is relative to \mathcal{F}_I . Using standard 3-2-1 sequence of the intrinsic Euler angle rotations by yaw angle ψ , pitch angle θ , and roll angle ϕ , the orientation matrix $\mathcal{O}_{s/I}$ can be expressed as $$\mathcal{O}_{s/I} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos(\phi) & \sin(\phi) \\ 0 & -\sin(\phi) & \cos(\phi) \end{array} \right] \left[\begin{array}{ccc} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{array} \right] \left[\begin{array}{ccc} \cos(\psi) & \sin(\psi) & 0 \\ -\sin(\psi) & \cos(\psi) & 0 \\ 0 & 0 & 1 \end{array} \right].$$ (16.12) Since orientation matrix $\mathcal{O}_{s/I}$ is an orthogonal matrix, we have $$\mathcal{O}_{I/s} = \mathcal{O}_{s/I}^{\mathbf{T}}$$ Let the boom gimbal angle be γ and the payload gimbal angle be λ . The boom body frame to spacecraft body frame orientation matrix can be expressed as $$\mathcal{O}_{b/s} = \begin{bmatrix} \cos(\gamma) & 0 & -\sin(\gamma) \\ 0 & 1 & 0 \\ \sin(\gamma) & 0 & \cos(\gamma) \end{bmatrix}. \tag{16.13}$$ The payload body frame to boom body frame orientation matrix can be expressed as $$\mathcal{O}_{p/b} = \begin{bmatrix} \cos(\lambda) & 0 & -\sin(\lambda) \\ 0 & 1 & 0 \\ \sin(\lambda) & 0 & \cos(\lambda) \end{bmatrix}. \tag{16.14}$$ The payload body frame to spacecraft body frame orientation matrix can be expressed as $$\mathcal{O}_{p/s} = \begin{bmatrix} \cos(\gamma + \lambda) & 0 & -\sin(\gamma + \lambda) \\ 0 & 1 & 0 \\ \sin(\gamma + \lambda) & 0 & \cos(\gamma + \lambda) \end{bmatrix}. \tag{16.15}$$ Let the angular velocity of the boom relative to the inertial frame be denoted as $\vec{\omega}_{b/I}$. We will use similar notations in the remainder of this chapter, for example, $\vec{\omega}_{b/s}$, $\vec{\omega}_{p/b}$, and $\vec{\omega}_{s/I}$. Let $\Gamma_1 = [0,1,0]^T$ and $\Gamma_2 = [0,1,0]^T$, $\sigma_1 = \dot{\gamma}$ and $\sigma_2 = \dot{\lambda}$ be the generalized speeds of the rotary joints of G1 and G2. Then the angular rate of the rotary joint G1 represented in the boom frame and the angular rate of the rotary joint G2 resolved in the payload frame can be written as 1 $$\vec{\omega}_{b/s} = \vec{\Gamma}_1 \sigma_1, \quad \vec{\omega}_{p/b} = \vec{\Gamma}_2 \sigma_2. \tag{16.16}$$ Using these notations and (16.4) (as consistent with [114, (2.4.1)]), we have $$\vec{\omega}_{b/I} = \vec{\omega}_{b/s} + \vec{\omega}_{s/I} = \vec{\Gamma}_1 \sigma_1 + \vec{\omega}_{s/I}.$$ (16.17) Let \mathbf{B}_I be the bases of inertial frame, \mathbf{B}_s be the bases of the spacecraft frame, \mathbf{B}_b be the bases of the boom frame, \mathbf{B}_p be the bases of the payload frame.
Then, we may write (16.17) as $$\mathbf{B}_b \omega_{b/I} = \mathbf{B}_b \Gamma_1 \sigma_1 + \mathbf{B}_s \omega_{s/I}. \tag{16.18}$$ By premultiplying $\mathbf{B}_{b}^{\mathbf{T}}$, we may clear the base dyads and obtain $$\omega_{b/I} = \Gamma_1 \sigma_1 + \mathcal{O}_{b/s} \omega_{s/I}. \tag{16.19}$$ ¹For LUVOIR-B where the connection between payload and boom has two degrees of freedom, the following equations may be replaced by (24) in [251], but the rest derivation remains essentially the same. Similarly, $$\vec{\omega}_{p/I} = \vec{\omega}_{p/b} + \vec{\omega}_{b/s} + \vec{\omega}_{s/I} = \vec{\Gamma}_2 \sigma_2 + \vec{\Gamma}_1 \sigma_1 + \vec{\omega}_{s/I}. \tag{16.20}$$ We may write (16.20) as $$\mathbf{B}_{p}\omega_{p/I} = \mathbf{B}_{p}\omega_{p/b} + \mathbf{B}_{b}\omega_{b/s} + \mathbf{B}_{s}\omega_{s/I}$$ $$= \mathbf{B}_{p}\Gamma_{2}\sigma_{2} + \mathbf{B}_{b}\Gamma_{1}\sigma_{1} + \mathbf{B}_{s}\omega_{s/I}, \qquad (16.21)$$ and we may clear the base dyads by pre-multiplying $\mathbf{B}_{n}^{\mathbf{T}}$ and obtain $$\omega_{p/I} = \Gamma_2 \sigma_2 + \mathcal{O}_{p/b} \Gamma_1 \sigma_1 + \mathcal{O}_{p/s} \omega_{s/I}. \tag{16.22}$$ Combining (16.19) and (16.22) yields the general angular rate vector $$\begin{bmatrix} \boldsymbol{\omega}_{s/I} \\ \boldsymbol{\omega}_{b/I} \\ \boldsymbol{\omega}_{p/I} \end{bmatrix} = \underbrace{\begin{bmatrix} \mathbf{I}_{3} & \mathbf{0}_{31} & \mathbf{0}_{31} & \mathbf{0}_{33} \\ \mathcal{O}_{b/s} & \Gamma_{1} & \mathbf{0}_{31} & \mathbf{0}_{33} \\ \mathcal{O}_{p/s} & \mathcal{O}_{p/b}\Gamma_{1} & \Gamma_{2} & \mathbf{0}_{33} \end{bmatrix}}_{\Omega} \begin{bmatrix} \boldsymbol{\omega}_{s/I} \\ \boldsymbol{\sigma}_{1} \\ \boldsymbol{\sigma}_{2} \\ \mathbf{v}_{s/I} \end{bmatrix}, \quad (16.23)$$ where I_3 is the three-dimensional identity matrix, $\mathbf{0}_{31}$ is the 3×1 all zero matrix, $\mathbf{0}_{33}$ is the 3×3 all zero matrix, $\mathbf{v}_{s/I}$ is the velocity vector of the center of mass of the spacecraft relative to the inertial frame, and Ω is the *partial angular velocity dyad*. Now, we consider the linear velocity of the center of the mass for the boom and the linear velocity of the center of the mass for the payload. First, we introduce a notation. For any vector $\mathbf{a} = [a_1, a_2, a_3]^T$, let a skew symmetric matrix related to \mathbf{a} be defined as $$\mathbf{a}^{\times} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}. \tag{16.24}$$ The cross product of two vectors $\mathbf{a} \times \mathbf{b}$ can be written as a multiplication of the matrix \mathbf{a}^{\times} and the vector \mathbf{b} , i.e., $\mathbf{a}^{\times}\mathbf{b}$. Let $\vec{\mathbf{v}}_{s/I}$ be the velocity of the center of mass of the spacecraft in the inertial frame, $\vec{\mathbf{v}}_{b/I}$ be the velocity of G1 in the inertial frame (see Figure 16.2), $\vec{\mathbf{r}}_{G1/s}$ be the position vector from the center of mass of the spacecraft to the joint G1, $\vec{\mathbf{r}}_{G1/b}$ be the position vector from the center of mass of the boom to the joint G1, $\vec{\mathbf{v}}_{p/I}$ be the velocity of the center of mass for the payload in the inertial frame, $\vec{\mathbf{v}}_{G2/I}$ be the velocity of G2 in the inertial frame, $\vec{\mathbf{r}}_{G2/p}$ be the position vector from the center of mass of the payload to the joint G2, $\vec{\mathbf{r}}_{G2/p}$ be the position vector from the center of mass of the boom to the joint G2. Note that all these $\vec{\mathbf{v}}$ and $\vec{\mathbf{r}}$ vectors are in the inertial frame (see Figure 16.2). Since G1 is a point on both the spacecraft and the boom, from (16.6) (see [114, (2.7.1)]), we have $$\vec{\mathbf{v}}_{G1/I} = \vec{\mathbf{v}}_{s/I} + \vec{\boldsymbol{\omega}}_{s/I} \times \vec{\mathbf{r}}_{G1/s}, \tag{16.25a}$$ $$\vec{\mathbf{v}}_{G1/I} = \vec{\mathbf{v}}_{b/I} + \vec{\boldsymbol{\omega}}_{b/I} \times \vec{\mathbf{r}}_{G1/b}. \tag{16.25b}$$ Substituting (16.25a) into (16.25b) and invoking (16.17) yield $$\vec{\mathbf{v}}_{b/I} = \vec{\mathbf{v}}_{s/I} + \vec{\boldsymbol{\omega}}_{s/I} \times \vec{\mathbf{r}}_{G1/s} - \vec{\boldsymbol{\omega}}_{b/I} \times \vec{\mathbf{r}}_{G1/b}$$ $$= \vec{\mathbf{v}}_{s/I} + \vec{\boldsymbol{\omega}}_{s/I} \times \vec{\mathbf{r}}_{G1/s} - (\vec{\boldsymbol{\omega}}_{b/s} + \vec{\boldsymbol{\omega}}_{s/I}) \times \vec{\mathbf{r}}_{G1/b}$$ (16.26) We may represent each vector in an appropriate basis and write (16.26) as $$\mathbf{B}_{I}\mathbf{v}_{b/I} = \mathbf{B}_{I}\mathbf{v}_{s/I} + \mathbf{B}_{s}\boldsymbol{\omega}_{s/I} \times \mathbf{B}_{I}\mathbf{r}_{G1/s} \\ - (\mathbf{B}_{b}\boldsymbol{\Gamma}_{1}\boldsymbol{\sigma}_{1} + \mathbf{B}_{s}\boldsymbol{\omega}_{s/I}) \times \mathbf{B}_{I}\mathbf{r}_{G1/b}$$ (16.27) Using the notations that $\mathbf{r}_{G1/s}|_I = \mathbf{B}_I \mathbf{r}_{G1/s}$ (where $\mathbf{r}_{G1/s}|_I$ means that the vector $\mathbf{r}_{G1/s}$ is expressed in the inertial frame) and $\mathbf{r}_{G1/b}|_I = \mathbf{B}_I \mathbf{r}_{G1/b}$, we may clear the base dyads by pre-multiplying \mathbf{B}_I^T and obtain $$\mathbf{v}_{b/I} = \mathbf{v}_{s/I} - \mathbf{r}_{G1/s}|_{I} \times \mathcal{O}_{I/s} \boldsymbol{\omega}_{s/I} + \mathbf{r}_{G1/b}|_{I} \times \mathcal{O}_{I/b} \Gamma_{1} \boldsymbol{\sigma}_{1} + \mathbf{r}_{G1/b}|_{I} \times \mathcal{O}_{I/s} \boldsymbol{\omega}_{s/I}$$ $$= \mathbf{v}_{s/I}|_{I} + \underbrace{\left[\mathbf{r}_{G1/b}|_{I}^{\times} - \mathbf{r}_{G1/s}|_{I}^{\times}\right] \mathcal{O}_{I/s}}_{\mathbf{v}_{21} \in \mathbf{R}^{3 \times 3}} \boldsymbol{\omega}_{s/I}$$ $$+ \underbrace{\mathbf{r}_{G1/b}|_{I}^{\times} \mathcal{O}_{I/b} \Gamma_{1}}_{\mathbf{v}_{20} \in \mathbf{R}^{3 \times 1}} \boldsymbol{\sigma}_{1}. \tag{16.28}$$ Applying the same idea to the joint G2 and invoking (16.6) (see [114, (2.7.1)]), we have $$\vec{\mathbf{v}}_{G2/I} = \vec{\mathbf{v}}_{b/I} + \vec{\boldsymbol{\omega}}_{b/I} \times \vec{\mathbf{r}}_{G2/b}, \tag{16.29a}$$ $$\vec{\mathbf{v}}_{G2/I} = \vec{\mathbf{v}}_{p/I} + \vec{\omega}_{p/I} \times \vec{\mathbf{r}}_{G2/p}. \tag{16.29b}$$ Substituting (16.29a) into (16.29b) and invoking (16.20) yield $$\vec{\mathbf{v}}_{p/I} = \vec{\mathbf{v}}_{b/I} + \vec{\boldsymbol{\omega}}_{b/I} \times \vec{\mathbf{r}}_{G2/b} - \vec{\boldsymbol{\omega}}_{p/I} \times \vec{\mathbf{r}}_{G2/p}$$ $$= \vec{\mathbf{v}}_{b/I} + (\vec{\boldsymbol{\omega}}_{b/s} + \vec{\boldsymbol{\omega}}_{s/I}) \times \vec{\mathbf{r}}_{G2/b}$$ $$- (\vec{\boldsymbol{\omega}}_{p/b} + \vec{\boldsymbol{\omega}}_{b/s} + \vec{\boldsymbol{\omega}}_{s/I}) \times \vec{\mathbf{r}}_{G2/p}$$ $$= \vec{\mathbf{v}}_{b/I} - \vec{\boldsymbol{\omega}}_{p/b} \times \vec{\mathbf{r}}_{G2/p} + \vec{\boldsymbol{\omega}}_{b/s} \times (\vec{\mathbf{r}}_{G2/b} - \vec{\mathbf{r}}_{G2/p})$$ $$+ \vec{\boldsymbol{\omega}}_{s/I} \times (\vec{\mathbf{r}}_{G2/b} - \vec{\mathbf{r}}_{G2/p}). \tag{16.30}$$ We may represent each vector in an appropriate basis and write (16.30) as $$\mathbf{B}_{I}\mathbf{v}_{p/I} = \mathbf{B}_{I}\mathbf{v}_{b/I} - \mathbf{B}_{p}\Gamma_{2}\sigma_{2} \times \mathbf{B}_{I}\mathbf{r}_{G2/p}$$ $$+\mathbf{B}_{b}\Gamma_{1}\sigma_{1} \times (\mathbf{B}_{I}\mathbf{r}_{G2/b} - \mathbf{B}_{I}\mathbf{r}_{G2/p})$$ +\mathbf{B}_{s}\omega_{s/I} \times (\mathbf{B}_{I}\mathbf{r}_{G2/b} - \mathbf{B}_{I}\mathbf{r}_{G2/p}) (16.31) Using the notations that $\mathbf{r}_{G2/b}|_{I} = \mathbf{B}_{I}\mathbf{r}_{G2/b}$ and $\mathbf{r}_{G2/p}|_{I} = \mathbf{B}_{I}\mathbf{r}_{G2/p}$, and invoking (16.28), we may clear the base dyads by pre-multiplying \mathbf{B}_{I}^{T} in (16.31) and obtain $$\mathbf{v}_{p/I} = \mathbf{v}_{b/I} + \mathbf{r}_{G2/p}|_{I} \times \mathcal{O}_{I/p} \Gamma_{2} \sigma_{2} + (\mathbf{r}_{G2/p}|_{I} - \mathbf{r}_{G2/b}|_{I}) \times \mathcal{O}_{I/b} \Gamma_{1} \sigma_{1}$$ $$+ (\mathbf{r}_{G2/p}|_{I} - \mathbf{r}_{G2/b}|_{I}) \times \mathcal{O}_{I/s} \omega_{s/I}$$ $$= \mathbf{v}_{s/I} + \mathbf{V}_{21} \omega_{s/I} + \mathbf{v}_{22} \sigma_{1} + \mathbf{r}_{G2/p}|_{I} \times \mathcal{O}_{I/p} \Gamma_{2} \sigma_{2}$$ $$+ (\mathbf{r}_{G2/p}|_{I} - \mathbf{r}_{G2/b}|_{I}) \times \mathcal{O}_{I/b} \Gamma_{1} \sigma_{1} + (\mathbf{r}_{G2/p}|_{I} - \mathbf{r}_{G2/b}|_{I}) \times \mathcal{O}_{I/s} \omega_{s/I}$$ $$= \mathbf{v}_{s/I} + \underbrace{\left[\mathbf{r}_{G1/b}|_{I}^{\times} - \mathbf{r}_{G1/s}|_{I}^{\times} + \mathbf{r}_{G2/p}|_{I}^{\times} - \mathbf{r}_{G2/b}|_{I}^{\times}\right] \mathcal{O}_{I/s}}_{\mathbf{V}_{31} \in \mathbf{R}^{3 \times 3}}$$ $$+ \underbrace{\left[\mathbf{r}_{G1/b}|_{I}^{\times} + \mathbf{r}_{G2/p}|_{I}^{\times} - \mathbf{r}_{G2/b}|_{I}^{\times}\right] \mathcal{O}_{I/b} \Gamma_{1}}_{\mathbf{v}_{32} \in \mathbf{R}^{3 \times 1}}$$ $$\mathbf{v}_{33} \in \mathbf{R}^{3 \times 1}$$ $$(16.32)$$ Combining (16.28) and (16.32) yields $$\begin{bmatrix} \mathbf{v}_{s/I} \\ \mathbf{v}_{b/I} \\ \mathbf{v}_{p/I} \end{bmatrix} = \underbrace{\begin{bmatrix} \mathbf{0}_{33} & \mathbf{0}_{31} & \mathbf{0}_{31} & \mathbf{I}_{3} \\ \mathbf{V}_{21} & \mathbf{v}_{22} & \mathbf{0}_{31} & \mathbf{I}_{3} \\ \mathbf{V}_{31} & \mathbf{v}_{32} & \mathbf{v}_{33} & \mathbf{I}_{3} \end{bmatrix}}_{\mathbf{V}} \begin{bmatrix} \boldsymbol{\omega}_{s/I} \\ \boldsymbol{\sigma}_{1} \\ \boldsymbol{\sigma}_{2} \\ \mathbf{v}_{s/I} \end{bmatrix}, \quad (16.33)$$ where **V** is the *partial velocity dyad*. In the sequel, we show that Ω , defined in (16.23), and **V**, defined in (16.33), are the same ones defined in the differential equations (16.9) which will be used to obtain the multi-body system model (16.10). Let $\vec{\alpha}_{s/I}$ be the angular acceleration of the center of the mass of the spacecraft relative to the inertial frame, $\vec{\alpha}_{b/I}$ be the angular acceleration of the center of the mass of the boom relative to the inertial frame, and $\vec{\alpha}_{p/I}$ be the angular acceleration of the center of the mass of the payload relative to the inertial frame,
respectively. Taking the derivative for (16.17) and invoking (16.2), we have $$\vec{\alpha}_{b/I} = \frac{d\vec{\omega}_{b/I}}{dt} = \frac{d(\vec{\omega}_{b/s} + \vec{\omega}_{s/I})}{dt}$$ $$= \frac{d\vec{\omega}_{b/s}}{dt} + \frac{d\vec{\omega}_{s/I}}{dt}$$ $$= \vec{\Gamma}_{1}\vec{\sigma}_{1} + \vec{\omega}_{b/I} \times \vec{\Gamma}_{1}\sigma_{1} + \vec{\alpha}_{s/I}. \tag{16.34}$$ Representing each vector in an appropriate base yields $$\mathbf{B}_{b}\alpha_{b/I} = \mathbf{B}_{b}\Gamma_{1}\dot{\sigma}_{1} + \mathbf{B}_{b}\omega_{b/I} \times \mathbf{B}_{b}\Gamma_{1}\sigma_{1} + \mathbf{B}_{s}\alpha_{s/I}. \tag{16.35}$$ Pre-multiplying $\mathbf{B}_{b}^{\mathbf{T}}$ on both sides of (16.35) clears the base dyads and yields $$\alpha_{b/I} = \Gamma_1 \dot{\sigma}_1 + \omega_{b/I} \times \Gamma_1 \sigma_1 + \mathcal{O}_{b/s} \alpha_{s/I}$$ $$= \Gamma_1 \dot{\sigma}_1 + \mathcal{O}_{b/s} \alpha_{s/I} + \alpha_{b/I}^r, \qquad (16.36)$$ where $$\alpha_{b/I}^r = \omega_{b/I} \times \Gamma_1 \sigma_1, \quad \omega_{b/I} = \mathcal{O}_{b/s} \omega_{s/I}.$$ (16.37) Taking the derivative for (16.20) and invoking (16.2) yields $$\vec{\alpha}_{p/I} = \frac{d\vec{\omega}_{p/I}}{dt} = \frac{d(\vec{\omega}_{p/b} + \vec{\omega}_{b/s} + \vec{\omega}_{s/I})}{dt}$$ $$= \frac{d\vec{\omega}_{p/b}}{dt} + \frac{d\vec{\omega}_{b/s}}{dt} + \frac{d\vec{\omega}_{s/I}}{dt}$$ $$= \vec{\Gamma}_{2}\dot{\sigma}_{2} + \vec{\omega}_{p/I} \times \vec{\Gamma}_{2}\sigma_{2} + \vec{\Gamma}_{1}\dot{\sigma}_{1}$$ $$+ \vec{\omega}_{b/I} \times \vec{\Gamma}_{1}\sigma_{1} + \vec{\alpha}_{s/I}.$$ (16.38) Representing each vector in an appropriate base yields $$\mathbf{B}_{p}\alpha_{p/I} = \mathbf{B}_{p}\Gamma_{2}\dot{\sigma}_{2} + \mathbf{B}_{p}\omega_{p/I} \times \Gamma_{2}\sigma_{2} + \mathbf{B}_{b}\Gamma_{1}\dot{\sigma}_{1} + \mathbf{B}_{b}\omega_{b/I} \times \Gamma_{1}\sigma_{1} + \mathbf{B}_{s}\alpha_{s/I}.$$ (16.39) Pre-multiplying $\mathbf{B}_{p}^{\mathbf{T}}$ on both sides of (16.39) clears the base dyads and yields $$\alpha_{p/I} = \Gamma_{2}\dot{\sigma}_{2} + \omega_{p/I} \times \Gamma_{2}\sigma_{2} + \mathcal{O}_{p/b}\Gamma_{1}\dot{\sigma}_{1} + \mathcal{O}_{p/b}\omega_{b/I} \times \Gamma_{1}\sigma_{1} + \mathcal{O}_{p/s}\alpha_{s/I} = \Gamma_{2}\dot{\sigma}_{2} + \mathcal{O}_{p/b}\Gamma_{1}\dot{\sigma}_{1} + \mathcal{O}_{p/s}\alpha_{s/I} + \alpha_{p/I}^{r}.$$ (16.40) where $$\alpha_{p/I}^{r} = \omega_{p/I} \times \Gamma_{2}\sigma_{2} + \mathcal{O}_{p/b}\omega_{b/I} \times \Gamma_{1}\sigma_{1}$$ $$= \omega_{p/I} \times \Gamma_{2}\sigma_{2} + \mathcal{O}_{p/b}\alpha_{b/I}^{r}, \quad \omega_{p/I} = \mathcal{O}_{p/b}\omega_{b/I}.$$ (16.41) Denote $\alpha_1 = \dot{\sigma}_1$, $\alpha_2 = \dot{\sigma}_2$, and $$\dot{\mathbf{x}}_g = [\dot{\boldsymbol{\omega}}_{s/I}, \ \dot{\boldsymbol{\sigma}}_1, \ \dot{\boldsymbol{\sigma}}_2, \ \dot{\mathbf{v}}_{s/I}]^{\mathbf{T}}. \tag{16.42}$$ Combining (16.36) and (16.40) yields the general angular acceleration vector $$\{lpha\} := \left[egin{array}{c} lpha_{s/I} \ lpha_{b/I} \ lpha_{p/I} \end{array} ight]$$ $$= \underbrace{\begin{bmatrix} \mathbf{I}_{3} & \mathbf{0}_{31} & \mathbf{0}_{31} & \mathbf{0}_{33} \\ \mathcal{O}_{b/s} & \Gamma_{1} & \mathbf{0}_{31} & \mathbf{0}_{33} \\ \mathcal{O}_{p/s} & \mathcal{O}_{p/b}\Gamma_{1} & \Gamma_{2} & \mathbf{0}_{33} \end{bmatrix}}_{\Omega} \underbrace{\begin{bmatrix} \dot{\omega}_{s/I} \\ \dot{\sigma}_{1} \\ \dot{\sigma}_{2} \\ \dot{\mathbf{v}}_{s/I} \end{bmatrix}}_{\dot{\mathbf{x}}_{g}} + \underbrace{\begin{bmatrix} \mathbf{0}_{31} \\ \alpha_{b/I} \\ \alpha_{p/I}^{r} \end{bmatrix}}_{\{\alpha_{r}\}}$$ $$= \Omega \dot{\mathbf{x}}_{g} + \{\alpha_{r}\}, \tag{16.43}$$ which is equivalent to (16.9a). We also showed that Ω defined in (16.23) is the same as the one defined in (16.43) or in (16.9a). Next, we derive equation (16.9b). Let $\vec{\mathbf{a}}_{s/I}$ be the acceleration of the center of the mass of the spacecraft relative to the inertial frame, $\vec{\mathbf{a}}_{b/I}$ be the acceleration of the center of the mass of the boom relative to the inertial frame, $\vec{\mathbf{a}}_{p/I}$ be the acceleration of the center of the mass of the payload relative to the inertial frame, $\vec{\mathbf{a}}_{G1/I}$ be the acceleration of the joint G1 relative to the inertial frame, and $\vec{\mathbf{a}}_{G2/I}$ be the acceleration of the joint G2 relative to the inertial frame, respectively. Since G1 is a point on both the spacecraft and the boom, applying (16.7) to the joint G1, we have $$\vec{\mathbf{a}}_{G1/I} = \vec{\mathbf{a}}_{s/I} + \vec{\omega}_{s/I} \times (\vec{\omega}_{s/I} \times \vec{\mathbf{r}}_{G1/s}) + \vec{\alpha}_{s/I} \times \vec{\mathbf{r}}_{G1/s}, \tag{16.44a}$$ $$\vec{\mathbf{a}}_{G1/I} = \vec{\mathbf{a}}_{b/I} + \vec{\omega}_{b/I} \times (\vec{\omega}_{b/I} \times \vec{\mathbf{r}}_{G1/b}) + \vec{\alpha}_{b/I} \times \vec{\mathbf{r}}_{G1/b}. \tag{16.44b}$$ Substituting (16.44a) into (16.44b) yields $$\vec{\mathbf{a}}_{b/I} = \vec{\mathbf{a}}_{s/I} + \vec{\boldsymbol{\omega}}_{s/I} \times (\vec{\boldsymbol{\omega}}_{s/I} \times \vec{\mathbf{r}}_{G1/s}) + \vec{\boldsymbol{\alpha}}_{s/I} \times \vec{\mathbf{r}}_{G1/s} - \vec{\boldsymbol{\omega}}_{b/I} \times (\vec{\boldsymbol{\omega}}_{b/I} \times \vec{\mathbf{r}}_{G1/b}) - \vec{\boldsymbol{\alpha}}_{b/I} \times \vec{\mathbf{r}}_{G1/b}.$$ (16.45) Representing each vector in an appropriate base and invoking (16.35) yields $$\mathbf{B}_{I}\mathbf{a}_{b/I} = \mathbf{B}_{I}\mathbf{a}_{s/I} + \mathbf{B}_{s}\omega_{s/I} \times (\mathbf{B}_{s}\omega_{s/I} \times \mathbf{B}_{I}\mathbf{r}_{G1/s}) + \mathbf{B}_{s}\alpha_{s/I} \times \mathbf{B}_{I}\mathbf{r}_{G1/s} - \mathbf{B}_{b}\omega_{b/I} \times (\mathbf{B}_{b}\omega_{b/I} \times \mathbf{B}_{I}\mathbf{r}_{G1/b}) - \mathbf{B}_{b}\alpha_{b/I} \times \mathbf{B}_{I}\mathbf{r}_{G1/b} = \mathbf{B}_{I}\mathbf{a}_{s/I} + \mathbf{B}_{s}\omega_{s/I} \times (\mathbf{B}_{s}\omega_{s/I} \times \mathbf{B}_{I}\mathbf{r}_{G1/s}) + \mathbf{B}_{s}\alpha_{s/I} \times \mathbf{B}_{I}\mathbf{r}_{G1/s} - \mathbf{B}_{b}\omega_{b/I} \times (\mathbf{B}_{b}\omega_{b/I} \times \mathbf{B}_{I}\mathbf{r}_{G1/b}) - (\mathbf{B}_{b}\Gamma_{1}\dot{\sigma}_{1} + \mathbf{B}_{b}\omega_{b/I} \times \Gamma_{1}\sigma_{1} + \mathbf{B}_{s}\alpha_{s/I}) \times \mathbf{B}_{I}\mathbf{r}_{G1/b}.$$ (16.46) Pre-multiplying $\mathbf{B}_{I}^{\mathbf{T}}$ on both sides of (16.46) clears the base dyads and yields $$\mathbf{a}_{b/I} = \mathbf{a}_{s/I} + \mathcal{O}_{I/s} \mathbf{\omega}_{s/I} \times (\mathbf{\omega}_{s/I} \times \mathbf{r}_{G1/s}|_{I})$$ $$+\mathcal{O}_{I/s}\alpha_{s/I} \times \mathbf{r}_{G1/s}|_{I}$$ $$-\mathcal{O}_{I/b}\omega_{b/I} \times (\omega_{b/I} \times \mathbf{r}_{G1/b}|_{I})$$ $$-(\mathcal{O}_{I/b}\Gamma_{1}\dot{\sigma}_{1} + \mathcal{O}_{I/b}\omega_{b/I} \times \Gamma_{1}\sigma_{1} + \mathcal{O}_{I/s}\alpha_{s/I}) \times \mathbf{r}_{G1/b}|_{I}$$ $$= \mathbf{a}_{s/I} + \underbrace{(\mathbf{r}_{G1/b}|_{I} - \mathbf{r}_{G1/s}|_{I}) \times \mathcal{O}_{I/s}}_{\mathbf{V}_{21} \in \mathbf{R}^{3 \times 3}} \alpha_{s/I}$$ $$+ \underbrace{\mathbf{r}_{G1/b}|_{I} \times \mathcal{O}_{I/b}\Gamma_{1}}_{\mathbf{v}_{22} \in \mathbf{R}^{3 \times 1}} \dot{\sigma}_{1} + \mathbf{a}_{b/I}^{r}, \qquad (16.47)$$ where $$\mathbf{a}_{b/I}^{r} = \mathcal{O}_{I/s} \boldsymbol{\omega}_{I/s} \times (\boldsymbol{\omega}_{s/I} \times \mathbf{r}_{G1/s}|_{I})$$ $$-\mathcal{O}_{I/b} \boldsymbol{\omega}_{b/I} \times (\boldsymbol{\omega}_{b/I} \times \mathbf{r}_{G1/b}|_{I})$$ $$+\mathbf{r}_{G1/b}|_{I} \times (\mathcal{O}_{I/b} \boldsymbol{\omega}_{b/I} \times \Gamma_{1} \boldsymbol{\sigma}_{1})$$ $$= \mathcal{O}_{I/s} \boldsymbol{\omega}_{I/s}^{\times} (\boldsymbol{\omega}_{s/I}^{\times} \mathbf{r}_{G1/s}|_{I}) - \mathcal{O}_{I/b} \boldsymbol{\omega}_{b/I}^{\times} (\boldsymbol{\omega}_{b/I}^{\times} \mathbf{r}_{G1/b}|_{I})$$ $$+\mathbf{r}_{G1/b}|_{I}^{\times} \mathcal{O}_{I/b} \boldsymbol{\alpha}_{b/I}^{*}. \qquad (16.48)$$ Applying (16.7) to the joint G2, we have $$\vec{\mathbf{a}}_{G2/I} = \vec{\mathbf{a}}_{b/I} + \vec{\omega}_{b/I} \times (\vec{\omega}_{b/I} \times \vec{\mathbf{r}}_{G2/b}) + \vec{\alpha}_{b/I} \times \vec{\mathbf{r}}_{G2/b}, \tag{16.49a}$$ $$\vec{\mathbf{a}}_{G2/I} = \vec{\mathbf{a}}_{p/I} + \vec{\omega}_{p/I} \times (\vec{\omega}_{p/I} \times \vec{\mathbf{r}}_{G2/p}) + \vec{\alpha}_{p/I} \times \vec{\mathbf{r}}_{G2/p}. \tag{16.49b}$$ Substituting (16.49a) into (16.49b) yields $$\vec{\mathbf{a}}_{p/I} = \vec{\mathbf{a}}_{b/I} + \vec{\boldsymbol{\omega}}_{b/I} \times (\vec{\boldsymbol{\omega}}_{b/I} \times \vec{\mathbf{r}}_{G2/b}) + \vec{\boldsymbol{\alpha}}_{b/I} \times \vec{\mathbf{r}}_{G2/b} - \vec{\boldsymbol{\omega}}_{p/I} \times (\vec{\boldsymbol{\omega}}_{p/I} \times \vec{\mathbf{r}}_{G2/p}) - \vec{\boldsymbol{\alpha}}_{p/I} \times \vec{\mathbf{r}}_{G2/p}.$$ (16.50) Representing each vector in an appropriate base yields $$\mathbf{B}_{I}\mathbf{a}_{p/I} = \mathbf{B}_{I}\mathbf{a}_{b/I} + \mathbf{B}_{b}\omega_{b/I} \times (\mathbf{B}_{b}\omega_{b/I} \times \mathbf{B}_{I}\mathbf{r}_{G2/b}) + \mathbf{B}_{b}\alpha_{b/I} \times \mathbf{B}_{I}\mathbf{r}_{G2/b} - \mathbf{B}_{p}\omega_{p/I} \times (\mathbf{B}_{p}\omega_{p/I} \times \mathbf{B}_{I}\mathbf{r}_{G2/p}) - \mathbf{B}_{p}\alpha_{p/I} \times \mathbf{B}_{I}\mathbf{r}_{G2/p}.$$ (16.51) Pre-multiplying $\mathbf{B}_{I}^{\mathbf{T}}$ on both sides of (16.51) to clear the base dyads, and substituting (16.36), (16.40), and (16.47) into the formula yields $$\mathbf{a}_{p/I} = \mathbf{a}_{b/I} + \mathcal{O}_{I/b} \boldsymbol{\omega}_{b/I} \times (\boldsymbol{\omega}_{b/I} \times \mathbf{r}_{G2/b}|_{I}) + \mathcal{O}_{I/b} \boldsymbol{\alpha}_{b/I} \times \mathbf{r}_{G2/b}|_{I} \\ - \mathcal{O}_{I/p} \boldsymbol{\omega}_{p/I} \times (\boldsymbol{\omega}_{p/I} \times \mathbf{r}_{G2/p}|_{I}) - \mathcal{O}_{I/p} \boldsymbol{\alpha}_{p/I} \times \mathbf{r}_{G2/p}|_{I} \\ = \mathbf{a}_{s/I} + (\mathbf{r}_{G1/b}|_{I} - \mathbf{r}_{G1/s}|_{I}) \times
\mathcal{O}_{I/s} \boldsymbol{\alpha}_{s/I} + \mathbf{r}_{G1/b}|_{I} \times \mathcal{O}_{I/b} \Gamma_{1} \dot{\boldsymbol{\sigma}}_{1} + \mathbf{a}_{b/I}^{r} \\ + \mathcal{O}_{I/b} \boldsymbol{\omega}_{b/I} \times (\boldsymbol{\omega}_{b/I} \times \mathbf{r}_{G2/b}|_{I}) + \mathcal{O}_{I/b} (\Gamma_{1} \dot{\boldsymbol{\sigma}}_{1} + \mathcal{O}_{b/s} \boldsymbol{\alpha}_{s/I} + \boldsymbol{\alpha}_{b/I}^{r}) \times \mathbf{r}_{G2/b}|_{I} \\ - \mathcal{O}_{I/p} \boldsymbol{\omega}_{p/I} \times (\boldsymbol{\omega}_{p/I} \times \mathbf{r}_{G2/p}|_{I})$$ $$-\mathcal{O}_{I/p}(\Gamma_{2}\dot{\sigma}_{2} + \mathcal{O}_{p/b}\Gamma_{1}\dot{\sigma}_{1} + \mathcal{O}_{p/s}\alpha_{s/I} + \alpha_{p/I}^{r}) \times \mathbf{r}_{G2/p}|_{I}$$ $$= \mathbf{a}_{s/I} + \underbrace{(\mathbf{r}_{G1/b}|_{I} - \mathbf{r}_{G1/s}|_{I} + \mathbf{r}_{G2/p}|_{I} - \mathbf{r}_{G2/b}|_{I}) \times \mathcal{O}_{I/s}}_{\mathbf{V}_{31} \in \mathbf{R}^{3 \times 3}} + \underbrace{(\mathbf{r}_{G1/b}|_{I} + \mathbf{r}_{G2/p}|_{I} - \mathbf{r}_{G2/b}|_{I}) \times \mathcal{O}_{I/b}\Gamma_{1}}_{\mathbf{v}_{32} \in \mathbf{R}^{3 \times 1}} \dot{\sigma}_{1}$$ $$+ \underbrace{\mathbf{r}_{G2/p}|_{I} \times \mathcal{O}_{I/p}\Gamma_{2}}_{\mathbf{v}_{33} \in \mathbf{R}^{3 \times 1}} \dot{\sigma}_{2} + \mathbf{a}_{p/I}^{r}, \qquad (16.52)$$ where $$\mathbf{a}_{p/I}^{r} = \mathbf{a}_{b/I}^{r} - \mathbf{r}_{G2/b}|_{I} \times \mathcal{O}_{I/b} \alpha_{b/I}^{r} + \mathbf{r}_{G2/p}|_{I} \times \mathcal{O}_{I/p} \alpha_{p/I}^{r} + \mathcal{O}_{I/b} \omega_{b/I} \times (\omega_{b/I} \times \mathbf{r}_{G2/b}|_{I}) - \mathcal{O}_{I/p} \omega_{p/I} \times (\omega_{p/I} \times \mathbf{r}_{G2/p}|_{I}).$$ (16.53) Combining (16.47) and (16.52) yields the general linear acceleration vector $$\begin{aligned} \{\mathbf{a}\} &:= \begin{bmatrix} \mathbf{a}_{s/I} \\ \mathbf{a}_{b/I} \\ \mathbf{a}_{p/I} \end{bmatrix} \\ &= \underbrace{\begin{bmatrix} \mathbf{0}_{33} & \mathbf{0}_{31} & \mathbf{0}_{31} & \mathbf{I}_{3} \\ \mathbf{V}_{21} & \mathbf{v}_{22} & \mathbf{0}_{31} & \mathbf{I}_{3} \\ \mathbf{V}_{31} & \mathbf{v}_{32} & \mathbf{v}_{33} & \mathbf{I}_{3} \end{bmatrix}}_{\mathbf{V}} \underbrace{\begin{bmatrix} \boldsymbol{\omega}_{s/I} \\ \dot{\boldsymbol{\sigma}}_{1} \\ \dot{\boldsymbol{\sigma}}_{2} \\ \dot{\mathbf{v}}_{s/I} \end{bmatrix}}_{\dot{\mathbf{x}}_{g}} + \underbrace{\{\mathbf{a}_{r}\}_{r}}_{\{\mathbf{a}_{r}\}} \tag{16.54}$$ which is (16.9b). We also showed that **V** defined in (16.54) is the same as the one defined in (16.33) or in (16.9b). Model (16.10) is a very general multi-body rigid system model. For a three-body rigid system like LUVOIR, assume that the 3×3 inertia matrices for the spacecraft, the boom, and the payload are given as \mathbf{J}_s , \mathbf{J}_b , and \mathbf{J}_p , then the *general* inertia matrix is $$[\mathbf{J}] = \begin{bmatrix} \mathbf{J}_s & \mathbf{0}_{33} & \mathbf{0}_{33} \\ \mathbf{0}_{33} & \mathbf{J}_b & \mathbf{0}_{33} \\ \mathbf{0}_{33} & \mathbf{0}_{33} & \mathbf{J}_p \end{bmatrix}. \tag{16.55}$$ Assume that the masses of the spacecraft, the boom, and the payload are given as m_s , m_b , and m_p , then the *general mass matrix* is $$[\mathbf{M}] = \begin{bmatrix} m_s \mathbf{I}_3 & \mathbf{0}_{33} & \mathbf{0}_{33} \\ \mathbf{0}_{33} & m_b \mathbf{I}_3 & \mathbf{0}_{33} \\ \mathbf{0}_{33} & \mathbf{0}_{33} & m_p \mathbf{I}_3 \end{bmatrix}.$$ (16.56) Assume there are no external forces acting on the rigid bodies, then we have $\{\mathbf{f}\} = \mathbf{0}$. Assume that the control torques \mathbf{u} on the spacecraft, the boom, and the payload are τ_s , τ_b , and τ_p , i.e., $$\mathbf{u} = [\tau_s^{\mathbf{T}}, \ \tau_b^{\mathbf{T}}, \ \tau_p^{\mathbf{T}}]^{\mathbf{T}}, \tag{16.57}$$ then, the general torque vector is $$\{\tau\} = \begin{bmatrix} \tau_s - \tau_b \\ \tau_b - \tau_p \\ \tau_p \end{bmatrix}. \tag{16.58}$$ Finally, we can express $\{\omega \times \mathbf{h}\}$ in terms of the angular rates $\omega_{s/I}$, $\omega_{b/s}$, and $\omega_{p/b}$ of the spacecraft, the boom, and the payload as follows: $$\{\boldsymbol{\omega} \times \mathbf{h}\} = \begin{bmatrix} \boldsymbol{\omega}_{s/I} \times \mathbf{J}_{s} \boldsymbol{\omega}_{s/I} \\ \boldsymbol{\omega}_{b/s} \times \mathbf{J}_{b} \boldsymbol{\omega}_{b/s} \\ \boldsymbol{\omega}_{p/b} \times \mathbf{J}_{p} \boldsymbol{\omega}_{p/b} \end{bmatrix}. \tag{16.59}$$ Let $$\mathbf{L} = (\mathbf{\Omega}^{\mathbf{T}}[\mathbf{J}]\mathbf{\Omega} + \mathbf{V}^{\mathbf{T}}[\mathbf{M}]\mathbf{V}), \qquad (16.60)$$ $$\mathbf{r}_1 = \mathbf{\Omega}^{\mathbf{T}} \left(\{ \tau \} - [\mathbf{J}] \{ \alpha_r \} - \{ \omega \times \mathbf{h} \} \right), \tag{16.61}$$ and $$\mathbf{r}_2 = \mathbf{V}^{\mathrm{T}}(\{\mathbf{f}\} - [\mathbf{M}]\{\mathbf{a}_r\}). \tag{16.62}$$ Substituting (16.55), (16.56), (16.58), (16.59), (16.60), (16.62), and the *general* force vector $\{\mathbf{f}\} = \mathbf{0}$ into (16.10), we have the three-body rigid system model: $$\mathbf{L}\dot{\mathbf{x}}_g = \mathbf{r}_1 + \mathbf{r}_2,\tag{16.63}$$ or $$\dot{\mathbf{x}}_g = \mathbf{L}^{-1}(\mathbf{r}_1 + \mathbf{r}_2).$$ (16.64) Equation (16.64) looks very simple, but it is a nonlinear system because \mathbf{L} , \mathbf{r}_1 and \mathbf{r}_2 have nonlinear components of the state and control variables. We need a linear system model so that we can apply LQR or robust pole assignment designs. First, we must rescope the model for the purpose of pure attitude control. We take our generalized speeds \mathbf{x}_g , discard the $\mathbf{v}_{s/I}$ component which decouples from the attitude states, and add the spacecraft's Euler angles ϕ , θ , and ψ in order to define our state vector $\mathbf{x} = [\phi, \theta, \psi, \gamma, \lambda, \omega_{s/I}, \sigma_1, \sigma_2]^T$. The kinematical differential equations associated with these Euler angles in the reference inertial frame are given as [115, Page 429, Space-three 1-2-3]: $$\begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} \langle \omega_{s/I}, [1, \sin(\phi)\tan(\theta), \cos(\phi)\tan(\theta)]^{T} \rangle \\ \langle \omega_{s/I}, [0, \cos(\phi), -\sin(\phi)]^{T} \rangle \\ \langle \omega_{s/I}, [0, \sin(\phi)\sec\theta, \cos(\phi)\sec\theta]^{T} \rangle \end{bmatrix},$$ where $\langle \mathbf{a}, \mathbf{b} \rangle$ denotes the inner product of two vectors of \mathbf{a} and \mathbf{b} . Therefore, the revised state space nonlinear system is given as: $$\dot{\mathbf{x}} := \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \\ \dot{\gamma} \\ \dot{\lambda} \\ \dot{\omega}_{s/I} \\ \dot{\sigma}_{1} \\ \dot{\sigma}_{2} \end{bmatrix} = \begin{bmatrix} \langle \omega_{s/I}, [1, \sin(\phi)\tan(\theta), \cos(\phi)\tan(\theta)]^{\mathbf{T}} \rangle \\ \langle \omega_{s/I}, [0, \cos(\phi), -\sin(\phi)]^{\mathbf{T}} \rangle \\ \langle \omega_{s/I}, [0, \sin(\phi)\sec\theta, \cos(\phi)\sec\theta]^{\mathbf{T}} \rangle \\ \sigma_{1} \\ \sigma_{2} \\ [\mathbf{I}_{3}, \mathbf{0}_{35}] (\mathbf{L}^{-1}(\mathbf{r}_{1} + \mathbf{r}_{2})) \\ [0, 0, 0, 1, 0, 0, 0, 0] (\mathbf{L}^{-1}(\mathbf{r}_{1} + \mathbf{r}_{2})) \end{bmatrix} . (16.65)$$ Remark 16.1 The procedure of the 3-body modeling can easily be applied to any multibody system with tree structure, and the modeled system has the structure described in [251]. It is also worthwhile to note that the final state space model discarded some states in \mathbf{x}_g and added some states into \mathbf{x} , therefore, the dimensions of \mathbf{x}_g and \mathbf{x} are different. Finally, (16.65) involves an analytic inverse matrix \mathbf{L}^{-1} (its computation will be discussed in the next section), and is slightly different from Stoneking's implementation (16.10). #### Linearization and controller design 16.4 To use popular controller design methods, we need to have a linearized rigid dynamics model. #### 16.4.1 Linearization Now, we linearize the nonlinear system (16.65) about a desired new equilibrium state (when this equilibrium state is attained, $\mathbf{u} = \mathbf{0}$) so that we will have a symbolic linear system. Assume that this equilibrium state is at $\mathbf{x}_d =$ $[\phi_d, \theta_d, \psi_d, \gamma_d, \lambda_d, 0, 0, 0, 0]^T$ and the control torques are zeros, i.e., $\mathbf{u} = \mathbf{0}$. Therefore, $$\dot{\mathbf{x}} = \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{u})}{\partial \mathbf{x}} \begin{vmatrix} \mathbf{x} = \mathbf{x}_d & (\mathbf{x} - \mathbf{x}_d) + \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{u})}{\partial \mathbf{u}} & \mathbf{x} = \mathbf{x}_d \\ \mathbf{u} = \mathbf{0} & \mathbf{u} = \mathbf{0} \end{vmatrix} \mathbf{u}.$$ (16.66) where $\phi_d = \pi/2$, and $\theta_d = \psi_d = \gamma_d = \lambda_d = 0$. In this case, the target equilibrium state is a 90° rotation of the spacecraft in roll axis from the current state. Our simulation in the next section will show that the designed controller works in such a large rotational maneuver. In the next section, we will discuss a method to obtain the analytic formula for (16.66). ## 16.4.2 Symbolic inverse for linearization Clearly, it will be very tedious, if it is not impossible, to find the analytic partial derivatives for (16.66), which involves the calculation of the analytic partial derivatives of \mathbf{L}^{-1} . Bentz and Lewis suggested in [21] using Matlab symbolic function 'diff' and the symbolic inverse function 'inv' for matrix \mathbf{L} . For this 8×8 matrix \mathbf{L} , even using Matlab *symbolic inverse*, the computation is still too complex to handle. Fortunately, we are only interested in the first five states in (16.64), (see (16.42)), which are the last five states in (16.65), We can use the method proposed in [22]. Let $$\mathbf{L} = \left[\begin{array}{cc} \mathbf{L}_1 & \mathbf{L}_2 \\ \mathbf{L}_2^{\mathbf{T}} & \mathbf{L}_3 \end{array} \right], \quad \mathbf{p} = \mathbf{r}_1 +
\mathbf{r}_2 = \left[\begin{array}{c} \mathbf{p}_1 \\ \mathbf{p}_2 \end{array} \right], \quad \dot{\mathbf{x}}_g = \left[\begin{array}{c} \dot{\mathbf{x}}_{g,1} \\ \dot{\mathbf{x}}_{g,2} \end{array} \right],$$ then, we have $$\begin{bmatrix} \mathbf{L}_1 & \mathbf{L}_2 \\ \mathbf{L}_2^{\mathbf{T}} & \mathbf{L}_3 \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_{g,1} \\ \dot{\mathbf{x}}_{g,2} \end{bmatrix} = \begin{bmatrix} \mathbf{p}_1 \\ \mathbf{p}_2 \end{bmatrix}. \tag{16.67}$$ Solving the second equation of (16.67) for $\dot{\mathbf{x}}_{g,2}$ gives $$\dot{\mathbf{x}}_{g,2} = \mathbf{L}_3^{-1} (\mathbf{p}_2 - \mathbf{L}_2^{\mathsf{T}} \dot{\mathbf{x}}_{g,1}). \tag{16.68}$$ Substituting (16.68) into the first equation of (16.67) gives $$\dot{\mathbf{x}}_{g,1} = \left(\mathbf{L}_1 - \mathbf{L}_2 \mathbf{L}_3^{-1} \mathbf{L}_2^{\mathbf{T}}\right)^{-1} \left(\mathbf{p}_1 - \mathbf{L}_2 \mathbf{L}_3^{-1} \mathbf{p}_2\right), \tag{16.69}$$ which involves symbolic inverses of a 3×3 matrix \mathbf{L}_3^{-1} and a 5×5 matrix $(\mathbf{L}_1 - \mathbf{L}_2 \mathbf{L}_3^{-1} \mathbf{L}_2^T)^{-1}$. # 16.4.3 Representation of vectors in inertial frame All constants in the *multi-body model* are provided by mechanical engineers according to the spacecraft designs. Some constants in the multi-body model are independent to the frames, such as mass of spacecraft, mass of payload, etc., but some constants are dependent on the frames. Most likely, the distance vectors in a rigid body are given in that rigid body frame, but we need to represent these distance vectors in the inertial frame in the model (16.69) as discussed in the previous section. Let $\mathbf{r}_{G1/s}|_s = a_1\mathbf{x}_s + a_2\mathbf{y}_s + a_3\mathbf{z}_s$ be the position vector from the center of mass of the spacecraft pointing to the joint G_1 represented in the spacecraft frame, $\mathbf{r}_{G1/b}|_b = b_1\mathbf{x}_b + b_2\mathbf{y}_b + b_3\mathbf{z}_b$ be the position vector from the center of mass of the boom pointing to the joint G_1 represented in the boom frame, $\mathbf{r}_{G2/b}|_b = c_1\mathbf{x}_b + c_2\mathbf{x}_b$ $c_2\mathbf{y}_b + c_3\mathbf{z}_b$ be the position vector from the center of mass of the boom pointing to the joint G_2 represented in the boom frame, and $\mathbf{r}_{G2/p}|_p = d_1\mathbf{x}_p + d_2\mathbf{y}_p + d_3\mathbf{z}_p$ be the position vector from the center of mass of the payload pointing to the joint G_2 represented in the payload frame. Denote $\mathbf{r}_{G1/s}|_I$ be the the position vector from the center of mass of the spacecraft pointing to the joint G_1 represented in the inertial frame, $\mathbf{r}_{G1/b}|_I$ be the the position vector from the center of mass of the boom pointing to the joint G_1 represented in the inertial frame, $\mathbf{r}_{G2/b}|_I$ be the the position vector from the center of mass of the boom pointing to the joint G_2 represented in the inertial frame, and $\mathbf{r}_{G2/p}|_I$ be the the position vector from the center of mass of the payload pointing to the joint G_2 represented in the inertial frame, then using (16.12), (16.13), (16.13), (16.14), and (16.15), we have $$\mathbf{r}_{G1/s}|_{I} = \mathcal{O}_{I/s}\mathbf{r}_{G1/s}|_{s} = \mathcal{O}_{I/s}[a_{1}, a_{2}, a_{3}]^{T}$$ $$= \mathcal{O}_{S/I}^{T}[a_{1}, a_{2}, a_{3}]^{T}, \qquad (16.70a)$$ $$\mathbf{r}_{G1/b}|_{I} = \mathcal{O}_{I/b}[b_{1}, b_{2}, b_{3}]^{T} = \mathcal{O}_{b/I}^{T}[b_{1}, b_{2}, b_{3}]^{T}$$ $$= (\mathcal{O}_{b/s}\mathcal{O}_{s/I})^{T}[b_{1}, b_{2}, b_{3}]^{T}, \qquad (16.70b)$$ $$\mathbf{r}_{G2/b}|_{I} = \mathcal{O}_{I/b}[c_{1}, c_{2}, c_{3}]^{T} = \mathcal{O}_{b/I}^{T}[c_{1}, c_{2}, c_{3}]^{T}$$ $$= (\mathcal{O}_{b/s}\mathcal{O}_{s/I})^{T}[c_{1}, c_{2}, c_{3}]^{T}, \qquad (16.70c)$$ $$\mathbf{r}_{G2/p}|_{I} = \mathcal{O}_{I/p}[d_{1}, d_{2}, d_{3}]^{T} = \mathcal{O}_{p/I}^{T}[d_{1}, d_{2}, d_{3}]^{T}$$ $$= (\mathcal{O}_{p/s}\mathcal{O}_{s/I})^{T}[d_{1}, d_{2}, d_{3}]^{T}, \qquad (16.70d)$$ $$\mathbf{r}_{G1/p}|_{I} = \mathbf{r}_{G2/p}|_{I} - \mathbf{r}_{G2/b}|_{I} + \mathbf{r}_{G1/b}|_{I}, \qquad (16.70e)$$ $$\mathbf{r}_{s/b}|_{I} = \mathbf{r}_{G1/b}|_{I} - \mathbf{r}_{G1/s}|_{I}, \qquad (16.70f)$$ $$\mathbf{r}_{s/p}|_{I} = \mathbf{r}_{G1/p}|_{I} - \mathbf{r}_{G1/s}|_{I}, \qquad (16.70g)$$ Using the definition of (16.24), we can write $$\mathbf{r}_{s/b}|_{I}^{\times} = \begin{bmatrix} 0 & -r_{s/b_{3}} & r_{s/b_{2}} \\ r_{s/b_{3}} & 0 & -r_{s/b_{1}} \\ -r_{s/b_{2}} & r_{s/b_{2}} & 0 \end{bmatrix},$$ (16.71) $$\mathbf{r}_{s/p}|_{I}^{\times} = \begin{bmatrix} 0 & -r_{s/p_{3}} & r_{s/p_{2}} \\ r_{s/p_{3}} & 0 & -r_{s/p_{1}} \\ -r_{s/p_{2}} & r_{s/p_{1}} & 0 \end{bmatrix}, \tag{16.72}$$ and similarly, we can define $\mathbf{r}_{G1/b}|_{I}^{\times}$, $\mathbf{r}_{G1/p}|_{I}^{\times}$, and $\mathbf{r}_{G2/p}|_{I}^{\times}$. Using the parameters of the LUVOIR telescope, we use a Matlab code (which is provided in [22]) to generate the rigid linearized time invariant model $$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \tag{16.73}$$ with **A** and **B** given as follows: **Remark 16.3** The correctness of the rigid linearized model is indirectly validated when the controller designed by this rigid model stabilizes a separately developed flexible telescope model. # 16.4.4 LQR and robust pole assignment designs Using the linearized model obtained from Stoneking's form of Kane's method, we consider two well-known state-space controller design methods: LQR and robust pole assignment. For the linearized control system, the LQR design is to find an optimal feedback gain matrix \mathbf{K}_{LQR} to minimize the following cost function [137]: $$J = \frac{1}{2} \int_0^\infty (\mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{x} + \mathbf{u}^{\mathsf{T}} \mathbf{R} \mathbf{u}) dt$$ (16.74) under the state space system constraint $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$ with \mathbf{A} and \mathbf{B} being given in the previous section; while the robust pole assignment design is to find an optimal feedback gain matrix \mathbf{K}_{rpa} such that (a) the close-loop eigenvalues of $(\mathbf{A} - \mathbf{B}\mathbf{K}_{rpa})$ are in the desired locations for the rigid model, and (b) the sensitivity to the modeling uncertainty (because of using less accurate rigid model in controller design) of the close-loop eigenvalues of $(\mathbf{A} - \mathbf{B}\mathbf{K}_{rpa})$ is minimized [304, 263]. Let $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ and $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n]$ be the closed-loop diagonal eigenvalue matrix and the corresponding eigenvector matrix of $(\mathbf{A} - \mathbf{B}\mathbf{K}_{rpa})$, the object of the robust pole assignment design is to solve the following optimization problem [304, 263]: min $$\frac{1}{2} \det(\mathbf{X}^{H} \mathbf{X})$$ s.t. $$(\mathbf{A} - \mathbf{B} \mathbf{K}_{rpa}) \mathbf{X} = \mathbf{X} \Lambda$$ $$\mathbf{x}_{i}^{H} \mathbf{x}_{i} = 1, \quad i = 1, \dots, n,$$ (16.75) where the superscript H is used for complex-conjugate transpose, it reduces to a transpose if all elements of Λ are real. A very efficient algorithm is developed to solve this problem in [263]. A Matlab code that implements the algorithm of [263] is available on the website of [323]. For more details on the robust pole assignment design discussed in this chapter, the readers are referred to [117, 263]. A concise description of the robust pole assignment is available in [321, Appendix C]. The LQR design has been widely used in aerospace applications because it is considered a good choice when energy consumption is a major consideration. Pole assignment design is not as popular as the LQR design in this case because it is not clear whether the design will consume more energy than the LOR design. However, users have noticed that **robust** pole assignment design [263] normally generates a small feedback gain matrix which is a good sign of efficient use of energy. There are two other merits associated with the robust pole assignment approach. First, the performance of the closed-loop system is robust to modeling errors. This is important because the high fidelity model of the LUVOIR used in testing will include flexible modes that are ignored during the control system design due to modeling complexity. Second, robust pole assignment can predict approximations of closed-loop system performance characteristics such as settling time, oscillation frequency, etc., by assigning the closed-loop poles in desired areas [56]. For example, to avoid the oscillations for a second order system, all poles should be assigned to be real according to [56, Chapter 5]. For higher order systems, the performance is determined by dominate poles which are closer to the imaginary axis, therefore, the dominate poles should be assigned to be real. LQR cannot do this. Our strategy is to use the LQR approach as an effective first design step that informs the selection of the real eigenvalues for robust pole assignment such that these poles are close to the real parts of the closed-loop eigenvalues of LQR. ## 16.4.5 Simulation testing on rigid model We calculated state feedback gain matrices for both LQR and robust pole assignment designs. Then, we compared the system performances by analyzing initial state responses and energy consumption. The **Q** and **R** matrices we used in the LQR design are exactly the same as the ones used in [22]. The target of robust pole assignment is to have a similar settling time to the LQR design but with fewer oscillations—this is of particular importance to space telescopes with precision pointing requirements. This can be achieved by choosing the prescribed closed-loop eigenvalues of the robust pole assignment design to have similar real parts to that of the LQR design, i.e., placing all closed-loop eigenvalues on the real axis of the complex plane. For LQR design, the $\bf Q$ and
$\bf R$ matrices are selected exactly the same as the ones in [22]: $$\mathbf{Q} = \begin{bmatrix} 1000\mathbf{I}_8 & \mathbf{0}_{82} \\ \mathbf{0}_{28} & 2000\mathbf{I}_2 \end{bmatrix}, \quad \mathbf{R} = \mathbf{I}_5. \tag{16.76}$$ For robust pole assignment design, the prescribed close-loop eigenvalues are selected as $$(-0.0141, -0.0135, -0.0059, -0.0058, -0.0037, -0.0036, -0.0029, -0.0028, -0.00265, -0.00262)$$ which are close to the real parts of the eigenvalues of $(A - BK_{LQR})$. The feedback gain matrices of the LQR and the robust pole assignment are obtained by a Matlab functions lqr and robpole respectively. $$\mathbf{K}_{LQR} = 10^4 \begin{bmatrix} 0.0031 & 0.0000 & 0.0000 & -0.0000 & 0.0000 & 1.5433 & 0.0030 & -0.1319 & 0.0045 & 0.0053 \\ -0.0000 & 0.0000 & 0.0031 & -0.0000 & 0.0000 & 0.0030 & 1.2432 & -0.0113 & 0.7782 & 0.4049 \\ 0.0000 & -0.0031 & 0.0000 & -0.0000 & 0.0000 & -0.1319 & -0.0113 & 0.8907 & 0.0019 & 0.0000 \\ 0.0000 & -0.0000 & 0.0000 & 0.0031 & -0.0000 & 0.0045 & 0.7782 & 0.0019 & 0.9157 & 0.5169 \\ -0.0000 & 0.0000 & -0.0000 & 0.0000 & 0.0031 & 0.0053 & 0.4049 & 0.0000 & 0.5169 & 0.8071 \end{bmatrix}$$ $$\mathbf{K}_{rpa} = 10^4 \begin{bmatrix} -0.0088 & -0.0013 & 0.0067 & -0.0000 & -0.0025 & -3.8298 & 1.8600 & 0.5231 & 0.0202 & -0.6649 \\ 0.0052 & 0.0005 & -0.0112 & -0.0025 & -0.0042 & 1.4826 & -4.5333 & -0.0981 & -1.8008 & -2.2176 \\ 0.0013 & 0.0022 & -0.0010 & -0.0002 & 0.0008 & 0.5224 & -0.2667 & -1.1273 & -0.0748 & 0.2379 \\ 0.0040 & 0.0004 & -0.0089 & -0.0023 & -0.0044 & 1.1578 & -3.6498 & -0.0756 & -1.6557 & -2.2215 \\ 0.0023 & 0.0001 & -0.0056 & -0.0015 & -0.0045 & 0.6759 & -2.3400 & -0.0008 & -1.1043 & -2.1248 \end{bmatrix}$$ We demonstrated that the controllers stabilize both the rigid linearized time invariant model and the flexible LUVOIR telescope model via simulation using Matlab and Simulink. ### 16.4.5.1 Oscillation comparison of the two designs Figures 16.3–16.7 compare the three-body rigid linearized model initial state responses of the LUVOIR telescope for LQR and robust pole assignment designs. **Figure 16.3:** LQR and robust pole assignment design comparison for rigid model: (a) x_1 initial state response (b) x_2 initial state response. **Figure 16.4:** LQR and robust pole assignment design comparison for rigid model: (a) x_3 initial state response (b) x_4 initial state response. **Figure 16.5:** LQR and robust pole assignment design comparison for rigid model: (a) x_5 initial state response (b) x_6 initial state response. **Figure 16.6:** LQR and robust pole assignment design comparison for rigid model: (a) x_7 initial state response (b) x_8 initial state response. **Figure 16.7:** LQR and robust pole assignment design comparison for rigid model: (a) x_9 initial state response (b) x_{10} initial state response. **Figure 16.8:** LQR and robust pole assignment design comparison for rigid model: (a) x_9 initial state response (b) x_{10} initial state response. It is clear that the initial state responses of robust pole assignment design have fewer oscillations in general for all 10 states (indicating more stable pointing). If we amplify the figures, for the LQR design, the oscillation still can be seen after 5000 seconds, but robust pole assignment initial state responses do not have this kind of long term oscillations. This meets our expectations as discussed earlier. Since both controller designs are based on the rigid model, when the controllers are applied to the rigid model, we don't see the jitter that will be seen when the controllers are applied to the flexible model. Figure 16.8 depicts the long term oscillation effects of x_9 and x_{10} . The osculations will adversely affect the telescope pointing because disturbances can occur at any time for many different reasons. ### 16.4.5.2 Energy consumption comparison of the two designs Using the least energy consumption to achieve the desired performance is always an important design consideration in space missions. Therefore, we compare the energy consumption of the two designs. For LQR and robust pole assignment designs, the energy consumption can be measured by $$\int_0^\infty \|\mathbf{u}(t)\| dt,\tag{16.77}$$ where $\|\cdot\|$ denotes the Euclidean norm. Using formula (16.77), we get $\int_0^{10000} \|\mathbf{u}_{LQR}\| dt = 1.45506e + 05$ and $\int_0^{10000} \|\mathbf{u}_{rpa}\| dt = 1.28432e + 05$, which shows that robust pole assignment consumes noticeably less energy. # 16.4.6 Simulation testing on the flexible model The LUVOIR flexible model has 20 modes on the spacecraft, 9 on the boom, and 100 on the payload [22], the system has about 260 states and most of these states are not measurable. To have an attainable design and a seamless implementation, we designed the controllers based on the coarse rigid model. Since the rigid model approximates the flexible model, we need to validate the designs by using the simulation for the high fidelity *flexible model* and examining the performances. Modeling a flexible mechanical system has been discussed in [171] and a Simulink implementation for the LUVOIR telescope was described in [22, 40]. As mentioned in the introduction section, if LQR and/or robust pole assignment designs stabilize the rigid model but cannot stabilize the high fidelity flexible model, then, redesigns are necessary. As a matter of fact, the feedback gain matrices given in the previous section are the ones of the final design which are obtained after a few iterations. For the designs given in the previous section, the total energy consumption is 1.5448e + 03 for the LQR design and is 1.2683e + 03 for the robust pole assignment design. Again, the energy consumption for the robust pole assignment design is slightly less than the one for the LQR design. **Figure 16.9:** LQR and robust pole assignment design comparison for flexible model: (a) Roll angle initial state response (b) Pitch angle initial state response. **Figure 16.10:** LQR and robust pole assignment design comparison for flexible model: (a) Yaw angle initial state response (b) Roll angular rate initial state response. The performances of these two designs are compared and displayed in Figures 16.9–16.13. The LQR design settles the spacecraft faster than the robust pole assignment design, which is good. It can also be seen, from Figure 16.13, that torques requested for the LQR design have oscillations at about 0.45 Hz, which is not good because not only does it consume more energy, but it may also introduce jitters to the telescope. Figures in 16.12 (a) and (b) are the amplified pitch and yaw angular rate of the spacecraft body, which shows the 0.45 HZ oscillations after 200 minutes. We summarize the systematic space telescope design methodology in the following procedure: 1. Develop a rigid symbolic nonlinear multibody model using Stoneking's form of Kane's equation (16.10). **Figure 16.11:** LQR and robust pole assignment design comparison for flexible model: (a) Pitch angular rate initial state response (b) Yaw angular rate initial state response. **Figure 16.12:** LQR and robust pole assignment design comparison for flexible model: (a) Pitch augular rate initial state response (b) Yaw angular rate initial state response. **Figure 16.13:** LQR and robust pole assignment design comparison for flexible model: (a) Gimbal 1 torque initial state response (b) Gimbal 2 torque initial state response. - 2. Take symbolic inverse for Kane's model to obtain the symbolic nonlinear state space model $\dot{\mathbf{x}}_g = \mathbf{f}_g(\mathbf{x}, \mathbf{u})$. - 3. Determine spacecraft kinematical differential equations associated with the spacecraft Euler angle using the method provided in [115]. - 4. Determine rotary angular dynamics. - 5. Extract relavent states from the symbolic nonlinear state space model $\dot{\mathbf{x}}_{g} = \mathbf{f}_{g}(\mathbf{x}, \mathbf{u})$. - 6. Combine states obtained in Steps 3, 4, and 5 to form a rigid nonlinear symbolic state space model $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$. - 7. Symbolically linearize the nonlinear system about the desired equilibium point to get a symbolic rigid linear system model. - 8. Using the spacecraft parameters to populate the symbolic model to get the spacecraft specific rigid linear system model. - 9. Design a LQR controller which stabilizes both the rigid linear system model and the flexible system model (developed separately from the rigid linear system model). - 10. Design a robust pole assignment controller, whose desired closed-loop poles are all real and the value of the real poles are close to the real part of the closed loop poles of the LQR design, such that the robust pole assignment design stabilizes both the rigid linear system model and the flexible system model. # 16.5 A brief summary In this chapter, we presented a modeling method for a multi-body system using Kane's method. A rigid model for the LUVOIR telescope is established as a result. LQR and robust pole assignment methods are used to design the controllers using the linearized rigid model. Simulation test of the closed loop system using both rigid and flexible models are performed. The test result based on the rigid linearized time invariant model shows that robust pole assignment has better performance in terms of energy consumption and pointing accuracy (measured by the low frequency oscillation around the equilibrium point). For the test on the flexible Simulink model (which was developed by Roger Chen [40]), the LQR design has a shorter (better) settling time but the gimbal commands have oscillations at about 0.45 Hz which may cause the jitters problem and affect the image quality of the telescope; while robust pole assignment design has a similar gimbal command oscillation problem at the beginning, it attenuates fast to zero. Overall, we recommend the robust pole assignment technique for this application with the caveat that the LQR approach is
effective as a method of jump-starting the robust pole assignment design. That is, the LQR approach allows the designer to make an initial pass in which setting time and other performance characteristics are tuned through the traditional cost function weight matrices. This provides a set of desired real eigenvalue components that can be targeted through robust pole assignment to refine the performance, e.g., to improve damping. # Appendix A # First Order Optimality Conditions In this Appendix, we present the first order optimality conditions for the general constrained optimization problems. These conditions are applicable to linear optimization problem which has linear objective function and linear constraints, convex quadratic optimization problem which has a convex quadratic objective function and linear constraints, and general nonlinear optimization problem which has general nonlinear objective function and nonlinear constraints. Although the first order optimality conditions for the general constrained optimization problems are necessary, these conditions are sufficient for both linear optimization problems and convex quadratic optimization problems which are considered extensively in this book. ## A.1 Problem introduction Consider the general optimization problem: $$\begin{aligned} \min_{\mathbf{x} \in \mathbf{R}^n} & f(\mathbf{x}) \\ \text{subject to} & c_i(\mathbf{x}) = \mathbf{0}, & i \in \mathcal{E} \\ & c_i(\mathbf{x}) \geq \mathbf{0}, & i \in \mathcal{I} \end{aligned}$$ where f is the objective function and c_i are the constraint functions; these functions are all smooth, real-valued on a subset of \mathbf{R}^n , and \mathcal{E} and \mathcal{I} are two finite sets of indices for equality constraints and inequality constraints respectively. The feasible set Ω is defined as the set of all points \mathbf{x} that satisfy all the con- straints, i.e., $$\Omega = \{ \mathbf{x} | c_i(\mathbf{x}) = \mathbf{0}, \quad i \in \mathcal{E}; \quad c_i(\mathbf{x}) \ge \mathbf{0}, \quad i \in \mathcal{I}. \}$$ (A.1) So that one can rewrite (A.1) as $$\min_{\mathbf{O}} f(\mathbf{x}). \tag{A.2}$$ A vector \mathbf{x}^* is a local solution of the problem (A.1) if $\mathbf{x}^* \in \Omega$ and there is a neighborhood $\mathcal N$ of \mathbf{x}^* such that $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ for $\mathbf{x} \in \mathcal N \cap \Omega$. A vector \mathbf{x}^* is a strict local solution of the problem (A.1) if $\mathbf{x}^* \in \Omega$ and there is a neighborhood $\mathcal N$ of \mathbf{x}^* such that $f(\mathbf{x}) > f(\mathbf{x}^*)$ for $\mathbf{x} \in \mathcal N \cap \Omega$ with $\mathbf{x} \neq \mathbf{x}^*$. A vector \mathbf{x}^* is a global solution of the problem (A.1) if $\mathbf{x}^* \in \Omega$ such that $f(\mathbf{x}) \geq f(\mathbf{x}^*)$. A vector \mathbf{x}^* is a strict global solution of the problem (A.1) if $\mathbf{x}^* \in \Omega$ such that $f(\mathbf{x}) > f(\mathbf{x}^*)$ for $\mathbf{x} \in \Omega$ with $\mathbf{x} \neq \mathbf{x}^*$. ### A.2 Karush-Kuhn-Tucker conditions To state the first order optimality conditions, we introduce the Lagrangian function for the constrained optimization problem (A.1) which is defined as $$\mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) - \sum_{i \in \mathcal{S}_1 \mid \mathcal{T}} \lambda_i c_i(\mathbf{x}). \tag{A.3}$$ The active set at any feasible x is the union of the set \mathcal{E} and the indices of the active inequality constraints given by $$\mathcal{A}(\mathbf{x}) = \mathcal{E} \cup \{ i \in \mathcal{I} | c_i(\mathbf{x}) = \mathbf{0} \}. \tag{A.4}$$ The first order optimality conditions are directly related to the linearly independent constraint qualification (LICQ) which is defined as follows: **Definition A.1** Given the point \mathbf{x}^* and the active set $\mathcal{A}(\mathbf{x}^*)$ defined by (A.4), the linear independent constraint qualification is said to be held if the set of active constraint gradients $\{\nabla_i c_i(\mathbf{x}^*), i \in \mathcal{A}(\mathbf{x}^*)\}$ is linearly independent. Note that if this condition holds, none of the active constraint gradients can be zero. Now we are ready to state the first-order necessary conditions. #### Theorem A.1 Suppose that \mathbf{x}^* is a local solution of (A.1) and that the LICQ holds at \mathbf{x}^* . Then, there is a Lagrange multiplier vector λ^* , with components λ_i , $i \in \mathcal{E} \cup \mathcal{I}$ such that the following conditions are satisfied at $(\mathbf{x}^*, \lambda^*)$ $$\nabla_{x} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \mathbf{0}, \tag{A.5a}$$ $$c_i(\mathbf{x}^*) = \mathbf{0}, \quad \forall i \in \mathcal{E},$$ (A.5b) $$c_i(\mathbf{x}^*) \ge \mathbf{0}, \quad \forall i \in \mathcal{I},$$ (A.5c) $$\lambda_i^* \ge \mathbf{0}, \quad \forall i \in \mathcal{I}, \tag{A.5d}$$ $$\lambda_i^* c_i(\mathbf{x}^*) = \mathbf{0}, \quad \forall i \in \mathcal{E} \cup \mathcal{I}.$$ (A.5e) The proof of Theorem A.1 is very technical, therefore, is omitted. Readers who are interested in the proof are referred to [188]. The conditions of (A.5) are widely known as the Karush-Kuhn-Tucker conditions or KKT conditions for short. The KKT conditions were first proved by Karush in his master thesis in 1939 [116] and rediscovered by Kuhn and Tucker in 1951 [125]. A special solution is important and deserve its own definition: **Definition A.2** Given a local solution \mathbf{x}^* of (A.1) and a vector λ^* satisfying (A.5), we say that the solution is strict complementary if exactly one of λ_i^* and $c_i(\mathbf{x}^*)$ is zero for each index $i \in \mathcal{I}$. In other words, $\lambda_i^* > 0$ for each $i \in \mathcal{I} \cap \mathcal{A}(\mathbf{x}^*)$. # Appendix B # **Optimal Control** This appendix provides a brief review of optimal control with focus on the discrete-time linear system. The reasons behind the choice of the materials are (a) most compute controlled systems are based on the discrete-time system, (b) the nonlinear systems are normally reduced to linear systems so that the complexity is manageable in system design, and (c) we include the minimum materials in the appendices that will be necessary to understand the main body of the book. # **B.1** General discrete-time optimal control problem Let the nonlinear system be described by the general discrete-time dynamical equations: $$\mathbf{x}_{k+1} = \mathbf{f}_k(\mathbf{x}_k, \mathbf{u}_k) \tag{B.1}$$ where $\mathbf{x}_k \in \mathbf{R}^n$ is the state of the system, $\mathbf{u} \in \mathbf{R}^m$ is the control input, and the initial condition is \mathbf{x}_0 . The subscript k indicates that in general the system and its model can be time-varying. Let the cost function of the system be given as: $$J = \phi(N, \mathbf{x}_N) + \sum_{k=0}^{N-1} L_k(\mathbf{x}_k, \mathbf{u}_k),$$ (B.2) where $k \in [0, N]$ is the time interval on a discrete scale with a fixed sample step, ϕ is the cost of the final state deviation from zero, and $L_k(\mathbf{x}_k, \mathbf{u}_k)$ is the cost of state and control input at each intermediate time $k \in [0, N-1]$. The optimal control problem is to find an optimal solution \mathbf{u}_k^* on the interval [0, N-1] that minimizes the cost function (B.2) along the trajectory \mathbf{x}_k^* defined by (B.1). It is worthwhile to note that the discrete-time optimal control problem is a nonlinear constrained optimization problem with its constraint defined by (B.1). This problem is a special case discussed in Appendix A (with only equality constraints (B.1) and objective function of (B.2)) and the solution should satisfy the KKT conditions. Thus, let $\lambda_k \in \mathbf{R}^n$ be the Lagrange multiplier vector, and we define an augmented cost function by $$J' = \phi(N, \mathbf{x}_N) + \sum_{k=0}^{N-1} \left[L_k(\mathbf{x}_k, \mathbf{u}_k) + \lambda_{k+1}^{\mathrm{T}} \left(\mathbf{f}_k(\mathbf{x}_k, \mathbf{u}_k) - \mathbf{x}_{k+1} \right) \right].$$ (B.3) Let the Hamiltonian function be $$H_k(\mathbf{x}_k, \mathbf{u}_k) = L_k(\mathbf{x}_k, \mathbf{u}_k) + \lambda_{k+1}^{\mathrm{T}} \mathbf{f}_k(\mathbf{x}_k, \mathbf{u}_k),$$ (B.4) then, by rearranging the terms in (B.3), we have $$J' = \phi(N, \mathbf{x}_N) + \lambda_N^{\mathrm{T}} \mathbf{x}_N + H_0(\mathbf{x}_0, \mathbf{u}_0) + \sum_{k=1}^{N-1} \left[H_k(\mathbf{x}_k, \mathbf{u}_k) - \lambda_k^{\mathrm{T}} \mathbf{x}_k \right].$$ (B.5) The first order necessary optimal conditions are $$\frac{\partial J'}{\partial \lambda_{k+1}} = \mathbf{0} \quad \Rightarrow \quad \mathbf{x}_{k+1} = \mathbf{f}_k(\mathbf{x}_k, \mathbf{u}_k)$$ (B.6a) $$\frac{\partial J'}{\partial \mathbf{x}_k} = \mathbf{0} \quad \Rightarrow \quad \lambda_k = \frac{\partial H_k}{\partial \mathbf{x}_k} = \left(\frac{\partial \mathbf{f}_k}{\partial \mathbf{x}_k}\right)^{\mathrm{T}} \lambda_{k+1} + \frac{\partial L_k}{\partial \mathbf{x}_k}$$ (B.6b) $$\mathbf{0} = \frac{\partial H_k}{\partial \mathbf{u}_k} = \left(\frac{\partial \mathbf{f}_k}{\partial \mathbf{u}_k}\right)^{\mathrm{T}} \lambda_{k+1} + \frac{\partial L_k}{\partial \mathbf{u}_k}$$ (B.6c) $$0 = \frac{\partial H_0}{\partial \mathbf{x}_0} d\mathbf{x}_0 \tag{B.6d}$$ $$0 = \left(\frac{\partial \phi}{\partial \mathbf{x}_N} - \lambda_N\right)^{\mathrm{T}} d\mathbf{x}_N \tag{B.6e}$$ Since in our problem, \mathbf{x}_0 is given, $d\mathbf{x}_0$ is zero, the equation (B.6d) can be omitted. If \mathbf{x}_N is fixed, then we can omit (B.6e). But if \mathbf{x}_N is a free state, then $$\lambda_N = \frac{\partial \phi}{\partial \mathbf{x}_N} \tag{B.7}$$ is a valid equation. In summary, solving the nonlinear system of equations (B.6) will find the optimal control input \mathbf{u}_{k}^{*} . #### **B.2** Solution of discrete-time LQR control problem In theory, the solution of (B.6) provides the solution of the general discretetime optimal control problem. But it is in general very difficult to find the solution of (B.6). In engineering practice,
engineers normally reduce the nonlinear system to a linearized system, design the control system for the linear system, and then verify the design actually works for the nonlinear system. Therefore, the solution of discrete-time linear quadratic optimal control problem has been extensively studied. In this case, the system dynamics is reduced to $$\mathbf{x}_{k+1} = \mathbf{A}_k \mathbf{x}_k + \mathbf{B}_k \mathbf{u}_k \tag{B.8}$$ with the initial condition \mathbf{x}_0 . The cost function of the system is reduced to: $$J = \frac{1}{2} \mathbf{x}_N^{\mathsf{T}} \mathbf{Q}_N \mathbf{x}_N + \frac{1}{2} \sum_{k=0}^{N-1} \left(\mathbf{x}_k^{\mathsf{T}} \mathbf{Q}_k \mathbf{x}_k + \mathbf{u}_k^{\mathsf{T}} \mathbf{R}_k \mathbf{u}_k \right), \tag{B.9}$$ where \mathbf{Q}_k and \mathbf{R}_k are positive semi-definite. This problem is referred to as the Linear Quadratic Regulator (LQR) problem. This is a convex quadratic optimization problem discussed in Appendix A. Its Hamiltonian function is given as: $$H_k(\mathbf{x}_k, \mathbf{u}_k) = \frac{1}{2} \left(\mathbf{x}_k^{\mathrm{T}} \mathbf{Q}_k \mathbf{x}_k + \mathbf{u}_k^{\mathrm{T}} \mathbf{R}_k \mathbf{u}_k \right) + \lambda_{k+1}^{\mathrm{T}} \left(\mathbf{A}_k \mathbf{x}_k + \mathbf{B}_k \mathbf{u}_k \right). \tag{B.10}$$ The first order necessary optimal conditions (B.6) are then reduced to $$\mathbf{x}_{k+1} = \frac{\partial H_k}{\partial \lambda_{k+1}} = \mathbf{A}_k \mathbf{x}_k + \mathbf{B}_k \mathbf{u}_k$$ (B.11a) $$\lambda_k = \frac{\partial H_k}{\partial \mathbf{x}_k} = \mathbf{Q}_k \mathbf{x}_k + \mathbf{A}_k^{\mathrm{T}} \lambda_{k+1}$$ (B.11b) $$\mathbf{0} = \frac{\partial H_k}{\partial \mathbf{u}_k} = \mathbf{R}_k \mathbf{u}_k + \mathbf{B}_k^{\mathrm{T}} \lambda_{k+1}$$ (B.11c) $$\mathbf{0} = \mathbf{Q}_N \mathbf{x}_N - \lambda_N \tag{B.11d}$$ with \mathbf{x}_0 being given. If \mathbf{x}_N is known, we can find the optimal solution by (a) using (B.11d) to get λ_N , (b) using (B.11c) to get $\mathbf{u}_{N-1} = -\mathbf{R}_{N-1}^{-1}\mathbf{B}_{N-1}^{T}\lambda_N$, (c) using (B.11a) to get \mathbf{x}_{N-1} , and (d) using (B.11b) to get λ_{N-1} . Repeating Steps (b), (c), and (d), we should find \mathbf{x}_0 as expected. The main problem is that we don't know \mathbf{x}_N at the very beginning if \mathbf{x}_N is a fee variable. From (B.11c), we have $$\mathbf{u}_k = -\mathbf{R}_k^{-1} \mathbf{B}_k^{\mathrm{T}} \lambda_{k+1}. \tag{B.12}$$ A very important assumption in the so-called sweep method [33] is about the relation between λ_k and \mathbf{x}_k which is given as follows: $$\lambda_k = \mathbf{P}_k \mathbf{x}_k, \tag{B.13}$$ where $\mathbf{P}_k \in \mathbf{R}^{n \times n}$ is a matrix to be determined. Substituting this relation into (B.11a) yields $$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k - \mathbf{B}_k \mathbf{R}_k^{-1} \mathbf{B}_k^{\mathrm{T}} \mathbf{P}_{k+1} \mathbf{x}_{k+1}. \tag{B.14}$$ Solving for \mathbf{x}_{k+1} gives $$\mathbf{x}_{k+1} = (\mathbf{I} + \mathbf{B}_k \mathbf{R}_k^{-1} \mathbf{B}_k^{\mathrm{T}} \mathbf{P}_{k+1})^{-1} \mathbf{A}_k \mathbf{x}_k.$$ (B.15) Now substituting (B.13) into (B.11b) yields $$\mathbf{P}_k \mathbf{x}_k = \mathbf{Q}_k \mathbf{x}_k + \mathbf{A}_k^{\mathrm{T}} \mathbf{P}_{k+1} \mathbf{x}_{k+1}. \tag{B.16}$$ Substituting (B.15) into (B.16) yields $$\mathbf{P}_{k}\mathbf{x}_{k} = \mathbf{Q}_{k}\mathbf{x}_{k} + \mathbf{A}_{k}^{\mathrm{T}}\mathbf{P}_{k+1}(\mathbf{I} + \mathbf{B}_{k}\mathbf{R}_{k}^{-1}\mathbf{B}_{k}^{\mathrm{T}}\mathbf{P}_{k+1})^{-1}\mathbf{A}_{k}\mathbf{x}_{k}. \tag{B.17}$$ Since this equation holds for all possible \mathbf{x}_k , we must have the following Riccati matrix equation: $$\mathbf{P}_{k} = \mathbf{Q}_{k} + \mathbf{A}_{k}^{\mathsf{T}} \mathbf{P}_{k+1} (\mathbf{I} + \mathbf{B}_{k} \mathbf{R}_{k}^{-1} \mathbf{B}_{k}^{\mathsf{T}} \mathbf{P}_{k+1})^{-1} \mathbf{A}_{k}.$$ (B.18) Using the Woodbury identity [203], the Riccati matrix equation can be written as follows: $$\mathbf{P}_{k} = \mathbf{Q}_{k} + \mathbf{A}_{k}^{\mathrm{T}} \left[\mathbf{P}_{k+1} - \mathbf{P}_{k+1} \mathbf{B}_{k} (\mathbf{R}_{k} + \mathbf{B}_{k}^{\mathrm{T}} \mathbf{P}_{k+1} \mathbf{B}_{k})^{-1} \mathbf{B}_{k}^{\mathrm{T}} \mathbf{P}_{k+1} \right] \mathbf{A}_{k}.$$ (B.19) From (B.11d), we have $\lambda_N = \mathbf{Q}_N \mathbf{x}_N$; therefore, $$\mathbf{P}_N = \mathbf{Q}_N. \tag{B.20}$$ Substituting backward in equation (B.19), we can calculate the solution of the discrete Riccati equation. From (B.12), we have $$\mathbf{u}_{k} = -\mathbf{R}_{k}^{-1}\mathbf{B}_{k}^{\mathrm{T}}\boldsymbol{\lambda}_{k+1}$$ $$= -\mathbf{R}_{k}^{-1}\mathbf{B}_{k}^{\mathrm{T}}\mathbf{P}_{k+1}(\mathbf{A}_{k}\mathbf{x}_{k} + \mathbf{B}_{k}\mathbf{u}_{k})$$ $$= -(\mathbf{R}_{k} + \mathbf{B}_{k}^{\mathrm{T}}\mathbf{P}_{k+1}\mathbf{B}_{k})^{-1}\mathbf{B}_{k}^{\mathrm{T}}\mathbf{P}_{k+1}\mathbf{A}_{k}\mathbf{x}_{k}.$$ (B.21) Finally, using (B.8), we can obtain the entire state response trajectory. # **B.3** LQR control for discrete-time LTI system In this section, we consider a more specific problem: the linear quadratic regulator control for discrete-time linear time-invariant systems. There are several reasons for paying special attention to this problem. First, for the linear time-varying system, the Riccati equation solution needs a lot of storage space, especially when *N* is large. Second, many engineer system can be approximately modeled by the linear time-invariant system. For computer-controlled system, the model is in discrete-time. The LQR control for discrete-time LTI system is described as follows: $$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k \tag{B.22}$$ where **A** and **B** are constant matrices and the initial condition \mathbf{x}_0 is given. The cost function of the system is given as: $$J = \lim_{N \to \infty} \left[\frac{1}{2} \mathbf{x}_N^{\mathrm{T}} \mathbf{Q} \mathbf{x}_N + \frac{1}{2} \sum_{k=0}^{N-1} \left(\mathbf{x}_k^{\mathrm{T}} \mathbf{Q} \mathbf{x}_k + \mathbf{u}_k^{\mathrm{T}} \mathbf{R} \mathbf{u}_k \right) \right], \tag{B.23}$$ where Q and R are constant matrices. A key idea to solve this problem is to consider a linear system of equations involving both the state variable \mathbf{x}_k and the co-state variable λ_k . Combining the relation of (B.11) and (B.12) gives the following (see also [272]): $$\begin{bmatrix} \mathbf{x}_{k+1} \\ \lambda_k \end{bmatrix} = \begin{bmatrix} \mathbf{A} & -\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{\mathrm{T}} \\ \mathbf{Q} & \mathbf{A}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \mathbf{x}_k \\ \lambda_{k+1} \end{bmatrix}. \tag{B.24}$$ If **A** is invertible, then $$\mathbf{x}_k = \mathbf{A}^{-1} \mathbf{x}_{k+1} + \mathbf{A}^{-1} \mathbf{B} \mathbf{R}^{-1} \mathbf{B}^{\mathrm{T}} \lambda_{k+1}. \tag{B.25}$$ This allows us to have a different expression of (B.24) $$\begin{bmatrix} \mathbf{x}_{k} \\ \boldsymbol{\lambda}_{k} \end{bmatrix} = \begin{bmatrix} \mathbf{A}^{-1} & \mathbf{A}^{-1}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{\mathrm{T}} \\ \mathbf{Q}\mathbf{A}^{-1} & \mathbf{A}^{\mathrm{T}} + \mathbf{Q}\mathbf{A}^{-1}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{k+1} \\ \boldsymbol{\lambda}_{k+1} \end{bmatrix} := \mathbf{H} \begin{bmatrix} \mathbf{x}_{k+1} \\ \boldsymbol{\lambda}_{k+1} \end{bmatrix}.$$ (B.26) It is straightforward to verify that $$\mathbf{H}^{-1} = \begin{bmatrix} \mathbf{A} + \mathbf{B} \mathbf{R}^{-1} \mathbf{B}^{\mathrm{T}} \mathbf{A}^{-\mathrm{T}} \mathbf{Q} & -\mathbf{B} \mathbf{R}^{-1} \mathbf{B}^{\mathrm{T}} \mathbf{A}^{-\mathrm{T}} \\ -\mathbf{A}^{-\mathrm{T}} \mathbf{Q} & \mathbf{A}^{-\mathrm{T}} \end{bmatrix}.$$ (B.27) Similar to the assumption for the linear time-varying system, we make a very important assumption as follows: $$\lambda_k = \mathbf{P}\mathbf{x}_k,\tag{B.28}$$ where $\mathbf{P} \in \mathbf{R}^{n \times n}$ is a constant matrix. We expect that the matrix \mathbf{P} is the solution of the Riccati equation (B.19) with $A_k = A$, $B_k = B$, $Q_k = Q$, and $R_k = R$ as $k \to \infty$, i.e., $$\mathbf{P} = \mathbf{Q} + \mathbf{A}^{\mathrm{T}} \left[\mathbf{P} - \mathbf{P} \mathbf{B} (\mathbf{R} + \mathbf{B}^{\mathrm{T}} \mathbf{P} \mathbf{B})^{-1} \mathbf{B}^{\mathrm{T}} \mathbf{P} \right] \mathbf{A}. \tag{B.29}$$ To find **P** satisfying (B.28), first we show that there is a matrix **W** such that $$\mathbf{W}^{-1}\mathbf{H}\mathbf{W} = \mathbf{D},\tag{B.30}$$ where **D** is a diagonal matrix. Moreover, if μ is an eigenvalue of **D**, then $\frac{1}{\mu}$ is also an eigenvalue of **D** with the same multiplicity. Let $[\mathbf{f}^T, \mathbf{g}^T]^T$ be the eigenvector corresponding to the eigenvalue of μ . Then, $$\begin{bmatrix} \mathbf{A}^{-1} & \mathbf{A}^{-1}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{\mathrm{T}} \\ \mathbf{Q}\mathbf{A}^{-1} & \mathbf{A}^{\mathrm{T}} + \mathbf{Q}\mathbf{A}^{-1}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \mathbf{f} \\ \mathbf{g} \end{bmatrix} = \mu \begin{bmatrix} \mathbf{f} \\ \mathbf{g} \end{bmatrix}.$$ (B.31) 336 This can be rearranged as $$\begin{bmatrix} (\mathbf{A} + \mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{\mathsf{T}}\mathbf{A}^{-\mathsf{T}}\mathbf{Q})^{\mathsf{T}} & -(\mathbf{A}^{-\mathsf{T}}\mathbf{Q})^{\mathsf{T}} \\ -(\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{\mathsf{T}}\mathbf{A}^{-\mathsf{T}})^{\mathsf{T}} & \mathbf{A}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{g} \\ -\mathbf{f} \end{bmatrix} = \mu \begin{bmatrix} \mathbf{g} \\ -\mathbf{f} \end{bmatrix}. \quad (B.32)$$ Since \mathbf{Q} and \mathbf{R} are symmetric, the last equation is equivalent to $$\mathbf{H}^{-\mathrm{T}} \left[\begin{array}{c} \mathbf{g} \\ -\mathbf{f} \end{array} \right] = \mu \left[\begin{array}{c} \mathbf{g} \\ -\mathbf{f} \end{array} \right],$$ i.e., μ is an eigenvalue of \mathbf{H}^{-T} ; therefore, μ is an eigenvalue of
\mathbf{H}^{-1} . This proves that $\frac{1}{\mu}$ is also an eigenvalue of \mathbf{H} and there is an invertible matrix \mathbf{W} and a diagonal matrix \mathbf{D} such that (B.30) holds. Now, we consider $[\mathbf{w}_k^T, \mathbf{z}_k^T]^T$ which satisfies the following relation $$\begin{bmatrix} \mathbf{x}_k \\ \lambda_k \end{bmatrix} = \mathbf{W} \begin{bmatrix} \mathbf{w}_k \\ \mathbf{z}_k \end{bmatrix} = \begin{bmatrix} \mathbf{W}_{11} & \mathbf{W}_{12} \\ \mathbf{W}_{21} & \mathbf{W}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{w}_k \\ \mathbf{z}_k \end{bmatrix}. \tag{B.33}$$ Combining (B.26), (B.30), and (B.33), and using the fact that both μ and $\frac{1}{\mu}$ are eigenvalues of **H**, we have $$\begin{bmatrix} \mathbf{w}_k \\ \mathbf{z}_k \end{bmatrix} = \mathbf{D} \begin{bmatrix} \mathbf{w}_{k+1} \\ \mathbf{z}_{k+1} \end{bmatrix} := \begin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{M}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{w}_{k+1} \\ \mathbf{z}_{k+1} \end{bmatrix}, \quad (B.34)$$ where M is a diagonal matrix and all diagonal elements are outside the unit circle. Repeatedly using (B.34), we have $$\begin{bmatrix} \mathbf{w}_k \\ \mathbf{z}_k \end{bmatrix} = \begin{bmatrix} \mathbf{M}^{N-k} & \mathbf{0} \\ \mathbf{0} & \mathbf{M}^{-(N-k)} \end{bmatrix} \begin{bmatrix} \mathbf{w}_N \\ \mathbf{z}_N \end{bmatrix}, \tag{B.35}$$ Since we want to let $N \to \infty$ for the steady-state solution to the infinite time problem, and **M** is not stable, we rewrite (B.35) as $$\begin{bmatrix} \mathbf{w}_{N} \\ \mathbf{z}_{k} \end{bmatrix} = \begin{bmatrix} \mathbf{M}^{-(N-k)} & \mathbf{0} \\ \mathbf{0} & \mathbf{M}^{-(N-k)} \end{bmatrix} \begin{bmatrix} \mathbf{w}_{k} \\ \mathbf{z}_{N} \end{bmatrix}, \tag{B.36}$$ Now we consider the relations between \mathbf{x}_k and λ_k to determine **P**. From (B.33), we have $$\lambda_N = \mathbf{W}_{21}\mathbf{w}_N + \mathbf{W}_{22}\mathbf{z}_N = \mathbf{P}\mathbf{x}_N = \mathbf{P}(\mathbf{W}_{11}\mathbf{w}_N + \mathbf{W}_{12}\mathbf{z}_N).$$ (B.37) Solving \mathbf{z}_N in terms of \mathbf{w}_N yields $$\mathbf{z}_N = -(\mathbf{W}_{22} - \mathbf{P}\mathbf{W}_{12})^{-1}(\mathbf{W}_{21} - \mathbf{P}\mathbf{W}_{11})\mathbf{w}_N := \mathbf{T}\mathbf{w}_N.$$ (B.38) From (B.36) and (B.38), we have $$\mathbf{z}_k = \mathbf{M}^{-(N-k)} \mathbf{z}_N = \mathbf{M}^{-(N-k)} \mathbf{T} \mathbf{w}_N = \mathbf{M}^{-(N-k)} \mathbf{T} \mathbf{M}^{-(N-k)} \mathbf{w}_k := \mathbf{T}_k \mathbf{w}_k. \quad (B.39)$$ Using (B.33) again, $$\lambda_k = \mathbf{W}_{21}\mathbf{w}_k + \mathbf{W}_{22}\mathbf{z}_k = \mathbf{P}\mathbf{x}_k = \mathbf{P}(\mathbf{W}_{11}\mathbf{w}_k + \mathbf{W}_{12}\mathbf{z}_k). \tag{B.40}$$ Substituting (B.39) into (B.40) yields $$(\mathbf{W}_{21} + \mathbf{W}_{22}\mathbf{T}_k)\mathbf{w}_k = \mathbf{P}(\mathbf{W}_{11} + \mathbf{W}_{12}\mathbf{T}_k)\mathbf{w}_k.$$ (B.41) Since this must hold for all \mathbf{w}_k , we have $$\mathbf{P} = (\mathbf{W}_{21} + \mathbf{W}_{22}\mathbf{T}_k)(\mathbf{W}_{11} + \mathbf{W}_{12}\mathbf{T}_k)^{-1}.$$ (B.42) As $N \to \infty$, we have $$\mathbf{P} = \mathbf{W}_{21} \mathbf{W}_{11}^{-1}. \tag{B.43}$$ Now we prove that **P** is the solution of the Riccati equation (B.29). Note that $$\mathbf{H} = \begin{bmatrix} \mathbf{A}^{-1} & \mathbf{A}^{-1}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{\mathrm{T}} \\ \mathbf{Q}\mathbf{A}^{-1} & \mathbf{A}^{\mathrm{T}} + \mathbf{Q}\mathbf{A}^{-1}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{\mathrm{T}} \end{bmatrix}$$ $$= \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ -\mathbf{Q} & \mathbf{I} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{I} & \mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{\mathrm{T}} \\ \mathbf{0} & \mathbf{A}^{\mathrm{T}} \end{bmatrix} := \mathbf{E}^{-1}\mathbf{F}.$$ (B.44) From (B.30) and (B.34), we have $$\begin{aligned} & HW = WD \\ \iff & FW = EWD \\ \iff & \begin{bmatrix} I & BR^{-1}B^T \\ 0 & A^T \end{bmatrix} \begin{bmatrix} W_{11} \\ W_{21} \end{bmatrix} = \begin{bmatrix} A & 0 \\ -Q & I \end{bmatrix} \begin{bmatrix} W_{11}M \\ W_{21}M \end{bmatrix}. (B.45) \end{aligned}$$ The first row of (B.45) gives $$\mathbf{W}_{11} + \mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{\mathrm{T}}\mathbf{W}_{21} = \mathbf{A}\mathbf{W}_{11}\mathbf{M}$$ $$\iff \mathbf{A} = \mathbf{W}_{11}\mathbf{M}^{-1}\mathbf{W}_{11}^{-1} + \mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{\mathrm{T}}\mathbf{W}_{21}\mathbf{M}^{-1}\mathbf{W}_{11}^{-1} \qquad (B.46)$$ $$\iff \mathbf{A} = \begin{bmatrix} \mathbf{W}_{11} + \mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{\mathrm{T}}\mathbf{W}_{21} \end{bmatrix} \mathbf{M}^{-1}\mathbf{W}_{11}^{-1}. \qquad (B.47)$$ The second row of (B.45) gives $$\mathbf{A}^{T}\mathbf{W}_{21} = -\mathbf{Q}\mathbf{W}_{11}\mathbf{M} + \mathbf{W}_{21}\mathbf{M}$$ $$\iff \mathbf{Q} = \mathbf{W}_{21}\mathbf{W}_{11}^{-1} - \mathbf{A}^{T}\mathbf{W}_{21}\mathbf{M}^{-1}\mathbf{W}_{11}^{-1}.$$ (B.48) Denote $G = B^T PB$. Substituting (B.43), (B.46), (B.47), and (B.48) into (B.29) yields $$\begin{aligned} & - P + A^T \left[P - PB(R + B^T P B)^{-1} B^T P \right] A + Q \\ & = & - W_{21} W_{11}^{-1} + A^T W_{21} W_{11}^{-1} \left(W_{11} M^{-1} W_{11}^{-1} + B R^{-1} B^T W_{21} M^{-1} W_{11}^{-1} \right) \end{aligned}$$ $$-\mathbf{A}^{T}\mathbf{P}\mathbf{B}(\mathbf{R} + \mathbf{B}^{T}\mathbf{P}\mathbf{B})^{-1}\mathbf{B}^{T}\mathbf{P}\mathbf{A} + \mathbf{W}_{21}\mathbf{W}_{11}^{-1} - \mathbf{A}^{T}\mathbf{W}_{21}\mathbf{M}^{-1}\mathbf{W}_{11}^{-1}$$ $$= \mathbf{A}^{T}\mathbf{W}_{21}\mathbf{W}_{11}^{-1}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{T}\mathbf{W}_{21}\mathbf{M}^{-1}\mathbf{W}_{11}^{-1} - \mathbf{A}^{T}\mathbf{P}\mathbf{B}(\mathbf{R} + \mathbf{B}^{T}\mathbf{P}\mathbf{B})^{-1}\mathbf{B}^{T}\mathbf{P}\mathbf{A}$$ $$= \mathbf{A}^{T}\mathbf{P}\mathbf{B}\left[\mathbf{R}^{-1}\mathbf{B}^{T}\mathbf{W}_{21}\mathbf{M}^{-1}\mathbf{W}_{11}^{-1} - (\mathbf{R} + \mathbf{B}^{T}\mathbf{P}\mathbf{B})^{-1}\mathbf{B}^{T}\mathbf{P}\mathbf{A}\right]$$ $$= \mathbf{A}^{T}\mathbf{P}\mathbf{B}\left[\mathbf{R}^{-1}\mathbf{B}^{T}\mathbf{W}_{21} - (\mathbf{R} + \mathbf{G})^{-1}\mathbf{B}^{T}\mathbf{W}_{21}\mathbf{W}_{11}^{-1}\left(\mathbf{W}_{11} + \mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{T}\mathbf{W}_{21}\right)\right]$$ $$= \mathbf{A}^{T}\mathbf{P}\mathbf{B}\left[\mathbf{R}^{-1} - (\mathbf{R} + \mathbf{G})^{-1} - (\mathbf{R} + \mathbf{G})^{-1}\mathbf{G}\mathbf{R}^{-1}\right]\mathbf{B}^{T}\mathbf{W}_{21}\mathbf{M}^{-1}\mathbf{W}_{11}^{-1}$$ $$= \mathbf{A}^{T}\mathbf{P}\mathbf{B}(\mathbf{R} + \mathbf{G})^{-1}\left[(\mathbf{R} + \mathbf{G})\mathbf{R}^{-1} - \mathbf{I} - \mathbf{G}\mathbf{R}^{-1}\right]\mathbf{B}^{T}\mathbf{W}_{21}\mathbf{M}^{-1}\mathbf{W}_{11}^{-1}$$ $$= \mathbf{0} \qquad (\text{since } (\mathbf{R} + \mathbf{G})\mathbf{R}^{-1} - \mathbf{I} - \mathbf{G}\mathbf{R}^{-1} = \mathbf{0}). \qquad (B.49)$$ This proves that $\mathbf{P} = \mathbf{W}_{21} \mathbf{W}_{11}^{-1}$ is indeed the solution of the discrete Riccati equa- The optimal feedback is given by $$\mathbf{u}_k = -(\mathbf{R} + \mathbf{B}^{\mathrm{T}} \mathbf{P} \mathbf{B})^{-1} \mathbf{B}^{\mathrm{T}} \mathbf{P} \mathbf{A} \mathbf{x}_k = -\mathbf{K} \mathbf{x}_k. \tag{B.50}$$ # Appendix C # **Robust Pole Assignment** This appendix provides a brief review of robust pole assignments with a focus on a continuous-time linear system. The reasons behind the choice of the materials are (a) most existing literature discuss continuous-time linear system, (b) extension to the discrete-time system is straightforward, and (c) we include the minimum materials in the appendices that will be necessary to understand the main body of the book. In this appendix, we will consider the following linear time-invariant system: $$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u},\tag{C.1}$$ where $\mathbf{x} \in \mathbf{R}^n$, $\mathbf{u} \in \mathbf{R}^m$, $\mathbf{A} \in \mathbf{R}^{n \times n}$, and $\mathbf{B} \in \mathbf{R}^{n \times m}$. We assume that (\mathbf{A}, \mathbf{B}) is controllable, and $rank(\mathbf{B}) = m > 1$. Under this assumption, the pole assignment design is not unique. Therefore, we can use the extra degrees of freedom to achieve more desired features than the required performance. One of the important desired features is system robustness to the modeling error. A design with this feature is called the robust pole assignment, which can be defined as follows: **Robust pole assignment:** For system given in (C.1) with (**A**,**B**) controllable and $rank(\mathbf{B}) > 1$, and a given set of desired close-loop poles $\{\lambda_1, \dots, \lambda_n\}$, robust pole assignment design is to find a feedback control $\mathbf{u} = -\mathbf{K}\mathbf{x} = \mathbf{F}\mathbf{x}$ such that the closed-loop poles are as much insensitive to the system parameter perturbation as possible. # C.1 Eigenvalue sensitivity to the perturbation For square matrices, a variety of robustness measures have been proposed to measure the robustness of their eigen-structure. When all the eigenvalues are simple, the first order sensitivity of each individual λ_i to uncertainty is given by the eigenvalue condition number [291] $$c_i := \frac{\|\mathbf{y}_i\|_2 \|\mathbf{x}_i\|_2}{|\mathbf{y}_i^{\mathsf{T}} \mathbf{x}_i|} \tag{C.2}$$ where \mathbf{y}_i and \mathbf{x}_i are the left and right eigenvectors associated with λ_i ; c_i is the Frobenius norm of the gradient of $\lambda_i(\mathbf{X})$ with respect to \mathbf{X} under the (natural) trace inner product. We use $$c_{\infty} := \max_{i} c_{i} \tag{C.3}$$ to denote the worst-case eigenvalue condition number. For the case where **X** is non-defective but has repeated eigenvalues, see [254] for a definition of the corresponding condition numbers. The Bauer-Fike theorem [77] established that c_{∞} is upper-bounded by the *spectral condition number* of the matrix of eigenvectors $$\kappa_2(\mathbf{X}) := \|\mathbf{X}\|_2 \|\mathbf{X}^{-1}\|_2 \tag{C.4}$$ and hence this is often used as a robustness measure. The
Frobenius condition number of **X** is given by $$\kappa_{fro}(\mathbf{X}) := \|\mathbf{X}\|_{fro} \|\mathbf{X}^{-1}\|_{fro} \tag{C.5}$$ Since $\kappa_2(\mathbf{X}) \leq \kappa_{fro}(\mathbf{X})$, the Frobenius condition number provides a more conservative bound on the eigenvalue sensitivity than $\kappa_2(\mathbf{X})$, but enjoys the virtue of being differentiable, and hence is often used as a robustness measure. Minimizing the measures c_{∞} , $\kappa_2(\mathbf{X})$ and $\kappa_{fro}(\mathbf{X})$ corresponds to superior robustness, with perfect robustness being achieved only when the eigenvector matrix is unitary, i.e., when \mathbf{M} is normal. Another robustness measure was proposed in [303] which is given as follows: $$|\det(\mathbf{X})| := \sqrt{\det(\mathbf{X}\mathbf{X}^*)},\tag{C.6}$$ where all columns of X are unit length and X^* is the complex conjugate of X. This robustness measure is the volume of the box spanned by unit length column vectors of X and is clearly a good measure of orthogonality, and hence it may be used as the robustness measure. Again, the perfect robustness being achieved for this metric is only when the eigenvector matrix is unitary. Let σ_i , i = 1, 2, ..., n be the singular values of **X** with σ_1 the largest singular value and σ_n the smallest singular values. It is well known that $$\kappa_2(\mathbf{X}) = \sigma_1/\sigma_n. \tag{C.7}$$ Because $$\sigma_1^2 \le \sum_{i=1}^n \sigma_i^2 = \operatorname{trace}(\mathbf{X}^T \mathbf{X}) = n,$$ (C.8) we have $\sigma_1 \leq \sqrt{n}$, i.e., σ_1 is bounded above. On the other hand, if $\sigma_n \to 0$, then $\kappa_2 \to \infty$. Therefore, σ_n is the dominant factor of $\kappa_2(\mathbf{X})$. The rest of this section is to estimate the low bound of σ_n . First, we introduce a Lemma [102]. #### Lemma C.1 Suppose that the real coefficient polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ with $a_n > 0$ and a_{n-k} being the first negative coefficient, and B is the greatest value among all the absolute values of the negative coefficients. Then $$N = 1 + \sqrt[k]{B/a_n} \tag{C.9}$$ is a upper bound of positive root of f(x). #### **Proof C.1** Assume that $$x > 1 + \sqrt[k]{B/a_n}.\tag{C.10}$$ Since $a_{n-1}, a_{n-2}, \dots, a_{n-k+1} \ge 0$, and $a_{n-k}, a_{n-k-1}, \dots, a_0 \ge -B$, we have $$f(x) = a_{n}x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}$$ $$\geq a_{n}x^{n} - B(x^{n-k} + x^{n-k-1} + \dots + x + 1)$$ $$= a_{n}x^{n} - B\frac{x^{n-k+1} - 1}{x - 1}$$ $$\geq a_{n}x^{n} - B\frac{x^{n-k+1}}{x - 1}$$ $$= \frac{x^{n-k+1}}{x - 1} \left[a_{n}x^{k-1}(x - 1) - B \right]$$ $$\geq \frac{x^{n-k+1}}{x - 1} \left[a_{n}(x - 1)^{k} - B \right]. \tag{C.11}$$ For any x satisfying (C.10), it must have f(x) > 0. Therefore, a upper bound of positive solution of f(x) = 0 is given by (C.9). #### Theorem C.1 Suppose that \mathbf{X} is a matrix composed of standardized eigenvectors and generalized eigenvectors of matrix \mathbf{A} . Denote $\Delta = \det(\mathbf{X}^T\mathbf{X})$. Then, we have $$\sigma_n^2 \ge \frac{1}{1 + \frac{1}{\Delta} \left(\frac{n}{n-1}\right)^{n-1}}.$$ (C.12) **Proof C.2** Let λ_i , i = 1,...,n be the eigenvalues of $\mathbf{X}^T\mathbf{X}$, note that $\lambda_i = \sigma_i^2$, we have a matrix \mathbf{Y} such that $$(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{Y} = \mathbf{Y}\operatorname{diag}(\sigma_1^2, \dots, \sigma_n^2), \tag{C.13}$$ moreover (C.8) and the following relation $$\prod_{i=1}^{n} \sigma_i^2 = \prod_{i=1}^{n} \lambda_i(\mathbf{X}^{\mathsf{T}} \mathbf{X}) = \det(\mathbf{X}^{\mathsf{T}} \mathbf{X}) = \Delta.$$ (C.14) hold. Denote the sets $$K_1 = \{ \sigma_i | \sigma_i \text{ satisfy } (C.13), (C.8), (C.14) \},$$ $K_2 = \{ \sigma_i | \sigma_i \text{ satisfy } (C.8), (C.14) \}.$ We have $\min_{\sigma_i \in K_1} \sigma_n^2 \ge \min_{\sigma_i \in K_2} \sigma_n^2$. The lower bound is established based on $\min_{\sigma_i \in K_2} \sigma_n^2$. The Lagrangian for this minimization problem is given by $$L = \sigma_n^2 + eta_0 \left(\prod_{i=1}^n \sigma_i^2 - \Delta ight) + eta_1 \left(\sum_{i=1}^n \sigma_i^2 - n ight).$$ Therefore, we have $$\frac{\partial L}{\partial \sigma_i} = 2\beta_0 \prod_{i \neq i}^n \sigma_i^2 \sigma_i + 2\beta_1 \sigma_i = 0, \quad i \neq n, \tag{C.15a}$$ $$\frac{\partial L}{\partial \sigma_n} = 2\sigma_n + 2\beta_0 \prod_{j \neq n} \sigma_j^2 \sigma_n + 2\beta_1 \sigma_n = 0, \tag{C.15b}$$ $$\frac{\partial L}{\partial \beta_0} = \prod_{i=1}^n \sigma_i^2 - \Delta = 0, \tag{C.15c}$$ $$\frac{\partial L}{\partial \beta_1} = \sum_{i=1}^n \sigma_i^2 - n = 0, \tag{C.15d}$$ and $$\frac{\partial L}{\partial \sigma_n} - \frac{\partial L}{\partial \sigma_i}$$ $$= 2\sigma_n + 2\beta_0 \prod_{j \neq i, n} \sigma_j^2 \left(\sigma_n \sigma_i^2 - \sigma_n^2 \sigma_i\right) + 2\beta_1 (\sigma_n - \sigma_i)$$ $$= 2\sigma_n + 2 \left[\beta_0 \prod_{j \neq i, n} \sigma_j^2 \sigma_n \sigma_i - \beta_1\right] (\sigma_i - \sigma_n) = 0.$$ (C.16) Since $det(\mathbf{X}^T\mathbf{X}) \neq 0$, we have $\sigma_n \neq 0$, which means $$\sigma_i \neq \sigma_n, \quad \forall i \neq n.$$ (C.17) Since $$rac{\partial L}{\partial \sigma_i} - rac{\partial L}{\partial \sigma_j} = \left[2eta_0 \left(\prod_{k eq i,j} \sigma_k^2 \sigma_j \sigma_i ight) - 2eta_1 ight] (\sigma_j - \sigma_i) = 0,$$ we have either one or both of the following relations hold. $$\sigma_j = \sigma_i, \quad i \neq j, \quad \forall i, j \neq n,$$ (C.18a) $$\beta_1/\beta_0 = \prod_{k \neq i, j} \sigma_k^2 \sigma_j \sigma_i, \quad \forall i, j, k \neq n, \quad i \neq j \neq k.$$ (C.18b) By symmetry, the second relation is equivalent to the first one. Substituting (C.17) and (C.18a) into (C.15c) and (C.15d) and denoting $\lambda = \lambda_i, i \neq n$, we have $$\lambda^{(n-1)}\lambda_n = \Delta, \quad (n-1)\lambda + \lambda_n = n \tag{C.19a}$$ $$f(\lambda_n) = (n - \lambda_n)^{(n-1)} \lambda_n - \Delta(n-1)^{(n-1)} = 0.$$ (C.19b) Since λ_n is positive and is a solution of (C.19b), λ_n must be greater than or equal to the smallest positive root of (C.19b). It is hard to get the analytic solution of the smallest positive root. But we can estimate the lower bound of the smallest positive root. Considering $\phi(\lambda_n) = \lambda_n^n f(\frac{1}{\lambda_n})$, if α is an arbitrary positive root of $f(\lambda_n)$, then $\frac{1}{\alpha}$ is a positive root of $\phi(\lambda_n)$. If N is an upper bound of the positive roots of $\phi(\lambda_n)$, then $\frac{1}{N}$ is a lower bound of the positive roots of $f(\lambda_n)$. Note that $$\phi(\lambda_n) = \lambda_n^n \left[\frac{1}{\lambda_n} \left(n - \frac{1}{\lambda_n} \right)^{n-1} - \Delta(n-1)^{(n-1)} \right] = (n\lambda_n - 1)^{n-1} - \Delta(n-1)^{n-1} \lambda_n^n = \Delta(n-1)^{n-1} \lambda_n^n - n^{n-1} \lambda_n^{n-1} + n^{n-2} (n-1) \lambda_n^{n-1} + \dots + (-1)^{n-1} = 0.$$ (C.20) According to the Lemma, we have $$N = 1 + \frac{1}{\Delta} \left(\frac{n}{n-1} \right)^{(n-1)}.$$ (C.21) Therefore, the smallest positive solution λ_n^* of $f(\lambda_n)$ satisfies $$\lambda_n^* \ge \frac{1}{1 + \frac{1}{\Delta} \left(\frac{n}{n-1}\right)^{(n-1)}}.$$ (C.22) This finishes the proof. Unlike $\kappa_2(\mathbf{X})$, which depends on the largest and the smallest singular values (C.7), $|\det(\mathbf{X})| = \prod_{i=1}^n \sigma_i$ depends on all singular values of \mathbf{X} , which may be a better robustness measure than $\kappa_2(\mathbf{X})$. Because the merits of c_{∞} and $|\det(\mathbf{X})|$, these two robustness measures were used in [198] to compare different robust pole assignment algorithms. To make the range of $|\det(\mathbf{X})|$ similar to other robustness metrics, [198] introduces $$\Gamma(\mathbf{X}) := 1 - \log(|\det(\mathbf{X})|) \tag{C.23}$$ as an equivalent alternative to the maximization measure $|\det(\mathbf{X})|$. The use of $\Gamma(\mathbf{X})$ is preferred for consistency with c_{∞} in that smaller values correspond to superior robustness. Since computation of $\log(|\det(\mathbf{X})|)$ is not numerically reliable in MATLAB®, an equivalent alternative is proposed as follows: $$\Gamma(\mathbf{X}) = 1 - \sum_{i}^{n} \log(\sigma_i). \tag{C.24}$$ ## C.2 Robust pole assignment algorithms In the rest of this appendix, we will discuss two algorithms because of their speed. The speed is very important as we will use these algorithms in Model Predictive Control (MPC) which involves extensive on-line computations. The first algorithm is an efficient algorithm proposed in [263] which is an extension of [117] and probably the most efficient among all robust pole assignment algorithms. A critical observation is based on the following two theorems given in [117]. #### Theorem C.2 Given $\Lambda = \text{diag}\{\lambda_1, \lambda_2, \dots, \lambda_n\}$, the prescribed closed-loop eigenvalues, and **X**, a non-singular matrix composed of closed-loop eigenvectors, then there exists **F**, a solution to $$(\mathbf{A} + \mathbf{BF})\mathbf{X} = \mathbf{X}\Lambda \tag{C.25}$$ if and only if $$\mathbf{U}_{1}^{\mathrm{T}}(\mathbf{A}\mathbf{X} - \mathbf{X}\Lambda) = \mathbf{0},\tag{C.26}$$ where $$\mathbf{B} = \begin{bmatrix} \mathbf{U}_0 & \mathbf{U}_1 \end{bmatrix} \begin{bmatrix} \mathbf{Z} \\ \mathbf{0} \end{bmatrix} \tag{C.27}$$ with $U := [U_0 \ U_1]$ orthogonal and Z nonsingular. Then F is given by $$\mathbf{F} := \mathbf{Z}^{-1} \mathbf{U}_0^{\mathrm{T}} (\mathbf{X} \Lambda \mathbf{X}^{-1} - \mathbf{A}) \tag{C.28}$$ **Proof C.3** The assumption that **B** is full rank implies the existence of decomposition (C.27). From (C.25), **F** must satisfy $$\mathbf{BF} = \mathbf{X}\Lambda\mathbf{X}^{-1} - \mathbf{A} \tag{C.29}$$ and pre-multiplying U^T gives the following equations $$\mathbf{ZF} = \mathbf{U}_0^{\mathrm{T}} (\mathbf{X} \Lambda \mathbf{X}^{-1} - \mathbf{A}), \tag{C.30a}$$ $$\mathbf{0} = \mathbf{U}_1^{\mathrm{T}} (\mathbf{X} \Lambda
\mathbf{X}^{-1} - \mathbf{A}). \tag{C.30b}$$ Since **X** and **Z** are invertible, equations (C.30) implies (C.26) and (C.28). Also, the columns \mathbf{x}_i , i = 1, ..., n, of \mathbf{X} must satisfy the following constraint. #### Theorem C.3 The eigenvector \mathbf{x}_i of $\mathbf{A} + \mathbf{BF}$ corresponding to the assigned eigenvalue $\lambda_i \in \mathcal{L}$ must belong to the space $$S_i := \ker(\mathbf{U}_1^{\mathrm{T}}(\mathbf{A} - \lambda_i \mathbf{I})). \tag{C.31}$$ **Proof C.4** From (C.26), we have $\mathbf{U}_1^{\mathrm{T}}(\mathbf{A} - \lambda_i \mathbf{I})\mathbf{x}_i = 0$, for $\forall i$. This proves the theorem. The main idea of the algorithm is to select $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]$ nonsingular such that $\mathbf{x}_i \in \mathcal{S}_i$ and $\|\mathbf{x}_i\|_2 = 1$, $i = 1, \dots, n$, such that $|\det(\mathbf{X})|$ is maximized. For some \mathbf{X} , if $\det(\mathbf{X})$ is minimized, let $\hat{\mathbf{X}}$ be a matrix that is equal to \mathbf{X} except the sign of one column is changed, then, $\det \hat{\mathbf{X}}$ is maximized. Therefore, the robust pole assignment problem is reduced to solve the following optimization problem: max $$det(\mathbf{X})$$ s.t. $\mathbf{x}_i \in S_i$, $||\mathbf{x}_i|| = 1$, $i = 1, ..., n$, $det(\mathbf{X}) \neq 0$. (C.32) Once the optimal **X** is obtained, the feedback matrix is given by (C.28). First, S_i can be obtained by the following steps: #### Algorithm C.1 Step 1: Using a QR decomposition of **B**, we can get U_0 , U_1 , and **Z** as given in (C.27). Step 2: Using QR decompositions for every prescribed closed-loop pole λ_i $$(\mathbf{U}_1^T(\mathbf{A} - \lambda_i \mathbf{I}))^T = [\mathbf{V}_{0i} \ \mathbf{V}_i] \begin{bmatrix} \mathbf{Y} \\ \mathbf{0} \end{bmatrix}$$ The m columns of V_i is the orthonormal base of S_i . Starting from the initial point $\mathbf{X}^0 = [\mathbf{x}_i^0, \dots, \mathbf{x}_n^0]$ with $\mathbf{x}_i^0 \in \mathbf{V}_i$, the main trick of the algorithm is to select one or at most two \mathbf{x}_i at a time to increase the robustness measurement $\det(\mathbf{X})$ so that every iteration becomes extremely efficient. This strategy is based on several useful theorems [263, 328]. The first one is a method of updating one column of \mathbf{X} at a time. Let $\mathbf{x}_j \in \mathcal{S}_j$ and $\|\mathbf{x}_j\|_2 = 1$ for $\forall j \in \{1, ..., n\}$. Let i be any index in $\{1, ..., n\}$ such that \mathbf{x}_i is a real eigenvector corresponding to a real eigenvalue, $\mathbf{X}(\xi) = [\mathbf{x}_1, ..., \mathbf{x}_{i-1}, \xi, \mathbf{x}_{i+1}, ..., \mathbf{x}_n]$, and $\mathbf{X}_- = [\mathbf{x}_1, ..., \mathbf{x}_{i-1}, \mathbf{x}_{i+1}, ..., \mathbf{x}_n]$. Let $\mathbf{u}_i(\mathbf{X}_-)$ be the unit length vector orthogonal to \mathbf{X}_- such that the inner product of $\langle \mathbf{u}_i(\mathbf{X}_-), \mathbf{x}_i \rangle > 0$. Then, we can replace \mathbf{x}_i by ξ , a new eigenvector of λ_i , such that $det(\mathbf{X}(\xi))$ is maximized. This is an optimization problem, its mathematical formula and the corresponding solution is given as the following theorem (see also [304]). #### Theorem C.4 Let $\mathbf{x}_i \in \mathcal{S}_i$ be a real eigenvector corresponding to a prescribed real closed-loop pole λ_i . Consider the following optimization problem: $$\max \det(\mathbf{X}(\xi)) \quad s.t. \quad \|\xi\| = 1, \quad \xi \in \mathcal{S}_i, \tag{C.33}$$ we have $$\det(\mathbf{X}(\xi)) = \langle \xi, \mathbf{u}_i(\mathbf{X}_-) \rangle \sqrt{\det(\mathbf{X}_-^T \mathbf{X}_-)}, \tag{C.34}$$ the optimization problem (C.33) is reduced to $$\max\langle \xi, \mathbf{u}_i(\mathbf{X}_-) \rangle$$ s.t. $\|\xi\| = 1$, $\xi \in \mathcal{S}_i$. (C.35) The optimal solution of (C.35) is given by $$\xi = \frac{\mathbf{V}_i \mathbf{V}_i^{\mathrm{T}} \mathbf{u}_i(\mathbf{X}_-)}{\|\mathbf{V}_i^{\mathrm{T}} \mathbf{u}_i(\mathbf{X}_-)\|}.$$ (C.36) **Proof C.5** Let **P** be the permutation matrix such that $$\mathbf{XP} = [\xi, \mathbf{X}_{-}],\tag{C.37}$$ and let $\mathbf{Q} \in \mathbf{R}^{n \times (n-1)}$ and $\mathbf{R} \in \mathbf{R}^{(n-1) \times (n-1)}$ be any two matrices such that $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$ and $$\mathbf{X}_{-} = \mathbf{Q}\mathbf{R}.\tag{C.38}$$ Using (C.37) and (C.38), we obtain $$(\det(\mathbf{X}))^{2} = \det(\mathbf{X}^{T}\mathbf{X})$$ $$= \det(\mathbf{P}^{T}\mathbf{X}^{T}\mathbf{X}\mathbf{P}) = \det([\boldsymbol{\xi}, \mathbf{X}_{-}]^{T}[\boldsymbol{\xi}, \mathbf{X}_{-}])$$ $$= \det\left(\begin{bmatrix} \boldsymbol{\xi}^{T}\boldsymbol{\xi} & \boldsymbol{\xi}^{T}\mathbf{X}_{-} \\ \mathbf{X}_{-}^{T}\boldsymbol{\xi} & \mathbf{X}_{-}^{T}\mathbf{X}_{-} \end{bmatrix}\right)$$ $$= (\boldsymbol{\xi}^{T}\boldsymbol{\xi} - \boldsymbol{\xi}^{T}\mathbf{X}_{-}(\mathbf{X}_{-}^{T}\mathbf{X}_{-})^{-1}\mathbf{X}_{-}^{T}\boldsymbol{\xi})\det(\mathbf{X}_{-}^{T}\mathbf{X}_{-})$$ $$= (\boldsymbol{\xi}^{T}\boldsymbol{\xi} - \boldsymbol{\xi}^{T}\mathbf{Q}\mathbf{R}(\mathbf{R}^{T}\mathbf{R})^{-1}\mathbf{R}^{T}\mathbf{Q}^{T}\boldsymbol{\xi})\det(\mathbf{X}_{-}^{T}\mathbf{X}_{-})$$ $$= (\boldsymbol{\xi}^{T}\boldsymbol{\xi} - \boldsymbol{\xi}^{T}\mathbf{Q}\mathbf{Q}^{T}\boldsymbol{\xi})\det(\mathbf{X}_{-}^{T}\mathbf{X}_{-}). \tag{C.39}$$ Now note that $[\mathbf{Q}, \mathbf{u}_i(\mathbf{X}_-)]$ is an orthogonal matrix so that $$\mathbf{Q}\mathbf{Q}^{\mathrm{T}} + \mathbf{u}_{i}(X_{-})\mathbf{u}_{i}(\mathbf{X}_{-})^{\mathrm{T}} = \mathbf{I}.$$ Thus $$(\det(\mathbf{X}))^{2} = \xi^{\mathrm{T}} \mathbf{u}_{i}(X_{-}) \mathbf{u}_{i}(\mathbf{X}_{-})^{\mathrm{T}} \xi \det(\mathbf{X}_{-}^{\mathrm{T}} \mathbf{X}_{-})$$ $$= \langle \xi, \mathbf{u}_{i}(\mathbf{X}_{-}) \rangle^{2} \det(\mathbf{X}_{-}^{\mathrm{T}} \mathbf{X}_{-}). \tag{C.40}$$ Note that $\langle \xi, \mathbf{u}_i(\mathbf{X}_-) \rangle$ and $\det(\mathbf{X})$ have the same sign since (i) they are both linear in ξ , (ii) in view of (C.40) they vanish simultaneously and (iii) they are both positive at $\xi = \mathbf{x}_i$. The first claim follows. To prove the second part, notice that $\xi \in \mathcal{S}_i$ implies $\xi = \mathbf{V}_i \mathbf{z}$ for some \mathbf{z} . Since $\|\xi\| = 1$, it is easy to see that maximizing $\mathbf{z}^T \mathbf{V}_i^T \mathbf{u}_i(\mathbf{X}_-)$ with $\|\xi\| = 1$ is given by (C.36). If all prescribed closed-loop poles are real, then by cyclically updating the eigenvector one by one, we will continuously improve the robustness measure of $\det(\mathbf{X})$. This is the strategy proposed by [117]. Computation involved in Theorem C.4, given \mathbf{X} , is inexpensive. The main task, computation of $\mathbf{u}_i(\mathbf{X}_-)$, can be effected by means of a QR factorization of \mathbf{X}_- . Kautsky *et al.* note that the QR factorization to be carried out at iteration k > 0 can be obtained by a rankone update of that computed at iteration k - 1, requiring only $O(n^2)$ operations; and that the subsequent projection on ξ that yields the *i*th column of the new \mathbf{X} requires O(nm) operations, for a total of $O(n^2) + O(mn)$ operations per iteration. Although optimizing one eigenvector at a time makes the problem simple and computationally attractive, there are two reasons to consider optimizing more eigenvectors if we can maintain the low cost in each iteration. First, we may achieve a better convergence rate because more eigenvectors are optimized at each iteration. Second, the method proposed above cannot be directly applied to problems that have prescribed complex conjugate eigenvalues, i.e., have complex conjugate eigenvectors. We now consider an updating method for two eigenvectors at a time. For simplicity of exposition, suppose that n is even, say n = 2p. Given $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]$, let $$\mathbf{X}_{=} = [\mathbf{x}_1, \cdots, \mathbf{x}_{2i-2}, \mathbf{x}_{2i+1}, \cdots, \mathbf{x}_n],$$ and $$\mathbf{X}(\xi, \eta) = [\mathbf{x}_1, \dots, \mathbf{x}_{2i-2}, \xi, \eta, \mathbf{x}_{2i+1}, \dots, \mathbf{x}_n].$$ Let $\mathbf{U}_i(\mathbf{X}_{=}) \in \mathbf{R}^{n \times n}$, i = 1, ..., p, be defined by $$\mathbf{U}_i(\mathbf{X}_{=}) = (\mathbf{u}\mathbf{v}^{\mathrm{T}} - \mathbf{v}\mathbf{u}^{\mathrm{T}})$$ where $\mathbf{u}, \mathbf{v} \in \mathbf{R}^n$ form an orthonormal basis for the orthogonal complement of the set $$\{\mathbf{x}_1,\ldots,\mathbf{x}_{2(i-1)},\mathbf{x}_{2i+1},\ldots,\mathbf{x}_n\},\$$ and satisfy the inequality $$\langle \mathbf{x}_{2i-1}, \mathbf{u} \rangle \langle \mathbf{x}_{2i}, \mathbf{v} \rangle \ge \langle \mathbf{x}_{2i-1}, \mathbf{v} \rangle \langle \mathbf{x}_{2i}, \mathbf{u} \rangle$$ (C.41) (note that the latter can be achieved by proper choice of the orientation of \mathbf{u} and \mathbf{v}). It is readily checked that $\mathbf{U}_i(\mathbf{X}_=)$ is thus uniquely determined (although \mathbf{u} and \mathbf{v} are not) and is continuous as a function of \mathbf{X} . #### Theorem C.5 Let $\mathbf{x}_{2i-1} \in \mathcal{S}_{2i-1}$ and $\mathbf{x}_{2i} \in \mathcal{S}_{2i}$ be two real eigenvectors corresponding to two prescribed real closed-loop poles λ_{2i-1} and λ_{2i} . Consider the following optimization problem: $$\max \det(\mathbf{X}(\xi, \eta))$$ s.t. $\|\xi\| = 1$, $\xi \in S_{2i-1}$, $\|\eta\| = 1$, $\eta \in S_{2i}$, (C.42) we have $$\det(\mathbf{X}) = \langle \xi, \mathbf{U}_i(\mathbf{X}_{=}) \eta \rangle \sqrt{\det(\mathbf{X}_{=}^T \mathbf{X}_{=})}, \tag{C.43}$$ the optimization problem (C.42) is reduced to maximize $$\langle \xi, \mathbf{U}_i(\mathbf{X}_=) \boldsymbol{\eta} \rangle$$ s.t. $\|\xi\| = 1$, $\xi \in \mathcal{S}_{2i-1}$, $\|\boldsymbol{\eta}\| = 1$, $\boldsymbol{\eta} \in \mathcal{S}_{2i}$. (C.44) ## **Proof C.6** Let **P** be a permutation matrix such that $$\mathbf{XP} = [\xi, \eta, \mathbf{X}_{=}], \tag{C.45}$$ and let $\mathbf{Q} \in \mathbf{R}^{n \times (n-2)}$ and $\mathbf{R}
\in \mathbf{R}^{(n-2) \times (n-2)}$ be any two matrices such that $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$ and $$\mathbf{X}_{=} = \mathbf{OR}.\tag{C.46}$$ Using (C.45) and (C.46) we have $$\begin{aligned} (\det(\mathbf{X}))^2 &= \det(\mathbf{X}^T \mathbf{X} \mathbf{Y}) \\ &= \det(\mathbf{P}^T \mathbf{X}^T \mathbf{X} \mathbf{P}) = \det([\boldsymbol{\xi}, \boldsymbol{\eta}, \mathbf{X}_=]^T [\boldsymbol{\xi}, \boldsymbol{\eta}, \mathbf{X}_=]) \\ &= \det\left(\begin{bmatrix} \boldsymbol{\xi}^T \\ \boldsymbol{\eta}^T \end{bmatrix} [\boldsymbol{\xi}, \boldsymbol{\eta}] & \begin{bmatrix} \boldsymbol{\xi}^T \\ \boldsymbol{\eta}^T \end{bmatrix} \mathbf{X}_= \\ & \mathbf{X}_=^T [\boldsymbol{\xi}, \boldsymbol{\eta}] & \mathbf{X}_=^T \mathbf{X}_= \end{bmatrix} \right) \\ &= \det\left(\begin{bmatrix} \boldsymbol{\xi}^T \\ \boldsymbol{\eta}^T \end{bmatrix} [\boldsymbol{\xi}, \boldsymbol{\eta}] - \begin{bmatrix} \boldsymbol{\xi}^T \\ \boldsymbol{\eta}^T \end{bmatrix} \mathbf{X}_= (\mathbf{X}_=^T \mathbf{X}_=)^{-1} \mathbf{X}_=^T [\boldsymbol{\xi}, \boldsymbol{\eta}] \right) \det(\mathbf{X}_=^T \mathbf{X}_=) \\ &= \det\left(\begin{bmatrix} \boldsymbol{\xi}^T \\ \boldsymbol{\eta}^T \end{bmatrix} [\boldsymbol{\xi}, \boldsymbol{\eta}] - \begin{bmatrix} \boldsymbol{\xi}^T \\ \boldsymbol{\eta}^T \end{bmatrix} \mathbf{Q} \mathbf{R} (\mathbf{R}^T \mathbf{R})^{-1} \mathbf{R}^T \mathbf{Q}^T [\boldsymbol{\xi}, \boldsymbol{\eta}] \right) \det(\mathbf{X}_=^T \mathbf{X}_=) \\ &= \det\left(\begin{bmatrix} \boldsymbol{\xi}^T \\ \boldsymbol{\eta}^T \end{bmatrix} [\boldsymbol{\xi}, \boldsymbol{\eta}] - \begin{bmatrix} \boldsymbol{\xi}^T \\ \boldsymbol{\eta}^T \end{bmatrix} \mathbf{Q} \mathbf{Q}^T [\boldsymbol{\xi}, \boldsymbol{\eta}] \right) \det(\mathbf{X}_=^T \mathbf{X}_=) \end{aligned}$$ Now, $\mathbf{U}_i(\mathbf{X}_{=}) = (\mathbf{u}\mathbf{v}^T - \mathbf{v}\mathbf{u}^T)$ with $\{\mathbf{u}, \mathbf{v}\}$ an orthonormal basis for the null space of $\mathbf{X}_{=}^T$ satisfying (C.41). Thus $[\mathbf{Q}, \mathbf{u}, \mathbf{v}]$ is orthogonal, therefore $$\mathbf{Q}\mathbf{Q}^{\mathrm{T}} + \begin{bmatrix} \mathbf{u} & \mathbf{v} \end{bmatrix} \begin{bmatrix} \mathbf{u}^{\mathrm{T}} \\ \mathbf{v}^{\mathrm{T}} \end{bmatrix} = \mathbf{I},$$ and $$(\det(\mathbf{X}))^{2} = \det\left(\begin{bmatrix} \boldsymbol{\xi}_{\boldsymbol{\eta}^{T}}^{T} \end{bmatrix} [\mathbf{u}, \mathbf{v}] \begin{bmatrix} \mathbf{u}^{T} \\ \mathbf{v}^{T} \end{bmatrix} [\boldsymbol{\xi}, \boldsymbol{\eta}]\right) \det(\mathbf{X}_{=}^{T} \mathbf{X}_{=})$$ $$= \left(\det\left(\begin{bmatrix} \boldsymbol{\xi}_{\mathbf{\eta}^{T}}^{T} \end{bmatrix} [\mathbf{u}, \mathbf{v}]\right)\right)^{2} \det(\mathbf{X}_{=}^{T} \mathbf{X}_{=})$$ $$= \left(\langle \boldsymbol{\xi}, \mathbf{u} \rangle \langle \boldsymbol{\eta}, \mathbf{v} \rangle - \langle \boldsymbol{\xi}, \mathbf{v} \rangle \langle \boldsymbol{\eta}, \mathbf{u} \rangle\right)^{2} \det(\mathbf{X}_{=}^{T} \mathbf{X}_{=}). \tag{C.48}$$ Next. $$\operatorname{sgn}(\det(\mathbf{X})) = \operatorname{sgn}(\langle \xi, \mathbf{u} \rangle \langle \eta, \mathbf{v} \rangle - \langle \xi, \mathbf{v} \rangle \langle \eta, \mathbf{u} \rangle),$$ since (i) the arguments in both sides are quadratic in ξ , η , (ii) in view of (C.48) they vanish simultaneously and (iii) in view of (C.41) and since $\det(\mathbf{X}) > 0$ they are both positive at $\xi = \mathbf{x}_{2i-1}$, and $\eta = \mathbf{x}_{2i}$. Thus $$\det(\mathbf{X}) = (\langle \xi, \mathbf{u} \rangle \langle \eta, \mathbf{v} \rangle - \langle \xi, \mathbf{v} \rangle \langle \eta, \mathbf{u} \rangle) \sqrt{\det(\mathbf{X}_{=}^{\mathsf{T}} \mathbf{X}_{=})}$$ $$= \langle \xi, \mathbf{U}_{i}(\mathbf{X}_{=}) \eta \rangle \sqrt{\det(\mathbf{X}_{=}^{\mathsf{T}} \mathbf{X}_{=})}. \tag{C.49}$$ The claim follows. Since $\xi \in \mathcal{S}_{2i-1}$ and $\eta \in \mathcal{S}_{2i}$, noticing that \mathbf{V}_{2i-1} and \mathbf{V}_{2i} are the bases of \mathcal{S}_{2i-1} and \mathcal{S}_{2i} , we can reduce the problem a little further. #### Proposition C.1 *The optimization (C.44) is equivalent to the following optimization problem:* maximize $$\langle \mu, \mathbf{V}_{2i-1}^{\mathsf{T}} \mathbf{U}_i(\mathbf{X}_{=}) \mathbf{V}_{2i} v \rangle$$ s.t. $\|\mu\| = 1$, $\|v\| = 1$. (C.50) Noticing that $U_i(\mathbf{X}_{=})$ is a rank 2 matrix, we can solve the optimization problem (C.50) very efficiently. #### Theorem C.6 Let $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbf{X}$, let $i \in \{1, \dots, p\}$, let $\sigma_1 \geq \sigma_2$ be the top two singular values of $\mathbf{V}_{2i-1}^T \mathbf{U}_i(\mathbf{X}_=) \mathbf{V}_{2i}$, and for j = 1, 2, let μ_j , $v_j \in \mathbf{R}^m$ form a left-right singular vector pair associated with σ_j with the property that $\langle \mu_1, \mu_2 \rangle = 0$ and $\langle v_1, v_2 \rangle = 0$. Then for $i = 1, \dots, p$, the optimal update defined by (C.44) or (C.50) is given by: $$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_{2i-2}, \xi, \eta, \mathbf{x}_{2i+1}, \dots, \mathbf{x}_n],$$ where $$\begin{bmatrix} \xi \\ \eta \end{bmatrix} = \sqrt{2}\zeta/\|\zeta\|$$ and (i) if $\sigma_1 > \sigma_2$, then, ζ is the orthogonal projection of $\begin{bmatrix} \mathbf{x}_{2i-1} \\ \mathbf{x}_{2i} \end{bmatrix}$ on the span of $\begin{bmatrix} \mathbf{V}_{2i-1}\mu_1 \\ \mathbf{V}_{2i}V_1 \end{bmatrix}$, i.e., $$\zeta = \begin{bmatrix} \mathbf{V}_{2i-1}\mu_1 \\ \mathbf{V}_{2i}\mathbf{V}_1 \end{bmatrix} \begin{bmatrix} \mathbf{V}_{2i-1}\mu_1 \\ \mathbf{V}_{2i}\mathbf{V}_1 \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \mathbf{x}_{2i-1} \\ \mathbf{x}_{2i} \end{bmatrix} = (\langle \mathbf{x}_{2i-1}, \mathbf{V}_{2i-1}\mu_1 \rangle + \langle \mathbf{x}_{2i}, \mathbf{V}_{2i}\mathbf{V}_1 \rangle) \begin{bmatrix} \mathbf{V}_{2i-1}\mu_1 \\ \mathbf{V}_{2i}\mathbf{V}_1 \end{bmatrix}$$ (C.51) (ii) if $$\sigma_1 = \sigma_2$$, then, ζ is the orthogonal projection of $\begin{bmatrix} \mathbf{x}_{2i-1} \\ \mathbf{x}_{2i} \end{bmatrix}$ on the span of $\left\{ \begin{bmatrix} \mathbf{V}_{2i-1}\mu_1 \\ \mathbf{V}_{2i}\nu_1 \end{bmatrix}, \begin{bmatrix} \mathbf{V}_{2i-1}\mu_2 \\ \mathbf{V}_{2i}\nu_2 \end{bmatrix} \right\}$, i.e., $$\zeta = \begin{bmatrix} \mathbf{V}_{2i-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{V}_{2i} \end{bmatrix} \begin{bmatrix} \mu_1 & \mu_2 \\ v_1 & v_2 \end{bmatrix} \begin{bmatrix} \mu_1 & \mu_2 \\ v_1 & v_2 \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \mathbf{V}_{2i-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{V}_{2i} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \mathbf{x}_{2i-1} \\ \mathbf{x}_{2i} \end{bmatrix}.$$ (C.52) ## **Proof C.7** The proof is straightforward by using (C.50) and therefore omitted. Consider now the case where the set of desired poles includes a number of complex conjugate pairs. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues to be assigned. For the sake of simplicity of exposition, again assume that n is even. Moreover assume that $\{\lambda_1, \ldots, \lambda_n\} \cap \mathbf{R} = \{\lambda_1, \ldots, \lambda_{2p}\}$, i.e., $\lambda_1, \ldots, \lambda_{2p}$ are real and $\lambda_{2p+1}, \ldots, \lambda_n$ are complex; let c be the number of complex pairs, i.e., c = n/2 - p, and assume that $\lambda_{2i} = \overline{\lambda}_{2i-1}$, $i = p+1, \ldots, p+c$. Clearly, candidate sets of eigenvectors of the closed loop matrix $\mathbf{A} + \mathbf{BF}$ must include c complex conjugate pairs. Moreover, as in the real case, they must satisfy additional conditions. The next theorem extends Theorem C.3. #### Theorem C.7 Let $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]$, nonsingular, and $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ be two complex $n \times n$ matrices such that (i) for $j = 1, \dots, 2p$, $\lambda_j \in \mathbf{R}$ and $\mathbf{x}_j \in \mathbf{R}^n$, and (ii) for $i = p + 1, \dots, p + c$, $\lambda_{2i} = \overline{\lambda}_{2i-1}$ and $\mathbf{x}_{2i} = \overline{\mathbf{x}}_{2i-1}$. Then - (i) $\mathbf{X}\Lambda\mathbf{X}^{-1}$ is real, and - (ii) $(\mathbf{A} + \mathbf{BF})\mathbf{X} = \mathbf{X}\Lambda$ for some real matrix \mathbf{F} if and only if $\mathbf{x}_j \in \mathcal{S}_j$, j = 1, ..., n. **Proof C.8** Let $\mathbf{P} \in \mathbf{R}^{n \times n}$ be the permutation matrix that exchanges columns 2i-1 and 2i, $i=p+1,\ldots,p+c$, of the matrix it post-multiplies. Thus, $\mathbf{X} = \overline{\mathbf{X}}\mathbf{P}, \overline{\Lambda} = \mathbf{P}\Lambda\mathbf{P}$, and $\mathbf{P}^{-1} = \mathbf{P}$. Then $$\overline{\mathbf{X}}\Lambda \overline{\mathbf{X}}^{-1} = \overline{\mathbf{X}}\mathbf{P}\Lambda \mathbf{P}\overline{\mathbf{X}}^{-1} = \overline{\mathbf{X}}\mathbf{P}\Lambda (\overline{\mathbf{X}}\mathbf{P})^{-1} = \mathbf{X}\Lambda \mathbf{X}^{-1},$$ proving the first claim. Now suppose that for some real matrix ${\bf F},\,({\bf A}+{\bf B}{\bf F}){\bf X}={\bf X}\Lambda.$ Then $$AX - X\Lambda = -BFX$$ implying that $$(\mathbf{A} - \lambda_j \mathbf{I}) \mathbf{x}_j \in \mathbf{R}_{\mathbf{C}}(\mathbf{B}), \ j = 1, \dots, n,$$ (C.53) where $\mathbf{R}_{\mathbf{C}}(\mathbf{B}) = {\mathbf{B}\mathbf{y} : \mathbf{y} \in \mathbf{C}^m}$, i.e., $\mathbf{x}_j \in \mathcal{S}_j$ for j = 1, ..., n. Finally, suppose that (C.53) holds, i.e., for some $\mathbf{y}_j \in \mathbf{C}^m$, j = 1, ..., n, $$(\mathbf{A} - \lambda_i \mathbf{I}) \mathbf{x}_i = \mathbf{B} \mathbf{y}_i.$$ Thus $$AX - XA = BY$$. with $\mathbf{Y} := [\mathbf{y}_1, \dots, \mathbf{y}_n] \in \mathbb{C}^{m \times n}$, i.e., $$\mathbf{A} - \mathbf{X} \Lambda \mathbf{X}^{-1} = \mathbf{B} \mathbf{Y} \mathbf{X}^{-1}.$$ The left hand side is a real matrix. Thus $$\mathbf{B}\mathbf{Y}\mathbf{X}^{-1} = \mathcal{R}_e(\mathbf{B}\mathbf{Y}\mathbf{X}^{-1}) = \mathbf{B}\mathcal{R}_e(\mathbf{Y}\mathbf{X}^{-1}).$$ The last claim then follows by setting $\mathbf{F} = \mathcal{R}_e(\mathbf{Y}\mathbf{X}^{-1})$. In view of this result, we will focus on a modification of problem (C.32)
given by max $$\det(\mathbf{X})$$ s.t. $\mathbf{x}_{i} \in \mathcal{S}_{i}$, $\|\mathbf{x}_{i}\| = 1$, $i = 1, ..., n$; $\mathbf{x}_{2i-1} = \overline{\mathbf{x}}_{2i}, i = p+1, ..., p+c$; $\mathbf{x}_{i} \in \mathbf{R}^{n}, i = 1, ..., 2p$; $\det(\mathbf{X}) \neq 0$. (C.54) Since we consider only the case of updating a pair of complex conjugate eigenvectors, we can reduce the problem quite a bit and solve the reduced problem efficiently. Let $$\mathbf{\tilde{U}}_{i}(\mathbf{X}_{=}) = \mathbf{u}\overline{\mathbf{u}}^{T} - \overline{\mathbf{u}}\mathbf{u}^{T},$$ where $\mathbf{u} = \mathbf{u}_R + \mathbf{j}\mathbf{u}_I$ is such that $\sqrt{2}\mathbf{u}_R$, $\sqrt{2}\mathbf{u}_I \in \mathbf{R}^n$ form an orthonormal basis for the orthogonal complement of the set $$\{\mathbf{x}_1,\ldots,\mathbf{x}_{2p}\}\cup\{\mathcal{R}_e(\mathbf{x}_{2j}),\mathcal{I}_m(\mathbf{x}_{2j}),j=p+1,\ldots,p+c,j\neq i\},$$ and satisfy the inequality $$\langle \mathcal{R}_e(\mathbf{x}_{2i}), \mathbf{u}_R \rangle \langle \mathcal{I}_m(\mathbf{x}_{2i}), \mathbf{u}_I \rangle \ge \langle \mathcal{R}_e(\mathbf{x}_{2i}), \mathbf{u}_I \rangle \langle \mathcal{I}_m(\mathbf{x}_{2i}), \mathbf{u}_R \rangle.$$ (C.55) Again, it is readily checked that $\tilde{\mathbf{U}}_i(\mathbf{X}_{=})$ is thus uniquely determined and is continuous as a function of $\mathbf{X}_{=}$. #### Lemma C.2 Let $i \in \{p+1, ..., p+c\}$, and let $\mathbf{u} = \mathbf{u}_R + \mathbf{j}\mathbf{u}_I$ be such that $\sqrt{2}\mathbf{u}_R$, $\sqrt{2}\mathbf{u}_I \in \mathbf{R}^n$ form an orthonormal basis for the orthogonal complement of the set $$\{\mathbf{x}_1,\ldots,\mathbf{x}_{2p}\}\cup\{\mathcal{R}_e(\mathbf{x}_{2j}),\mathcal{I}_m(\mathbf{x}_{2j}),j=p+1,\ldots,p+c,j\neq i\}.$$ Then $\{\mathbf{u}, \overline{\mathbf{u}}\}$ is an orthonormal basis for the null space of $[\mathbf{x}_1, \dots, \mathbf{x}_{2i-2}, \mathbf{x}_{2i+1}, \dots, \mathbf{x}_n]^*$. The following theorem is critical to provide an efficient method to update two complex conjugate eigenvectors. #### Theorem C.8 Let $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbf{C}^{n \times n}$ with $\mathbf{x}_1, \dots, \mathbf{x}_{2p} \in \mathbf{R}^n$, and $\mathbf{x}_{2i-1} = \overline{\mathbf{x}}_{2i}$, $i = p+1, \dots, p+c$ be such that $\det(\mathbf{X}) \neq 0$, let $\eta \in \mathbf{C}^n$, let $i \in \{p+1, \dots, p+c\}$, and let $$\mathbf{X}(\boldsymbol{\eta}) = [\mathbf{x}_1, \cdots, \mathbf{x}_{2i-2}, \overline{\boldsymbol{\eta}}, \boldsymbol{\eta}, \mathbf{x}_{2i+1}, \cdots, \mathbf{x}_n]$$ (C.56) and $$\mathbf{X}_{=} = [\mathbf{x}_{1}, \cdots, \mathbf{x}_{2i-2}, \mathbf{x}_{2i+1}, \cdots, \mathbf{x}_{n}].$$ Then $X_{-}^{*}X_{-}$ is nonsingular, and $$|\det(\mathbf{X})| = |\langle \boldsymbol{\eta}, \tilde{\mathbf{U}}_i(\mathbf{X}_{=}) \boldsymbol{\eta} \rangle| \sqrt{\det(\mathbf{X}_{=}^* \mathbf{X}_{=})}. \tag{C.57}$$ **Proof C.9** Let **P** be the permutation matrix such that $$\mathbf{XP} = (\overline{\eta}, \eta, \mathbf{X}_{=}), \tag{C.58}$$ and let $\mathbf{Q} \in \mathbf{C}^{n \times (n-2)}$ and $\mathbf{R} \in \mathbf{C}^{(n-2) \times (n-2)}$ be any two matrices such that $\mathbf{Q}^*\mathbf{Q} = \mathbf{I}$ and $$\mathbf{X}_{=} = \mathbf{Q}\mathbf{R}.\tag{C.59}$$ Using (C.58) and (C.59) we have $$\begin{aligned} \left| \det(\mathbf{X}) \right|^2 &= \det(\mathbf{X}^* \mathbf{X}) \\ &= \det(\mathbf{P}^T \mathbf{X}^* \mathbf{X} \mathbf{P}) = \det((\overline{\eta}, \eta, \mathbf{X}_=)^* (\overline{\eta}, \eta, \mathbf{X}_=)) \\ &= \det\left(\begin{bmatrix} \overline{\eta}^* \\ \eta^* \end{bmatrix} [\overline{\eta}, \eta] \begin{bmatrix} \overline{\eta}^* \\ \eta^* \end{bmatrix} \mathbf{X}_= \\ \mathbf{X}_=^* [\overline{\eta}, \eta] & \mathbf{X}_=^* \mathbf{X}_= \end{bmatrix} \end{aligned}$$ $$= \det \left(\begin{bmatrix} \overline{\eta}^* \\ \eta^* \end{bmatrix} [\overline{\eta}, \eta] - \begin{bmatrix} \overline{\eta}^* \\ \eta^* \end{bmatrix} \mathbf{X}_{=} (\mathbf{X}_{=}^* \mathbf{X}_{=})^{-1} \mathbf{X}_{=}^* [\overline{\eta}, \eta] \right) \det(\mathbf{X}_{=}^* \mathbf{X}_{=})$$ $$= \det \left(\begin{bmatrix} \overline{\eta}^* \\ \eta^* \end{bmatrix} [\overline{\eta}, \eta] - \begin{bmatrix} \overline{\eta}^* \\ \eta^* \end{bmatrix} \mathbf{Q} \mathbf{R} (\mathbf{R}^* \mathbf{R})^{-1} \mathbf{R}^* \mathbf{Q}^* [\overline{\eta}, \eta] \right) \det(\mathbf{X}_{=}^* \mathbf{X}_{=})$$ $$= \det \left(\begin{bmatrix} \overline{\eta}^* \\ \eta^* \end{bmatrix} [\overline{\eta}, \eta] - \begin{bmatrix} \overline{\eta}^* \\ \eta^* \end{bmatrix} \mathbf{Q} \mathbf{Q}^* [\overline{\eta}, \eta] \right) \det(\mathbf{X}_{=}^* \mathbf{X}_{=}).$$ (C.60) Since by Lemma C.2, $\{u, \overline{u}\}$ is an orthonormal basis for the null space of $X_{\underline{=}}^*$, thus $[Q, u, \overline{u}]$ is unitary, therefore $QQ^* + \left[\begin{array}{c} u, \overline{u} \end{array}\right] \left[\begin{array}{c} u^* \\ \overline{u}^* \end{array}\right] = I$ and $$\begin{split} |\det(\mathbf{X})|^2 &= \det\left(\left[\begin{array}{c} \overline{\eta}^* \\ \eta^* \end{array}\right] [\mathbf{u}, \overline{\mathbf{u}}] \left[\begin{array}{c} \mathbf{u}^* \\ \overline{\mathbf{u}}^* \end{array}\right] [\overline{\eta}, \eta] \right) \det(\mathbf{X}_-^* \mathbf{X}_-) \\ &= \left| \det\left(\left[\begin{array}{c} \mathbf{u}^* \\ \overline{\mathbf{u}}^* \end{array}\right] [\overline{\eta}, \eta] \right) \right|^2 \det(\mathbf{X}_-^* \mathbf{X}_-) \\ &= \left| \det\left[\left[\begin{array}{c} \overline{\mathbf{u}}^T \\ \mathbf{u}^T \end{array}\right] [\overline{\eta}, \eta] \right] \right|^2 \det(\mathbf{X}_-^* \mathbf{X}_-) \\ &= \left| \left((\mathbf{u}^T \eta) (\overline{\mathbf{u}}^T \overline{\eta}) - (\overline{\mathbf{u}}^T \eta) (\mathbf{u}^T \overline{\eta}) \right|^2 \det(\mathbf{X}_-^* \mathbf{X}_-) \\ &= \left| \left\langle \eta, (\overline{\mathbf{u}} \mathbf{u}^T - \mathbf{u} \overline{\mathbf{u}}^T) \eta \right\rangle \right|^2 \det(\mathbf{X}_-^* \mathbf{X}_-). \end{split}$$ The claim follows by taking the square root on the both sides. This theorem suggests that: when updating a pair of complex conjugate eigenvectors $\bar{\mathbf{x}}_{2i}$ and \mathbf{x}_{2i} , we can reduce the problem (C.54) to the following problem: max $$det(\mathbf{X}(\eta))$$ s.t. $\overline{\eta} \in \mathcal{S}_{2i-1}$, $\eta \in \mathcal{S}_{2i}$, $\|\overline{\eta}\| = 1$, $\|\eta\| = 1$. (C.61) #### Theorem C.9 Let $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbf{X}$, let $i \in \{p+1, \dots, p+c\}$, let σ_1 and σ_2 , with $\sigma_1 \geq \sigma_2$, be the two nonzero singular values of $\mathbf{V}_{2i}^* \tilde{\mathbf{U}}_i(\mathbf{X}_=) \mathbf{V}_{2i}$, and let μ_ℓ , $\ell = 1, 2$, denote unit-length singular vectors associated with σ_ℓ with the property that $\langle \mu_1, \mu_2 \rangle = 0$. Then for $i = p+1, \dots, p+c$, the optimal update defined by (C.61) is given by $$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_{2i-2}, \overline{\eta}, \eta, \mathbf{x}_{2i+1}, \dots, \mathbf{x}_n],$$ where $\eta = \zeta/\|\zeta\|$ and (i) if $\sigma_1 > \sigma_2$, ζ is the orthogonal projection of \mathbf{x}_{2i} on the span $\mathbf{V}_{2i}\mu_1$, i.e., $$\zeta = \mathbf{V}_{2i} \mu_1 \mu_1^* \mathbf{V}_{2i}^* \mathbf{x}_{2i}, \tag{C.62}$$ ¹In fact, since $V_{2i}^*\tilde{U}_i(X)V_{2i}$ is Hermitian, left and right singular vectors have the same direction (but opposite orientation when the corresponding eigenvalue is negative). (ii) if $\sigma_1 = \sigma_2$, ζ is the orthogonal projection of \mathbf{x}_{2i} on the span $\{\mathbf{V}_{2i}\mu_1, \mathbf{V}_{2i}\mu_2\}$, i.e., $$\zeta = \mathbf{V}_{2i}[\mu_1, \, \mu_2][\mu_1, \, \mu_2]^* \mathbf{V}_{2i}^* \mathbf{x}_{2i}. \tag{C.63}$$ ## **Proof C.10** The proof is straightforward and therefore omitted. Thus, for a given $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]$, the updated \mathbf{X} can be computed as follows: ## Algorithm C.2 (Update one real eigenvector) For $i \in (1, ..., n, i.e., one real eigenvector,$ Step (1). Compute an orthonormal basis $\{\mathbf{u}(\mathbf{X}_{-})\}\subset\mathbf{R}^n$ for the orthogonal complement of $$\{\mathbf{x}_1,\ldots,\mathbf{x}_{i-1},\mathbf{x}_{i+1},\ldots,\mathbf{x}_n\}.$$ Step (2). Compute ξ as per (C.36) to obtain the updated **X**. ## Algorithm C.3 (Update two real eigenvectors) For i = 1, ..., p, i.e., two real eigenvectors, Step (1). Compute an orthonormal basis $\{u,v\} \subset \mathbf{R}^n$ for the orthogonal complement of $$\{\mathbf{x}_1,\ldots,\mathbf{x}_{2i-2},\mathbf{x}_{2i+1},\ldots,\mathbf{x}_n\}.$$ Step (2). Evaluate $\mathbf{a}_1 = \mathbf{V}_{2i-1}^T \mathbf{u}$, $\mathbf{a}_2 = \mathbf{V}_{2i-1}^T \mathbf{v}$, $\mathbf{b}_1 = \mathbf{V}_{2i}^T \mathbf{v}$, and $\mathbf{b}_2 = \mathbf{V}_{2i}^T \mathbf{u}$. Step (3). Compute a singular value decomposition of $$[\boldsymbol{a}_1,\;\boldsymbol{a}_2][\boldsymbol{b}_1,\;-\boldsymbol{b}_2]^T\;(=\boldsymbol{V}_{2i-1}^T\boldsymbol{U}_i(\boldsymbol{X}_{=})\boldsymbol{V}_{2i}).$$ (If the nonzero singular values are distinct, the singular vectors corresponding to the second singular value need not be computed.) Step (4). Compute (ξ, η) as per Theorem C.6 to obtain the updated **X**. ## Algorithm C.4 (Update a pair of complex conjugate eigenvectors) For i = p + 1, ..., p + c, i.e., a pair of complex conjugate eigenvectors, Step (1). Compute an orthonormal basis $\{\sqrt{2}\mathbf{u}_R, \sqrt{2}\mathbf{u}_I\} \subset \mathbf{R}^n$ for the orthogonal complement of $$\{\mathbf{x}_1,\ldots,\mathbf{x}_{2p}\}\cup\{\mathcal{R}_e(\mathbf{x}_{2j}),\mathcal{I}_m(\mathbf{x}_{2j}),j=p+1,\ldots,p+c,j\neq i\},\$$ Step (2). Evaluate $\mathbf{a}_1 = \mathbf{V}_{2i}^*(\sqrt{2}\mathbf{u})$, and $\mathbf{a}_2 = \mathbf{V}_{2i}^*(\sqrt{2}\overline{\mathbf{u}})$, where $\mathbf{u} = \mathbf{u}_R + \mathbf{j}\mathbf{u}_I$. Step (3). Compute a singular value decomposition of
$$[\mathbf{a}_1, \mathbf{a}_2][\mathbf{a}_1, -\mathbf{a}_2]^* (= 2\mathbf{V}_{2i}^* \tilde{U}_i(\mathbf{X}_=)\mathbf{V}_{2i}).$$ (If the nonzero singular values are distinct, the singular vector corresponding to the second singular value need not be computed.) Step (4). Compute η as per Theorem C.9 to obtain the updated X. These three algorithms are important components of several algorithms proposed in [263]. When the matrix \mathbf{X} is convergent, then, the state feedback matrix \mathbf{F} can be computed by equation (C.28). We present a simplified algorithm to describe the procedure. Suppose a problem has 2p+1 real and 2c complex pairs of eigenvalues, and the complex conjugate eigenvalues are placed in front of real ones. ## Algorithm C.5 (Overall algorithm) Step 0. p, c, n = 2p + 2c + 1, the desired closed-loop eigenvalues $\lambda_1, \ldots, \lambda_n$, and initial \mathbf{X}_0 (this may be generated by the program). Step 1. Use Algorithm C.1 to obtain U_0 , U_1 , Z, and V_i . *Step 2. For* k = 1, 2, ... - 2-a For the c pairs of complex eigenvalues, call Algorithm C.4, end. - 2-b For the p pairs of real eigenvalues, call Algorithm C.3, end. - 2-c For the last real eigenvalue, call Algorithm C.2, end. - 2-d If $\|\mathbf{X}_k \mathbf{X}_{k-1}\| \le \varepsilon$, exit the "for" loop; otherwise, continue. Step 3. Use (C.28) to compute the feedback matrix **F**. For Algorithms C.3 and C.4, the bulk of the computation takes place in Step (1). Note that no attention is paid to satisfying (C.41) and (C.55). It is readily checked that the only effect of enforcing these inequalities is to possibly change the orientation of some columns of **X**. Several efficient algorithms are proposed in [263] based on the theory described in this section. These algorithms are proved to be globally convergent. Many details on efficient implementation are discussed in [263, 305]. A Matlab implementation for one of the algorithms is available in MathWorks' file exchange website: https://www.mathworks.com/matlabcentral/fileexchange/53969-robpole. # C.3 Misrikhanov and Ryabchenko Algorithm Strictly speaking, the Misrikhanov and Ryabchenko Algorithm [174] is not designed for robust pole assignment but simply for a pole assignment algorithm. But this design is likely related to the minimum gain pole assignment design. One of the main merits of this design is that the algorithm is probably the fastest one among all pole assignment algorithms in the author's opinion. This feature is important for Model Predictive Control (MPC) which requires on-line computation for pole assignment gain matrix. For a set of prescribed closed-loop poles, assuming that the system (\mathbf{A}, \mathbf{B}) is controllable, Misrikhanov and Ryabchenko proposed a slightly different decomposition of (C.25) given as follows: $$\mathbf{A} + \mathbf{BF} = \mathbf{X}\Lambda\mathbf{X}^{-1},\tag{C.64}$$ where Λ is a block diagonal matrix. In Λ , for each *i*th real closed-loop pole λ_i , the corresponding diagonal cell block is 1×1 ; for each pair of complex conjugate closed-loop poles, the corresponding diagonal cell block is 2×2 of the form: $$\begin{bmatrix} \mathcal{R}_e(\lambda_i) & \mathcal{I}_m(\lambda_i) \\ -\mathcal{I}_m(\lambda_i) & \mathcal{R}_e(\lambda_i) \end{bmatrix}. \tag{C.65}$$ Let $\mathbf{B}^{\perp^T} = \text{null}(\mathbf{B}^T)$ be an orthonormal matrix satisfying conditions: $$\mathbf{B}^{\perp}\mathbf{B} = \mathbf{0}_{(n-m)\times m},\tag{C.66a}$$ $$\mathbf{B}^{\perp}\mathbf{B}^{\perp^{\mathrm{T}}} = \mathbf{I}_{n-m}.\tag{C.66b}$$ Let $\mathbf{B}^+ = (\mathbf{B}^T\mathbf{B})^{-1}\mathbf{B}^T$ be the Moore-Penrose pseudo-inverse of \mathbf{B} matrix. The following lemma is important in Misrikhanov and Ryabchenko Algorithm. #### Lemma C.3 Let $X \in \mathbb{R}^{m \times (n-m)}$, $Y \in \mathbb{R}^{m \times m}$, and $F = XB^{\perp} + YB^{+} - B^{+}A$. Then, A + BF is similar to the following matrix: $$\begin{bmatrix} \mathbf{B}^{\perp} \mathbf{A} \mathbf{B}^{\perp^{\mathrm{T}}} & \mathbf{B}^{\perp} \mathbf{A} \mathbf{B} \\ \mathbf{X} & \mathbf{Y} \end{bmatrix}. \tag{C.67}$$ **Proof C.11** The proof here is due to Tits [262]. Consider the invertible matrix $$T = \left[\begin{array}{c} B^{\perp} \\ B^{+} \end{array} \right].$$ It is easy to verify that the inverse of **T** is given by $$\mathbf{T}^{-1} = \left[\mathbf{B}^{\perp \mathrm{T}}, \mathbf{B} \right]$$ because $$\begin{bmatrix} \mathbf{B}^{\perp \mathrm{T}}, \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{B}^{\perp} \\ \mathbf{B}^{+} \end{bmatrix} = \mathbf{I}_n,$$ and $$\left[\begin{array}{c} \mathbf{B}^{\perp} \\ \mathbf{B}^{+} \end{array}\right] \left[\mathbf{B}^{\perp \mathsf{T}}, \mathbf{B}\right] = \left[\begin{array}{cc} \mathbf{I}_{n-m} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{m} \end{array}\right].$$ Therefore, the following relations hold. $$\mathbf{F}\mathbf{B}^{\perp T} = \mathbf{X}\mathbf{B}^{\perp}\mathbf{B}^{\perp T} + \mathbf{Y}\mathbf{B}^{+}\mathbf{B}^{\perp T} - \mathbf{B}^{+}\mathbf{A}\mathbf{B}^{\perp T} = \mathbf{X} - \mathbf{B}^{+}\mathbf{A}\mathbf{B}^{\perp T}, \qquad (C.68a)$$ $$\mathbf{F}\mathbf{B} = \mathbf{X}\mathbf{B}^{\perp}\mathbf{B} + \mathbf{Y}\mathbf{B}^{+}\mathbf{B} - \mathbf{B}^{+}\mathbf{A}\mathbf{B} = \mathbf{Y} - \mathbf{B}^{+}\mathbf{A}\mathbf{B}. \qquad (C.68b)$$ In view of (C.68) and (C.66), one can write the similar transformation as follows: $$T(\mathbf{A} + \mathbf{B}\mathbf{F})\mathbf{T}^{-1}$$ $$= \begin{bmatrix} \mathbf{B}^{\perp} \\ \mathbf{B}^{+} \end{bmatrix} (\mathbf{A} + \mathbf{B}\mathbf{F}) \begin{bmatrix} \mathbf{B}^{\perp T}, \mathbf{B} \end{bmatrix}$$ $$= \begin{bmatrix} \mathbf{B}^{\perp} (\mathbf{A} + \mathbf{B}\mathbf{F}) \mathbf{B}^{\perp T} & \mathbf{B}^{\perp} (\mathbf{A} + \mathbf{B}\mathbf{F}) \mathbf{B} \\ \mathbf{B}^{+} (\mathbf{A} + \mathbf{B}\mathbf{F}) \mathbf{B}^{\perp T} & \mathbf{B}^{+} (\mathbf{A} + \mathbf{B}\mathbf{F}) \mathbf{B} \end{bmatrix}$$ $$= \begin{bmatrix} \mathbf{B}^{\perp} \mathbf{A} \mathbf{B}^{\perp T} & \mathbf{B}^{\perp} \mathbf{A} \mathbf{B} \\ \mathbf{B}^{+} \mathbf{A} \mathbf{B}^{\perp T} + \mathbf{F} \mathbf{B}^{\perp T} & \mathbf{B}^{+} \mathbf{A} \mathbf{B} + \mathbf{F} \mathbf{B} \end{bmatrix}$$ $$= \begin{bmatrix} \mathbf{B}^{\perp} \mathbf{A} \mathbf{B}^{\perp T} & \mathbf{B}^{\perp} \mathbf{A} \mathbf{B} \\ \mathbf{X} & \mathbf{Y} \end{bmatrix}. \tag{C.69}$$ This proves the lemma. Taking X = 0 and $Y = \Phi$, we have the following: #### Lemma C.4 Let $\mathbf{F} = \Phi \mathbf{B}^+ - \mathbf{B}^+ \mathbf{A}$. Then, $\mathbf{A} + \mathbf{B}\mathbf{F}$ is similar to the following matrix: $$\begin{bmatrix} \mathbf{B}^{\perp} \mathbf{A} \mathbf{B}^{\perp^{\mathrm{T}}} & \mathbf{B}^{\perp} \mathbf{A} \mathbf{B} \\ \mathbf{0} & \Phi \end{bmatrix}. \tag{C.70}$$ Therefore, if $\mathbf{B}^{\perp}\mathbf{A}\mathbf{B}^{\perp^{\mathrm{T}}}$ is asymptotically stable, then $\mathbf{A}+\mathbf{B}\mathbf{F}$ is asymptotically stable. Moreover, $eig(\mathbf{A}+\mathbf{B}\mathbf{F})=eig(\mathbf{B}^{\perp}\mathbf{A}\mathbf{B}^{\perp^{\mathrm{T}}})\cup eig(\Phi)$. Lemma C.4 is the fundamental idea of Misrikhanov and Ryabchenko Algorithm. Let Level 0: $$\mathbf{A}_{0} = \mathbf{A}$$ $\mathbf{B}_{0} = \mathbf{B}$, Level 1: $\mathbf{A}_{1} = \mathbf{B}_{0}^{\perp} \mathbf{A}_{0} \mathbf{B}_{0}^{\perp^{T}}$ $\mathbf{B}_{1} = \mathbf{B}_{0}^{\perp} \mathbf{A}_{0} \mathbf{B}_{0}$, (C.71) Level k: $\mathbf{A}_{k} = \mathbf{B}_{k-1}^{\perp} \mathbf{A}_{k-1} \mathbf{B}_{k-1}^{\perp^{T}}$ $\mathbf{B}_{k} = \mathbf{B}_{k-1}^{\perp} \mathbf{A}_{k-1} \mathbf{B}_{k-1}$, Level L: $\mathbf{A}_{L} = \mathbf{B}_{L-1}^{\perp} \mathbf{A}_{L-1} \mathbf{B}_{L-1}^{\perp^{T}}$ $\mathbf{B}_{L} = \mathbf{B}_{L-1}^{\perp} \mathbf{A}_{L-1} \mathbf{B}_{L-1}$, where L = ceil(n/m) - 1. The technical base of Misrikhanov and Ryabchenko Algorithm is the following theorem. #### Theorem C.10 *Let linear system* (\mathbf{A}, \mathbf{B}) *is fully controllable and the matrix* $\mathbf{F} \in \mathbf{R}^{m \times r}$ *satisfies* $$\mathbf{F} = \mathbf{F}_{0} = \Phi_{0} \mathbf{B}_{0}^{-} - \mathbf{B}_{0}^{-} \mathbf{A} \qquad \mathbf{B}_{0}^{-} = \mathbf{B}_{0}^{+} - \mathbf{F}_{1} \mathbf{B}_{0}^{\perp}, \mathbf{F}_{1} = \Phi_{1} \mathbf{B}_{1}^{-} - \mathbf{B}_{1}^{-} \mathbf{A}_{1} \qquad \mathbf{B}_{1}^{-} = \mathbf{B}_{1}^{+} - \mathbf{F}_{2} \mathbf{B}_{0}^{\perp}, \dots \qquad \dots \qquad \dots \mathbf{F}_{k} = \Phi_{k} \mathbf{B}_{k}^{-} - \mathbf{B}_{k}^{-} \mathbf{A}_{k+1} \qquad \mathbf{B}_{k}^{-} = \mathbf{B}_{k}^{+} - \mathbf{F}_{k+1} \mathbf{B}_{k}^{\perp}, \qquad \dots \mathbf{F}_{L} = \mathbf{B}_{L}^{+} (\Phi_{L} - \mathbf{A}_{L}).$$ (C.72) Then $$eig(\mathbf{A} + \mathbf{BF}) = \bigcup_{i=1}^{L+1} eig(\Phi_{i-1}). \tag{C.73}$$ The proof of this theorem is omitted. Interested readers are referred to [174]. The Misrikhanov and Ryabchenko algorithm is given as follows: ## Algorithm C.6 Step 0: Select $\Phi_k \in \mathbf{R}^{m \times m}$, k = 0, ..., L - 1, and $\Phi_L \in \mathbf{R}^{L \times L}$, all diagonal matrices, satisfying (C.73). Let $\mathbf{A}_0 = \mathbf{A}$, $\mathbf{B}_0 = \mathbf{B}$, and $\mathbf{F}_L = 0$. Calculate \mathbf{B}_0^+ . Step 1: For k = 1, ..., L-1, calculate $$\mathbf{B}_{k-1}^{\perp}, \ \mathbf{A}_{k} = \mathbf{B}_{k-1}^{\perp} \mathbf{A}_{k-1} \mathbf{B}_{k-1}^{\perp^{T}}, \ \mathbf{B}_{k} = \mathbf{B}_{k-1}^{\perp} \mathbf{A}_{k-1} \mathbf{B}_{k-1}, \ \mathbf{B}_{k}^{+}.$$ (C.74) Step 2: For k = L - 1, ..., 0, calculate $\mathbf{B}_k^- = \mathbf{B}_k^+ - \mathbf{F}_{k+1} \mathbf{B}_k^\perp$ and $\mathbf{F}_k = \mathbf{\Phi}_k \mathbf{B}_k^- - \mathbf{B}_k^- \mathbf{A}_k$. Step 3: Set $\mathbf{F} = \mathbf{F}_0$. The easiest way to select Φ_k is to have block diagonal Φ_k such that (C.73) holds. A more complicated but attractive way is to select $\Phi_k =
\mathbf{X}\Lambda\mathbf{X}^T$ such that $\|\mathbf{F}_k\|_f^2 = \|\Phi_k\mathbf{B}_k^- - \mathbf{B}_k^-\mathbf{A}_k\|_f^2$ is minimized, where \mathbf{X} is an orthogonal matrix with $\mathbf{X}^{T}\mathbf{X} = \mathbf{I}$, and Λ is a real block diagonal matrix with 1×1 blocks for real poles and 2×2 blocks for complex poles. Clearly minimizing $\|\mathbf{F}_k\|_f^2$ is a minimum gain pole assignment design [197]. Sine X is an orthogonal matrix, this problem is equivalent to $$\min \|\mathbf{\Lambda} \mathbf{X}^{\mathsf{T}} \mathbf{B}_{k}^{-} - \mathbf{X}^{\mathsf{T}} \mathbf{B}_{k}^{-} \mathbf{A}_{k}\|_{f}^{2}$$ (C.75a) $$s.t. \quad \mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{I}. \tag{C.75b}$$ or $$\min \quad Tr[(\mathbf{B}_k^-)^{\mathrm{T}}\mathbf{X}\boldsymbol{\Lambda}^{\mathrm{T}}\boldsymbol{\Lambda}\mathbf{X}\mathbf{B}_k^- - (\mathbf{B}_k^-)^{\mathrm{T}}\mathbf{X}\boldsymbol{\Lambda}^{\mathrm{T}}\mathbf{X}^{\mathrm{T}}\mathbf{B}_k^-\mathbf{A}_k - \mathbf{A}_k^{\mathrm{T}}(\mathbf{B}_k^-)^{\mathrm{T}}\mathbf{X}\boldsymbol{\Lambda}\mathbf{X}^{\mathrm{T}}\mathbf{B}_k^-]$$ (C.76a) $$s.t. \quad \mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{I} \tag{C.76b}$$ where $Tr[\cdot]$ is the trace of the matrix. The optimization problem can be efficiently solved using a conjugate gradient method on Riemannian manifold [2]. The Matlab code is available in http://www.mathworks.com/matlabcentral/fileexchange/47591-unit-opt-zip. Handreds randomly generated problems are tested with starting point $\mathbf{X}_0 = \mathbf{I}$, and the optimization solutions stay in $\mathbf{X}^* = \mathbf{I}$. Therefore, Misrikhanov and Ryabchenko Algorithm is likely a minimum gain pole assignment. Hence, there is no need to solve (C.76) in Step 2, selecting diagonal Φ_k is good enough. # References - [1] A.R. Abd-Elhay, W.A. Murtada and M.I. Yosof. 2022. A high accuracy modeling scheme for dynamic systems: Spacecraft reaction wheel model. Journal of Engineering and Applied Science, 69: 4. - [2] T. Abrudan. 2008. Advanced optimization algorithms for sensor arrays and multi-antenna communications. Department of Signal Processing and Acoustics, Aalto University, Finland. - [3] A. Alessio and A. Bemporad. 2009. A survey of explicit model predictive control. pp. 345–369. *In*: L. Magni and D.M. Raimondo and F. Allgower. (eds.). Nonlinear Model Predictive Control: Toward New Challenging Applications. Springer-Verlag, Berlin. - [4] K.T. Alfriend. 1975. Magnetic attitude control system for dual-spin satellites. AIAA Journal, 13: 817–822. - [5] B.D.O. Anderson and J.B.I. Moore. 1979. Optimal Filtering. Prentice-Hall, Inc., Englewood Cliffs, N.J. - [6] E.L. de Angelis, F. Giulietti, A.H.J. de Ruiter and G. Avanzini. 2016. Space-craft attitude control using magnetic and mechanical actuation. Journal of Guidance, Control, and Dynamics, 39(3): 564–573. - [7] W.F. III Arnold and A.J. Laub. 1984. Generalized eigenproblem algorithms and software for algebraic Riccati equations. Proceedings of the IEEE, 72: 1746–1754. - [8] K.J. Astrom and B. Wittenmark. 2013. Computer-controlled systems: Theory and design. Dover Publications, Inc., Mineola, NY. - [9] M. Athans and P.L. Falb. 1966. Optimal Control: An Introduction to the Theory and its Applications. McGraw-Hill, Inc, New York. - [10] I.Y. Bar-Itzhack and K.A. FEGLEY. 1969. Orthogonalization techniques of a direction cosine matrix. IEEE Transactions on Aerospace and Electronic Systems, 5: 798–804. - [11] I.Y. Bar-Itzhack. 1975. Iterative optimal orthogonalization of the Strapdown matrix. IEEE Transactions on Aerospace and Electronic Systems, 11(1): 30-37. - [12] I.Y. Bar-Itzhack, J. Meyer and P.A. Fuhrmann. 1976. Strapdown matrix orthogonalization: The dual iterative algorithm. IEEE Transactions on Aerospace and Electronic Systems, 12: 32–37. - [13] I.Y. Bar-Itzhack and Y. Oshman. 1985. Attitude determination from vector observations: Quaternion estimation. IEEE Transactions on Aerospace and Electronic Systems, 21: 128–136. - [14] I.G. Bastow (Editor). 1965. Proceedings of the Magnetic Workshop. JPL TM33-216, JPL, Pasadena, CA. - [15] R.H. Battin. 1961. A statistical optimizing navigation procedure for space flight. MIT Report R-341, Sept. - [16] R.H. Battin. 1964. Astronautical Guidance. McGraw Hill, New York, pp. 303-340. - [17] V.V. Beletskii. 1966. Motion of an artificial satellite about its center of mass. Technical Report, NASA TT-F429. - [18] A. Bjorck and C. Bowie. 1971. An iterative algorithm for computing the best estimate of an orthogonal matrix. SIAM Journal on Numerical Analysis, 8: 358-364. - [19] A. Bemporad and M. Morari. 1999. Robust model predictive control: A survey. Robustness in Identification and Control, 245: 207–226. - [20] A. Bemporad, M. Morari, V. Dua and E. Pistikopoulos. 2002. The explicit linear quadratic regulator for constrained systems. Automatica, 38: 3–20. - [21] W. Bentz and L. Sacks. 2018. Derivation of equations of motion and modelbased control for 3D rigid body approximation of LUVIOR. NASA technical note. Available on https://ntrs.nasa.gov/citations/20240000697. - [22] W. Bentz and L. Sacks. 2018. Summary of model-based attitude control of LUVOIR in modular dynamics analysis (MDA) environment. NASA technical Available simulink note. https://ntrs.nasa.gov/citations/20240000711. - [23] A.B. Berkelaar, K. Roos and T. Terlaky. 1997. The optimal set and optimal partition approach to linear and quadratic programming. *In*: H. Greenberg and T. Gal. (eds.). Recent Advances in Sensitivity Analysis and Parametric Programming. Kluwer Publishers, Berlin. - [24] D.P. Bertsekas. 1982. Projected Newton methods for optimization problems with simple constraints. SIAM J. Control and Optimization, 20: 221–246. - [25] S.P. Bhat. 2005. Controllability of nonlinear time-varying systems: Application to spacecraft attitude control using magnetic actuation. IEEE Transactions on Automatic Control, 50(11): 1725–1735. - [26] S.P. Bhat and D.S. Bernstein. 2000. A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon. Systems & Control Letters, 39: 63–70. - [27] G.J. Bierman. 1976. Measurement updating using the U-D factorization. Automatica, 12(4): 375–382. - [28] S. Bittanti. 1991. Periodic Riccati equation. The Riccati Equation, edited by S. Bittanti et al., Springer, Berlin, pp. 127–162. - [29] S. Bittanti, P. Colaneri and G. Guardabassi. 1986. Analysis of the periodic Lyapunov and Riccati equations via canonical decomposition. SIAM J. Control and Optimization, 24(6): 1138–1149. - [30] S. Bittanti, P. Colaneri and G.D. Nicolao. 1989. A note on the maximal solution of the periodic Riccati equation. IEEE Transactions on Automatic Control, 15(12): 1316–1319. - [31] H.D. Black. 1964. A passive system for determining the attitude of a satellite. AIAA Journal, 2: 1350–1351. - [32] J. Boskovic, S. Li and R. Mehra. 2001. Robust adaptive variable structure control of spacecraft under control input saturation. Journal of Guidance, Control and Dynamics, 24: 14–22. - [33] A.E. Bryson and Y.C. Ho. 1975. Applied Optimal Control: Optimization, Estimation, and Control, Taylor & Francis, New York. - [34] K.W. Buffinton. 2005. Kane's Method in Robotics, in Robotics and Automation Handbook. CRC Press, New York, Chap. 6, pp. 89–119. - [35] S. Di Cairano, H. Park and I. Kolmanovsky. 2012. Model predictive control approach for guidance of spacecraft rendezvous and proximity maneuvering. International Journal of Robust and Nonlinear Control, 22(12): 1398– 1427. - [36] N.A. Carlson. 1973. Fast triangular formulation of the square root filter. AIAA Journal, 11(9): 1259-1264. - [37] M.P. do Carmo. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall, New Jersey. - [38] M.A. Chace and Y.O. Bayazitoglu. 1971. Development and application of a generalized D'Alembert force for multifreedom mechanical system. J. Manuf. Sci. Eng., 93: 317-326. - [39] J. Chae and T. Park. 2003. Dynamic modeling and control of flexible space structures. KSME International Journal, 17(12): 1912–1921. - [40] R. Chen. 2016. Modular dynamic analysis. NASA Unpublished Technical Note. - [41] X. Chen, W.H. Steyn, S. Hodgart and Y. Hashida. 1999. Optimal combined reaction-wheel momentum management for earth-pointing satellites. Journal of Guidance, Control, and Dynamics, 22(4): 543–550. - [42] X. Chen and X. Wu. 2010. Model predictive control of cube satellite with magnet-torque. Proceedings of the 2010 IEEE International Conference on Information and Automation, pp. 997–1002, Harbin, China. - [43] Y. Cheng and M.D. Shuster. 2014. Improvement to the implementation of the QUEST algorithm. Journal of Guidance, Control, and Dynamics, 37(1): 301-305. - [44] Y. Cheon and J. Kim. June, 2007. Unscented filtering in a unit quaternion space for spacecraft attitude estimation. Proceedings of IEEE International Symposium on Industrial Electronics, pp. 66–71. - [45] W.H. Clohessy and R.S. Wiltshire. 1960. Terminal guidance system for satellite rendezvous. Journal of Aerospace Sciences, 27(9): 653-658. - [46] C.J. Cochrane, J. Blacksberg, M.A. Anders and P.M. Lenahan. 2016. Vectorized magnetometer for space applications using electrical readout of atomic scale defects in silicon carbide. Scientific Reports, 6: 370–377. - [47] J.L. Crassidis and F.L. Markley. 2003. Unscented filtering for spacecraft attitude estimation. Journal of Guidance, Control, and Dynamics, 26(4): 536-542. - [48] J.L. Crassidis, F.L. Markley and Y. Cheng. 2007. A survey of nonlinear attitude estimation methods. Journal of Guidance, Control and Dynamics, 30(1): 12-28. - [49] F. Curti, M. Romano and R. Bevilacqua. 2010. Lyapunov-based thrusters selection for spacecraft control: Analysis and experimentation. Journal of Guidance, Control, and Dynamics, 33(4): 198–219. - [50] H.D. Curtis. 2005. Orbital Mechanics for Engineering Students. Elsevier Butterworth-Heinemann, Burlington, MA. - [51] P.
Davenport. 1965. A vector approach to the algebra of rotations with applications. Technical Report, NASA, X-546-65-437. - [52] J. Davis. 2004. Mathematical modeling of Earth's magnetic field. TN, Virginia Polytechnic Institute and State University, Blacksburg, VA. - [53] E.A. Desloge. 1987. Development and application of a generalized D'Alembert force for multifreedom mechanical system. Journal of Guidance, Control, and Dynamics, 10: 120–122. - [54] P.B. Davenport. August, 1971. Attitude determination and sensor alignment via wWeighted least squares affine transformations. NASA X-514-71-312. - [55] L. Dieci and T. Eirola. 1999. On smooth decompositions of matrices. SIAM Journal on Matrix Analysis and Applications, 20: 800–819. - [56] R.C. Dorf and R.H. Bishop. 2008. Modern Control Systems. Pearson Prentice Hall, Upper Saddle River, NJ. - [57] J. Doyle, K. Glover, P. Khargonekar and B. Francis. 1989. State-space solutions to standard \mathbf{H}_2 and \mathbf{H}_{∞} control problems. IEEE Transactions on Automatic Control, 34: 831–847. - [58] P.W. Droll and E.J. Iuler. 1967. Magnetic properties of selected spacecraft materials. Proceedings of Symposium on Space Magnetic Exploration and Technology. Engineering Report, 9: 189–197. - [59] J. Dzielsk, E. Bergmann and J. Paradiso. 1990. A computational algorithm for spacecraft control and momentum management. Proceedings of the American Control Conference, pp. 1320–1325. - [60] P. Eberhard and W. Schiehlen. 2006. Computational dynamics of multibody system: History, formulism, and application. Journal of Computational and Nonlinear Dynamics, 1: 3–12. - [61] O. Egeland and J.T. Gravdahl. 2002. Modeling and Simulation for Automatic Control. Marine Cybernetics, Trondheim, Norway. - [62] J.L. Farrell, J.C. Stuelpnagel, R.H. Wessner and J.R. Velman. July, 1966. A least squares estimate of satellite attitude. SIAM Review, 8(3): 384–386. - [63] C.C. Finlay et al. 2010. International geomagnetic reference field: The eleventh generation. Geophysical Journal International, 183: 1216–1230. - [64] E. Thebault, C.C. Finlay and H. Toh. 2015. Special issue of International geomagnetic reference field-the twelfth generation. Earth, Planets and Space, pp. 67–158. - [65] D. Fischer et al. 2021. LUVOIR final report. NASA, Washington D.C., Chap. 11, pp. 1–24. - [66] D.S. Flamm. 1991. A new shift-invariant representation for periodic linear system. Systems and Control Letters, 17(1): 9–14. - [67] J.R. Forbes, A.H.J. de Ruiter and D.E. Zlotnik. 2014. Continuous-time norm-constrained Kalman filter. Automatica, 50(10): 2546–2554. - [68] K.A. Ford. 1997. Reorientations of flexible spacecraft using momentum exchange devices. Ph.D dissertation, Dept. af Aeronautics and Astronautics, Air Force Institute of of Technology, OH. - [69] K.A. Ford and C.D. Hall. 1997. Flexible spacecraft reorientations using gimbal momentum wheels. pp. 1895–1914. In: F. Hoots, B. Kaufman, P.J. Cefola and D.B. Spencer. (eds.). Advances in the Astronautical Sciences. Astrodynamics, Vol. 97, Univelt, San Diego. - [70] K.A. Ford and C.D. Hall. 2000. Singular direction avoidance steering for control moment gyros. Journal of Guidance, Control, and Dynamics, 23(4): 648-656. - [71] P. Fortescue, J. Stark and G. Swinerd. 2008. Spacecraft Systems Engineering. John Wiley & Sons, West Hoboken, NJ. - [72] G.F. Franklin, J.D. Powell and M.L. Workman. 1998. Digital Control of Dynamic Systems, 3rd ed. llis-Kagle Press, Half Moon Bay, CA. - [73] H. Gao, X. Yang and P. Shi. 2009. Multi-objective robust H_{∞} control of spacecraft rendezvous. IEEE Transactions on Control Systems Technology, 17(4): 794-802. - [74] A. Gelb (ed.). 1974. Applied Optimal Estimation. The MIT press, Cambridge, MA, USA. - [75] F. Giulietti, A.A. Quarta and P. Tortora. 2006. Optimal control laws for momentum-wheel desaturation using magnetorquers. Journal of Guidance, Control, and Dynamics, 29(6): 1464–1468. - [76] A.J. Goldman and A.W. Tucker. 1956. Theory of linear programming. pp. 53-97. In: H.W. Kuhn and Tucker. (eds.). Linear Equalities and Related Systems. Princeton University Press, Princeton. - [77] G.H. Golub and C.F. Van Loan. 1989. Matrix Computations. The Johns Hopkins University Press, Baltimore. - [78] A. Grace, A.J. Laub, J.N. Little and C. Thompson. 1990. Control system toolbox for use with MATLAB: User's guide. The MathWorks, Inc., South Natick, MA. - [79] O.M. Grasselli and S. Longhi. 1991. Pole-placement for non-reachable periodic discrete-time system. Mathematics of Control, Signals and Systems, 4: 439–455. - [80] D.T. Greenwood. 1988. Principles of Dynamics. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 2nd edition. - [81] H. Gui, G. Vukovich and S. Xu. 2015. Attitude tracking of a rigid spacecraft using two internal torques. IEEE Transactions on Aerospace and Electronic Systems, 51(4): 2900–2913. - [82] O. Guler and Y. Ye. 1993. Convergence behavior of interior-point algorithms. Mathematical Programming, 60: 215–228. - [83] A.C. Hall. 1943. The Analysis and Synthesis of Linear Servomechanisms. The Technology Press, Cambridge, MA. - [84] M. Harris and R. Lyle. 1969. Magnetic fields-earth and extraterrestrial. NASA report, SP-8017. - [85] M. Harris and R. Lyle. 1969. Spacecraft gravitational torques. Technical Report, NASA SP-8024. - [86] M. Harris and W. Priester. 1962. Time-dependent structure of the upper atmosphere. Journal of Atmospheric Sciences, 19(4): 286–301. - [87] I. Harris and W. Priester. 1965. Atmospheric structure and its variations in the region form 120 to 80 KM. COSPAR International Reference Atmosphere (CIRA), Space Research IV. Amsterdam: North Holland Publishing Company. - [88] E.N. Hartley, P.A. Trodden, A.G. Richards and J.M. Maciejowski. 2012. Model predictive control system design and implementation for spacecraft rendezvous. Control Engineering Practice, 20(7): 695–713. - [89] E.L. Haseltine and J.B. Rawlings. 2005. Critical evaluation of extended Kalman filtering and moving-horizon estimation. Industrial and Engineering Chemistry Research, 44(8): 2451–2460. - [90] W. He and S.S. Ge. 2015. Dynamic modeling and vibration control of a flexible satellite. IEEE Transactions on Aerospace and Electronic Systems, 51(2): 1422–1431. - [91] O. Hegrenæs, J.T. Gravdahl and P. Tøndel. 2005. Spacecraft attitude control using explicit model predictive control. Automatica, 41(12): 2107–2114. - [92] J.J. Hench and A.J. Laub. 1994. Numerical solution of the discrete-time periodic Riccati equation. IEEE Transactions on Automatic Control, 39(6): 1197-1210. - [93] D. Herbison-Evans. 1994. Solving quartics and cubics for graphics. TR94-487, University of Sydney, Sydney, Australia. - [94] G.W. Hill. 1878. Researches in lunar theory. American Journal of Mathematics, 1(1): 5-26. - [95] R.A. Horn and C.R. Johnson. 1985. Matrix Analysis. Cambridge University Press, Cambridge. - [96] Q. Hu, Y.H. Jia and S.J. Xu. 2012. A new computer-oriented approach with efficient variables for multibody dynamics with motion constraints. Acta Astronautica, 81: 380–389. - [97] P.C. Hughes. 1986. Spacecraft Attitude Dynamics. Wiley, New York, USA. - [98] http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html. - [99] https://www.mathworks.com/matlabcentral/fileexchange/54255-quarticroots-m. - [100] https://www.mathworks.com/matlabcentral/fileexchange/54499newtonrattitude-m. - [101] http://en.wikipedia.org/wiki/Magnetometer. - [102] E.X. Jiang. 1978. Linear Algebra. People Educational Press (in Chinese). - [103] J. Jin and I. Hwang. 2011. Attitude control of a spacecraft with single variable-speed control moment gyroscope. Journal of Guidance, Control, and Dynamics, 34(6): 1920–1925. - [104] P.E.B. Jourdain. 1909. Note on an analogue of Gauss' principle of least constraint. The Quarterly Journal of Pure and Applied Mathematics, XL: 153–157. - [105] J.N. Juang, H.Y. Kim and J.L. Junkins. 2003. An efficient and robust singular value method for star pattern recognition and attitude determination. Technical Report, NASA/TM-2003-212142, Langley Research Center, NASA, Hampton, Virginia. - [106] S. Julier, J. Uhlmann and H.F. Durrant-Whyte. 2000. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 45(3): 477–482. - [107] D. Jung and P. Tsiotras. 2004. An experimental comparison of CMG steering control laws. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Guidance, Navigation, and Control, 16-19 August 2004, Providence, Rhode Island. - [108] J.L. Junkins and Y. Kim. 1993. Introduction to Dynamics and Control of Flexible Structures. Washington, DC: AIAA, pp. 9–64. - [109] E.I. Jury and F.J. Mullin. 1958. A note on the operational solution of linear difference equations. J. Franklin Inst., 266: 189–205. - [110] E.I. Jury and F.J. Mullin. 1959. The analysis of sampled data control systems with a periodically time-varying sampling rate. IRE Transactions on Automatic Control, AC-4: 15-21. - [111] R.E. Kalman. 1960. A new approach to linear filtering and prediction problem. Trans. ASME J. Basic Engineering, 82D: 35-45. - [112] R.E. Kalman. 1960. Contributions to the theory of optimal control. Bol. Soc. Mat. Mexicana, 5(2): 102-119. - [113] T.R. Kane. 1961. Dynamics of nonholonomic systems. Transactions of the ASME Journal of Applied Mechanics, 28: 574–578. - [114] T.R. Kane and D.A. Levinson. 1985. Dynamics Theory and Applications. McGraw-Hill Book Company, Boston, Chap. 2, pp. 15–57. - [115] T.R. Kane, P.W. Likins and D.A. Levinson, 1993. Spacecraft Dynamics. McGraw-Hill Book Company, Boston, Chap. Appendix, p. 429. - [116] W. Karush. 1939. Minima of Functions of Several Variables with Inequalities as Side Constraints. M.Sc. Dissertation. Dept. of Mathematics, Univ. of Chicago, Chicago, Illinois. - [117] J. Kautsky, N.K. Nichols and P. Van Dooren. 1985. Robust pole assignment in linear state feedback. International Journal of Control, 41: 1129-1155. - [118] J. Keat.
1977. Analysis of least-squares attitude determination, Routine DOAOP. Technical Report, Comp. Sc. Corp., CSC/TM-77/6034. - [119] H.K. Khalil. 1992. Nonlinear System. Macmillan Publishing Company, New York. - [120] N. Khan, S. Fekri, R. Ahmad and Dawei Gu. 2011. New results on robust state estimation in spacecraft attitude control. The 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, FL, USA, December 12–15, 2011, pp. 90–95. - [121] P.P. Khargonekar, K. Poolla and A. Tanenbaum. 1985. Robust control of linear time-invariant plants using periodic compensation. IEEE Transactions on Automatic Control, 30(11): 1088-1096. - [122] D.L. Kleinman. 1968. On an iterative technique for Riccati equation computation. IEEE Transactions on Automatic Control, 13(1): 114-115. - [123] R. Kristiansen, E.I. Grotli, P.J. Nicklasso and J.T. Gravdahl, 2007. A model of relative translation and rotation in leader-follower spacecraft formations. Modeling, Identification and Control, 28(1): 3–13. - [124] R. Kristiansena, P.J. Nicklasso and J.T. Gravdahlb. 2008. Spacecraft coordination control in 6DOF: Integrator back-stepping vs passivity-based control. Automatica, 44(11): 2896-2901. - [125] H.W. Kuhn and A.W. Tucker. 1951. Nonlinear programming. Proceedings of 2nd Berkeley Symposium, Berkeley, University of California Press, pp. 481-492. - [126] J.B. Kuipers. 1998. Quaternions and rotation sequences: A primer with applications to orbits, aerospace, and virtual reality. Princeton University Press, Princeton and Oxford. - [127] H. Kurokawa. 1998. A geometric study of single gimbal control moment gyros. Technical Report No. 175, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan. - [128] H. Kurokawa. 2007. Survey of theory and steering laws of single-gimbal control moment gyros. Journal of Guidance, Control, and Dynamics, 30(5): 1331-1340. - [129] T.I. Laakso, V. Valimaki, M. Karjalainen and U.K. Laine. 1996. Splitting the unit delay. IEEE Signal Processing Magazine, 13(1): 30–60. - [130] A.J. Laub. 1972. Canonical forms for σ -symplectic matrices. M.S. thesis, School of Mathematics, Univ. of Minnesota, MN. - [131] A.J. Laub. 1979. A Schur method for solving algebraic Riccati equations. IEEE Transactions on Automatic Control. 24(6): 913–921. - [132] J.J. LaViola Jr.. 2003. A comparison of unscented and extended Kalman filtering for estimating quaternion motion. Proceedings of the American Control Conference Denver, Colorado June 4–6, 2003, pp. 2435–2440. - [133] D.A. Lawrence and W.J. Rugh. 1990. On a stability theorem for nonlinear systems with slowly varying inputs. IEEE Transactions on Automatic Control, 35: 860–864. - [134] E.J. Lefferts, F.L. Markley and M.D. Shuster. 1982. Kalman filtering for spacecraft attitude estimation. Journal of Guidance, Control and Dynamics, 5(5): 417–429. - [135] J.E. Lenz. 1990. A review of magnetic sensors. Proceedings of the IEEE, 78: 973–989. - [136] D.A. Levinson and A.K. Banerjee. 1990. Comment on efficiency of the Gibbs-Appell equations. Journal of Guidance, Control, and Dynamics, 13: 381–382. - [137] F.L. Lewis, D. Vrabie and V.L. Syrmos. 2012. Optimal Control, 3rd Edition. John Wiley & Sons, Inc., New York, USA. - [138] W. Ley, K. Wittmann and W. Hallmann. 2009. Handbook of Space Technology. Wiley, Munich, Germany. - [139] Y. Li, S. Li and M. Xin. 2022. Dynamic modeling and attitude control of large-scale flexible parallel multibody spacecraft. Journal of Guidance, Control, and Dynamics, 45(12): 2304–2317. - [140] Q. Li, J. Yuan, B. Zhang and C. Gao. 2017. Model predictive control for autonomous rendezvous and docking with a tumbling target. Aerospace Science and Technology, 69: 700–711. - [141] C.C. Liebe. June, 1992. Pattern recognition of star constellations for spacecraft applications. IEEE AES Magazine, pp. 34–41. - [142] C.C. Liebe. June, 1995. Star trackers for attitude determination. IEEE AES Magazine, pp. 10–16. - [143] C.C. Liebe. April, 2002. Accuracy performance of star trackers—A tutorial. IEEE Transactions on Aerospace and Electronic Systems, 38(2): 587–599. - [144] C.C. Liebe and S. Mobasser. 2001. MEMS based sun sensor. IEEE Proceedings of Aerospace Conference, pp. 1565–1572. - [145] K. Liu, P. Maghami and Carl Blauroc. 2008. Reaction Wheel Disturbance Modeling, Jitter Analysis, and Validation Tests for Solar Dynamics Observatory. AIAA Guidance, Navigation and Control Conference and Exhibit 18–21 August 2008, Honolulu, Hawaii, USA. - [146] M. Liu, D. Cao and D. Zhu. 2020. Equivalent dynamic model of the space antenna truss with initial stress. AIAA Journal, 58(4): 1851–1863. - [147] A.C. Long. 2024. Goddard enhanced onboard navigation system (GEONS) mathematical specifications. NASA/TP-20240004259. - [148] G.Y. Lou. 1973. Models of Earth's atmosphere (90 to 2500 km). Technical Report, NASA SP-8021. - [149] M. Lovera and A. Astolfi. 2004. Spacecraft attitude control using magnetic actuators. Automatica, 40: 1405-1414. - [150] M. Lovera and A. Astolfi. 2006. Global magnetic attitude control of spacecraft in the presence of gravity gradient. IEEE Transactions on Aerospace and Electronic System, 42(3): 796-805. - [151] M. Lovera, E. Marchi and S. Bittanti. 2002. Periodic attitude control techniques for small satellites with magnetic actuators. IEEE Transactions on Control System Technology, 10(1): 90–95. - [152] Y. Luo, J. Zhang and G. Tang. 2014. Survey of orbital dynamics and control of space rendezvous. Chinese Journal of Aeronautics, 27(1): 1–11. - [153] R. Lyle and P. Stabekis. 1971. Spacecraft aerodynamic torques. Technical Report, NASA SP-8058. - [154] A.G.J. Macfarlane. 1963. An eigenvector solution of the optimal linear regulator problem. Journal of Electronics and Control, 14(6): 643–654. - [155] J.D. McLean and S.F. Schmidt. 1961. Optimal filtering and linear prediction applied to an on-board navigation system for the circumlunar mission. Reprint 61–93, AAS Meeting, Aug. 1–3, 1961. - [156] J.D. McLean, S.F. Schmidt and L.A. McGee. March, 1962. Optimal filtering and linear prediction applied to a midcourse navigation system for the circumlunar mission. NASA TN D-1208, March 1962. - [157] J.R. Magnus. 1985. On differentiating eigenvalues and eigenvectors. Econometric Theory, 1: 179–191. - [158] M.S.I. Malik and S. Asghar. 2013. Inverse free steering law for small satellite attitude control and power tracking with VSCMGs. Advances in Space Research, 53: 97–109. - [159] B.P. Malladi, R.G. Sanfelice, E. Butcher and J. Wang. 2016. Robust hybrid supervisory control for rendezvous and docking of a spacecraft. IEEE 55th Conference on Decision and Control, 12–14 Dec. 2016. - [160] F.L. Markley. 1988. Attitude determination using vector observations and the singular value decomposition. The Journal of the Astronautical Sciences, 36(3): 245–258. - [161] F.L. Markley. 1993. Attitude determination using vector observations: A fast optimal matrix algorithm. Journal of Astronautical Sciences, 41(2): 261-280. - [162] F.L. Markley, 2002. Fast quaternion attitude estimation from two vector measurements. Journal of Guidance, Control and Dynamics, 25: 411–414. - [163] F.L. Markley. 2003. Attitude error representations for Kalman filtering. Journal of Guidance and Control, 26(2): 311–317. - [164] F.L. Markley. 2004. Multiplicative vs. additive filtering for spacecraft attitude determination. In Proceedings of the 6th Conference on Dynamics and Control Systems and Structures in Space (DCSSS), Vol. D22. Riomaggiore, Italy. - [165] Markley, F. Landis and Daniele Mortari. 1999. How to estimate attitude from vector observations. In Astrodynamics Specialist. - [166] F.L. Markley and D. Mortari. 2000. Quaternion attitude estimation using vector observations. Journal of Astronautical Sciences, 48(2): 359–380. - [167] M. Morf and T. Kailath. 1975. Square root algorithms for least squares estimation. IEEE Transactions on Automatic Control, 20(4): 487–497. - [168] D. Mortari. 1997. Search-less algorithm for star pattern recognition. Journal of Astronaut Sciences, 45(2: 179-194. - [169] M. Massari and M. Zamaro. 2014. Application of SDRE technique to orbital and attitude control of spacecraft formation flying. Acta Astronautica, 94(1): 409-420. - [170] D.Q. Mayne, J.R. Rawlings, C.V. Rao and P.O.M. Scokaert. 2000. Constrained model predictive control: Stability and optimality. Automatica, 36(6): 789-814. - [171] L. Meirovitch. 2001. Fundamentals of Vibrations. McGraw-Hill, Boston, Chap. 1, pp. 1–79. - [172] R.A. Meyer and C.S. Burrus. 1975. A unified analysis of multirate and periodically time-varying digital filters. IEEE Transactions on Circuits and System, 22(3): 162–168. - [173] J. Meyer and I.Y. Bar-Itzhack. 1977. Practical comparison of iterative matrix orthogonalization algorithms. IEEE Transactions on Aerospace and Electronic Systems, 13: 230–235. - [174] M.S. Misrikhanov and V.N. Ryabchenko. 2011. Pole placement for controlling a large scale power system. Automation and Remote Control, 72(10): 2123–2146. - [175] L.A. McGee and S.F. Schmidt. 1985. Discovery of the Kalman filter as a practical tool for aerospace industry. Technical Report, NASA-TM-86847, NASA. - [176] S. Mizuno, M. Todd and Y. Ye. 1993. On adaptive step primal-dual interior-point algorithms for linear programming. Mathematics of Operations Research, 18: 964-981. - [177] T. Mo and T. Lee. 1984. Analytic representation of the Harris-Priester atmospheric density model in the 110- to 2000-Kilometers Region. Computer Sciences Corporation, CSC/TM-84/6865. - [178] R. Monteiro and I. Adler. 1989. Interior path following primal-dual algorithms. Part I: Linear programming. Mathematical Programming, 44: 27– 41. - [179] D. Morgan, S.J. Chung and F.Y. Hadaegh. 2014. Model predictive control of swarms of spacecraft using sequential convex programming. Journal of Guidance, Control, and Dynamics, 37(6): 1725-1740. - [180] D. Mortari. 1997. ESOQ: A closed-form
solution to the Wahba problem. Journal of Astronautical Sciences, 45(2): 195-205. - [181] F.D. Murnaghan and A. Wintner. 1931. A canonical form for real matrices under orthogonal transformations. Proc. Nat. Acad. Sci., 17: 417–420. - [182] C.D. Murray and S.F. Dermott. 1999. Solar System Dynamics. Cambridge University Press, Cambridge. - [183] K.L. Musser and W.L. Ebert. 1989. Autonomous spacecraft attitude control using magnetic torquing only. Proceedings of the Flight Mechanics and Estimation Theory Symposium, NASA Goddard Space Flight Center, Greenbelt, MD, pp. 23-38. - [184] National Aeronautics and Space Administration, In-Space Propulsion, NASA, 2024. Available on https://www.nasa.gov/smallsat-institute/sstsoa/in-space_propulsion/#4.5. - [185] Y. Nakamura and H. Hanafusa. 1986. Inverse kinematic solution with singularity robustness for robot manipulator control. Journal of Dynamic Systems, Measurement, and Control, 108(3): 163-171. - [186] R.J. Naumann. 1961. Recent information gained from satellite orientation measurements. Planetary and Space Sciences, 7: 445–453. - [187] M. Navabi and M. Barati. 2017. Mathematical modeling and simulation of the Earth's magnetic field: A comparative study of the models on the spacecraft attitude control application. Applied Mathematical Modeling, 46: 365-381. - [188] J. Nocedal and S.J. Wright. 1999. Numerical Optimization. Springer-Verlag, New York. - [189] H.S. Oh and S.R. Vadali. 1991. Feedback control and steering laws for spacecraft using single gimbal control moment gyros. Journal of the Astronautical Sciences, 39(2): 183–203. - [190] A.V. Oppenheim, R.W. Schafer and J.R. Buck. 1999. Discrete-Time Signal Processing. Prentice Hall, New York. - [191] R. Opromolla, G. Fasano, G. Rufino and M. Grassi. 2017. A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations. Progress in Aerospace Sciences, 93: 53–72. - [192] C. Padgett et al. 1997. Evaluation of star identification techniques. Journal of Guidance Control Dynamics, 20(2): 259–267. - [193] I. Paghis, C.A. Franklin and J. Mar. 1967. Alouette I: The first three years in orbit, Part III. DRTE Report 1159, Department of Defence (Canada). - [194] R. Paielli and R. Bach. 1993. Control with realization of linear error dynamics. Journal of Guidance, Control and Dynamics, 16: 182–189. - [195] A. Pál. 2009. An analytical solution for Kepler's problem. Monthly Notices of the Royal Astronomical Society, 396(3): 1737–1742. - [196] H. Pan and V. Kapila. 2001. Adaptive nonlinear control for spacecraft formation flying with coupled translational and attitude dynamics. Proceedings of the Conference on Decision and Control, Orlando, FL. - [197] A. Pandey, R. Schmid and T. Nguyen. 2015. Performance survey of minimum gain exact pole placement methods. Proceedings of 2015 European Control Conference, July 15–17, pp. 1808–1812. - [198] A. Pandey, R. Schmid, T. Nguyen, Y. Yang, V. Sima and A.L. Tits. 2014. Performance survey of robust pole placement methods. Proceedings of 53rd Conference on Decision and Control. Los Angeles, California, USA: IEEE, December 15–17, pp. 3186–3191. - [199] T. Pappas, A.J. Laub and N.R. Sandell. 1980. On the numerical solution of the discrete-time algebraic Riccati equation. IEEE Transactions on Automatic Control, 25(4): 631–641. - [200] R.P. Patera. 2018. Attitude estimation based on observation vector inertia. Advances in Space Research, 62: 383–397. - [201] L. Perea, J. How, L. Breger and P. Elosegui. August, 2007. Nonlinearity in Sensor Fusion: Divergence Issues in EKF, modified truncated SOF, and UKF. AIAA Guidance, Navigation and Control Conference and Exhibit 20–23, South Carolina. - [202] S.M. Persson and I. Sharf. 2013. Invariant trapezoidal Kalman filter for application to attitude estimation. Journal of Guidance and Control, 36(3): 721-733. - [203] K.B. Petersen and M.S. Pedersen. The Matrix Cookbook. http://matrixcookbook.com. - [204] J.-C. Piedboeuf. 1993. Kane's equations or Jourdain's principle? Proceedings of 36th Midwest Symposium on Circuits and Systems, 1993, IEEE, Detroit, MI, USA, pp. 1471–1474. - [205] M.E. Pittelkau. 1993. Optimal periodic control for spacecraft pointing and attitude determination. Journal of Guidance, Control, and Dynamics, 16(6): 1078-1084. - [206] A.D. Polyanin and A.V. Manzhirov. 2007. Handbook of Mathematics For Engineers and Scientists. Chapman & Hall/CRC, Noca Raton, FL. - [207] J.E. Potter and R.G. Stern. August, 1963. Statistical filtering of space navigation measurements. In Proceedings 1963 AIAA Guidance and Control Conference, Cambridge, MA. - [208] M.L. Psiaki. 2001. Magnetic torque attitude control via asymptotic periodic linear quadratic regulator. Journal of Guidance, Control, and Dynamics, 24(2): 386-394. - [209] T. Pulecchi, M. Lovera and A. Varga. 2010. Optimal discrete-time design of three-axis magnetic attitude control law. IEEE Transactions on Control System Technology, 18(3): 714–722. - [210] S.J. Oin and T.A. Badgwell. 2003. A survey of industrial model predictive control technology. Control Engineering Practice, 11: 733–764. - [211] B. Quine et al. 1996. Rapid star pattern identification, acquisition, tracking, and pointing. SPIE Proceedings, 2739: 351–360. - [212] A. Rahimi, K.D. Kumar and H. Alighanbari. 2020. Fault isolation of reaction wheels for satellite attitude control. IEEE Transactions on Aerospace and Electronic Systems, 56(1): 610-629. - [213] C.V. Rao, S.J. Wright and J.B. Rawling. 1998. Application of interiorpoint methods to model predictive control. Journal of Optimization Theory and Applications, 99: 723-757. - [214] M. Reyhanoglu and J.R. Hervas. 2011. Three-axis magnetic attitude control algorithm for small satellites. Proceedings of 5th International Conference on Recent Advance Technologies, Istanbul. - [215] R.G. Reynolds. 1998. Quaternion parameterization and a simple algorithm for global attitude estimation. Journal of Guidance, Control, and Dynamics, 21: 669–671. - [216] A.L. Rodriguez-Vazquez, M.A. Martin-Prats and F. Bernelli-Zazzera. 2012. Full magnetic satellite attitude control using ASRE method. The First IAA Conference on Dynamics and Control of Space Systems, Dy-CoSS 2012, Porto, Portugal. - [217] A. Rodriquez-Vazouez, M.A. Martin-Prats and F. Bernelli-Zazzera. 2015. Spacecraft magnetic attitude control using approximating sequence Riccati equations. IEEE Transactions on Aerospace and Electronic Systems, 51(4): 3374–3385. - [218] C.W.T. Roscoe, J.J. Westphal and E. Mosleh. 2018. Overview and GNC design of the CubeSat Proximity Operations Demonstration (CPOD) mission. Acta Astronautica, Doi.org/10.1016/j.actaastro.2018.03.033, Available online 23 March 2018. - [219] W.J. Rugh. 1990. Analytical framework for gain scheduling. American Control Conference, pp. 1688–1694, 23–25 May, San Diego, CA, USA. - [220] W.J. Rugh. 1993. Linear System Theory. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, pp.4–5. - [221] W.J. Rugh and J.S. Shamma. 2000. Research on gain scheduling. Automatica, 36: 1401–1425. - [222] P.M. Salomon and T.A. Glavich. 1981. Image processing in sub-pixel accuracy star trackers. SPIE Proceedings, 290: 290. - [223] M.A. Samaan, C. Bruccoleri, D. Mortari and J.L. Junkins. 2003. Novel techniques for creating nearly uniform star catalog. Advances in the Astronautical Sciences, 116: 1961–1704. - [224] M. Samaan and S. Theil. 2012. Development of a low cost star tracker for the SHEFEX mission. Aerospace Science and Technology, 23(1): 469–478. - [225] S. Schalknowsky and M. Harris. 1969. Spacecraft magnetic torques. Technical Report, NASA SP-8018. - [226] H. Schaub and J.L. Junkins. 2003. Analytical mechanics of space systems. AIAA Education Series, Reston, VA3. - [227] H. Schaub, S. Vadali and J.L. Junkins. 1998. Feedback control law for variable speed control moment gyroscopes. Journal of the Astronautical Sciences, 46(3): 307–328. - [228] W. Schiehlen. 1990. Multibody Systems Handbook. Springer, Berlin, Chap. 1, pp. 1–9. - [229] S.F. Schmidt. 1981. The Kalman filter: Its recognition and development for aerospace applications. Journal of Guidance and Control, 4(1): 4–7. - [230] R.A. Serway and J.W. Jewett. 2004. Physics for Scientists and Engineers. Books/Cole Thomson Learing, Belmont, CA. - [231] S.M. Shahruz and S. Behtash. 1992. Design of controllers for linear parameter-varying systems by the gain scheduling technique. Journal of Mathematical Analysis and Applications, 168(1): 195–217. - [232] S.L. Shmakov. 2011. A universal method of solving quartic equations. International Journal of Pure and Applied Mathematics, 71(2): 251–259. - [233] M.D. Shuster. 1993. A survey of attitude presentation. Journal of the Astronautical Sciences, 27: 439-517. - [234] M.D. Shuster and S.D. Oh. 1981. Three-axis attitude determination form vector observations. Journal of Guidance and Control, 4: 70–77. - [235] M. Sidi. 1997. Spacecraft Dynamics and Control: A Practical Engineering Approach. Cambridge University Press, Cambridge, UK. - [236] E. Siliani and M. Lovera. 2006. Magnetic spacecraft attitude control: A survey and some new results. Control Engineering Practice, 13: 357–371. - [237] V. Sima, A.L. Tits and Y. Yang. 2006. Computational experience with robust pole assignment algorithms. 2006 IEEE Conference on Computer Aided Control Systems Design, Munich, Germany. - [238] D. Simon. 2006. Optimal State Estimation: Kalman, H_{∞} , and Nonlinear Approaches. Wiley Interscience, NJ. - [239] G.L. Smith and S.F. Schmidt. 1961. The Application of Statistical Filter Theory to Optimal Trajectory Determination Onboard a Circumlunar Vehicle. Reprint 61–92, AAS Meeting, August 1–3. - [240] G.L. Smith, S.G. Schmidt and L.A. McGee. 1962. Application of statistical filter theory to the optimal estimation of position and velocity on board a circumlunar vehicle. Technical Report, NASA Technical Report R-135, NASA. - [241] J.O. Smith III. July, 2024. Physical Audio
Signal Processing. https://ccrma.stanford.edu/ jos/pasp/ - [242] S.T. Smith. 1994. Optimization techniques on Riemannian manifolds. Fields Institute Communications, 3: 113–136. - [243] R.P. Singh, R.J.V. Voort and P.W. Likins. 1985. Dynamics of flexible bodies in tree topology—A computer-oriented approach. Journal of Guidance, 8: 584-590. - [244] P. Singla, J.L. Crassida and J.L. Junkins. 2003. Spacecraft angular rate estimation algorithms for star tracker-based attitude determination. Advances in the Astronautical Sciences, 114: 1303-1316. - [245] P. Singla, K. Subbarao and J.L. Junkins. 2006. Adaptive output feedback control for spacecraft rendezvous and docking under measurement uncertainty. Journal of Guidance Control and Dynamics, 29(4): 892-902. - [246] B.B. Spratling and D. Mortari. 2009. A survey on star identification algorithms. Algorithms, 2: 93-107. - [247] G.W. Stewart and J.G. Sun. 1990. Matrix Perturbation Theory. Academic Press, San Diego. - [248] P.M. Stoltz, S. Sivapiragasam and T. Anthony. 1998. Satellite orbit-raising using LQR control with fixed thrusters. Advances in the Astronautical Sciences, 98: 109-120. - [249] R.C. Stone. 1989. A comparison of digital centering algorithms. Astronomical Journal, 97: 1227-1237. - [250] E. Stoneking. 2010. 42: A General-Purpose Spacecraft Simulation. NASA Software Designation GSC-16720-1, 2010-, [Online]. Available: https://sourceforge.net/projects/fortytwospacecraftsimulation. - [251] E. Stoneking. 2013. Implementation of Kane's method for a spacecraft composed of multiple rigid bodies. In AIAA Guidance, Navigation, and Control (GNC) Conference, Detroit, MI, USA, pp. 46–49. - [252] T.E. Strikwerda et al. 1991. Autonomous star identification and spacecraft attitude determination with CCD star trackers. In Proceedings of the First International Conference on Spacecraft Guidance, Navigation and Control Systems, ESTEC, Noordwijk, The Netherlands, 4-7 June 1991. - [253] H. Sun, S. Lia and S. Fei. 2011. A composite control scheme for 6DOF spacecraft formation control. Acta Astronautica, 69(7-8): 595–611. - [254] J. Sun. 1995. On worst-case condition numbers of a non-defective multiple eigenvalue. Numerische Mathematik, 68: 373–382. - [255] L. Sun and W. Huo. 2015. 6-DOF integrated adaptive back-stepping control for spacecraft proximity operations. IEEE Transactions on Aerospace and Electronic Systems, 51(3): 2433-2443. - [256] L. Sun, W. Huo and Z. Jiao. 2016. Robust nonlinear adaptive relative pose control for cooperative spacecraft during rendezvous and proximity operations. IEEE Transactions on Control Systems Technology, 25: 1840–1847. - [257] L. Sun, W. Huo and Z. Jiao. 2017. Adaptive back stepping control of spacecraft rendezvous and proximity operations with input saturation and full-state constraint. IEEE Transactions on Industrial Electronics, 64: 480– 492. - [258] L. Sun and Z. Zheng. 2018. Adaptive relative pose control of spacecraft with model couplings and uncertainties. Acta Astronautica, 143: 29-36. - [259] R. Sutherland, I. Kolmanovsky and A.R. Girard. 2019. Attitude control of a 2U cubesat by magnetic and air drag torques. IEEE Transactions on Control Systems Technology, 27(3): 1047–1059. - [260] A. Tayebi. 2008. Unit quaternion-based output feedback for the attitude tracking problem. IEEE Transactions on Automatic Control, 53(6): 1516– 1520. - [261] Thebault et al. 2015. International geomagnetic reference field: The 12th generation. Earth, Planets and Space, 67: 79-98. - [262] A.L. Tits. 2014. Private Communication. - [263] A.L. Tits and Y. Yang. 1996. Globally convergent algorithms for robust pole assignment by state feedback. IEEE Transactions on Automatic Control, 41: 1432-1452. - [264] P. Tøndel, A. Johansen and A. Bemporad. 2001. An algorithm for multiparametric quadratic programming and explicit MPS solution. In IEEE conference on Decision and Control, pp. 1199–1204. - [265] J.-F. Tregouet, D. Arzelier, D. Peaucelle, C. Pittet and L. Zaccarian. 2015. Reaction wheel desaturation using magnetorquers and and static input allocation. IEEE Transactions on Control System Technology, 23(2): 525–539. - [266] S. Udomkesmalee et al. 1994. Stochastic star identification. Journal of Guidance Control Dynamics, 17(6): 1283–1286. - [267] US Nautical Almanac Office. 2001. The astronomical almanac for the year 2001, data for astronomy, space science, geodesy, surveying, navigation and other applications. - [268] D.A. Vallado. 2004. Fundamentals of Astrodynamics and Applications. Microcosm Press, El Segundo, CA. - [269] E.J. van den Heide et al. 1998. Development and validation of a fast and reliable star sensor algorithm with reduced data base. The 49th International Astronautical Congress, Melbourne, Australia, Sept. 28–Oct. 2. - [270] A. Varga. 2008. On solving periodic Riccati equations. Numerical Linear Algebra with Applications, 15(12): 809–835. - [271] A. Varga. 2013. Computational issues for linear periodic system: Paradigms, algorithms, open problems. International Journal of Control, 86(7): 1227-1239. - [272] D.R. Vaughan. 1970. A nonrecursive algebraic solution for the discrete Riccati equation. IEEE Transactions on Automatic Control, 15(5): 597-599. - [273] M. Verhaegen and P. Van Dooren. 1978. Numerical aspects of different Kalman filter. IEEE Transactions on Automatic Control. 31(10): 907–917. - [274] H. Volland. 1969. A theory of thermospheric dynamics—I, diurnal and solar cycle variations. Planet Space Sciences, 17: 1581–1597. - [275] H. Volland. 1969. A theory of thermospheric dynamics—II, geomagnetic activities effect, 27-day variation and semiannual variation. Planet Space Sciences, 17: 1709-1724. - [276] R. Votel and D. Sinclair. 2012. Comparison of control moment gyros and reaction wheels for small earth-observing satellites. 26th Annual AIAA/USU Conference on Small Satellites. - [277] G. Wahba. 1965. A least squares estimate of spacecraft attitude. SIAM Review, 7: 409. - [278] R. Wallsgrove and M. Akella. 2005. Globally stabilizing saturated control in the presence of bounded unknown disturbances. Journal of Guidance, Control and Dynamics, 28: 957–963. - [279] P.K.C. Wang and F.Y. Hadaegh. 1996. Coordination and control of multiple micro-spacecraft moving in formation. Journal of Astronautical Sciences, 44(3): 315–355. - [280] Y. Wang and S. Boyd. 2010. Fast model predictive control using on line optimization. IEEE Transactions on Control Systems Technology, 18: 267– 278. - [281] O.L. de Weck. 2001. Attitude Determination and Control: (ADCS). Department of Aeronautics and Astronautics, MIT. - [282] J. Wen and K. Kreutz-Delgado. 1991. The attitude control problem. IEEE Transactions On Automatic Control, 36: 1148–1161. - [283] J. Wertz. 1978. Spacecraft Attitude Determination and Control. Kluwer Academic Publishers, Dordrecht, Holland. - [284] B. Wie. 1998. Vehicle Dynamics and Control. AIAA Education Series, Reston, VA. - [285] B. Wie. 2003. New singularity escape/avoidance logic for control moment gyro systems. AIAA Guidance, Navigation, and Control Conference, Austin, TX. - [286] B. Wie. 2004. Solar sail attitude control and dynamics, Part I. Journal of Guidance, Control, and Dynamics, 27: 526-535. - [287] B. Wie, D. Bailey and C. Heigerg, 2001. Singularity robust steering logic for redundant single-gimbal control moment gyros. Journal of Guidance, Control, and Dynamics, 24(5): 865–872. - [288] B. Wie, H. Weiss and A. Arapostathis. 1989. Quaternion feedback regulator for spacecraft eigenaxis rotations. Journal of Guidance, Control and Dynamics, 12: 375-380. - [289] N. Wiener. 1949. Extrapolation, Interpolation, and Smoothing of Stationary Time Series. MIT Press, Cambridge, MA. - [290] N. Wiesel. 1989. Spaceflight Dynamics. McGraw-Hill, New York. - [291] J.H. Wilkinson. 1965. The Algebraic Eigenvalue Problem. Charendon Press, Oxford. - [292] R. Wisniewski. 1997. Linear time varying approach to satellite attitude control using only electromagnetic actuation. Proceedings of the AIAA Guidance, Navigation, and Control Conference, New Orleans, pp. 243–251. - [293] C.H. Won. 1999. Comparative study of various control methods for attitude control of a LEO satellite. Aerospace Science and Technology, 3: 323-333. - [294] W.M. Wonham. 1968. On the separation theorem of stochastic control. SIAM Journal on Control, 6: 312–326. - [295] M. Wood, W.H. Chen and D. Fertin. 2006. Model predictive control of low earth orbiting spacecraft with magneto- torquers. In Computer Aided Control System Design, The IEEE International Conference on Control Applications, pp. 2908–2913. - [296] S.J. Wright. 1993. Interior point methods for optimal control of discrete time systems. Journal of Optimization Theory and Applications, 77: 161-187. - [297] S.J. Wright. 1997. Primal-Dual Interior-Point Methods. SIAM, Philadelphia. - [298] J. Wu, Z. Zhou, B. Gao, R. Li, Y. Cheng and H. Fourati. 2018. Fast linear quaternion attitude estimator using vector observations. IEEE Transactions on Automation Science and Engineering, 15: 307–319. - [299] R. Xu, H. Ji, K. Li, Y. Kang and K. Yang. 2015. Relative position and attitude coupled control with finite-time convergence for spacecraft rendezvous and docking. 2015 IEEE 54th Annual Conference on Decision and Control (CDC) December 15–18, 2015, Osaka, Japan. - [300] Y. Xu, A. Tatsch and N.G. Fitz-Coy. 2005. Chattering free sliding mode control for a 6 DOF formation flying mission. In Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, USA, AIAA, pp. 2005-6464. - [301] H. Yan, I.M. Ross and K.T. Alfriend. 2007. Pseudo-spectral feedback control for three-axes magnetic attitude stabilization in elliptic orbits. Journal of Guidance, Control, and Dynamics, 30(4): 1107-1115. - [302] Q. Yan, G. Yang, V. Kapila and M. de Queiroz. June, 2000. Nonlinear dynamics and output feedback control of multiple spacecraft in elliptical orbits. Proceedings of the American Control Conference, Chicago,
Illinois, pp. 839-843. - [303] Y. Yang. 1989. A new condition number of eigenvalue and its application in control theory. Journal of Computational Mathematics, 7(1): 15–21. - [304] Y. Yang. 1992. A globally convergent algorithm for robust pole assignment. Science in China (Series A), 23(12): 1126–1131 (in Chinese). - [305] Y. Yang. December, 1996. Robust system design: Pole assignment approach. University of Maryland at College Park, College Park, MD. - [306] Y. Yang. 2007. Globally convergent optimization algorithms on Riemannian manifolds: Uniform framework for unconstrained and constrained optimization. Journal of Optimization Theory and Applications, 132(2): 245– 265. - [307] Y. Yang. 2010. Quaternion based model for momentum biased nadir pointing spacecraft. Aerospace Science and Technology, 14: 199–202. - [308] Y. Yang. 2011. A polynomial arc-search interior-point algorithm for convex quadratic programming. European Journal of Operational Research, 215: 25-38. - [309] Y. Yang. 2012. Analytic LQR design for spacecraft control system based on quaternion model. Journal of Aerospace Engineering, 25: 448–453. - [310] Y. Yang. 2012. Spacecraft attitude determination and control: Quaternion based method. Annual Reviews in Control. 36(2): 198-219. - [311] Y. Yang, 2013. A polynomial arc-search interior-point algorithm for linear programming. Journal of Optimization Theory and Applications, 158: 859– 873. - [312] Y. Yang. 2013. Constrained LQR design using interior-point arcsearch method for convex quadratic programming with box constraints. arXiv:1304.4685. - [313] Y. Yang. 2014. Quaternion based LQR spacecraft control design is a robust pole assignment design. Journal of Aerospace Engineering, 27(1): 168-176. - [314] Y. Yang. 2014. Attitude control in spacecraft orbit-raising using a reduced quaternion model. Advances in Aircraft and Spacecraft Science, 1(4): 427– 421. - [315] Y. Yang. 2015. Attitude determination using Newton's method on Riemannian manifold. Proceedings of the IMechE, Part G: Journal of Aerospace Engineering, 229(14): 2737–2742. - [316] Y. Yang. 2016. Controllability of spacecraft using only magnetic torques. IEEE Transactions on Aerospace and Electronic Systems, 52(2): 954–961. - [317] Y. Yang. 2017. Spacecraft attitude and reaction wheel desaturation combined control method. IEEE Transactions on Aerospace and Electronic Systems, 53(1): 286–295. - [318] Y. Yang. 2017. An efficient algorithm for periodic Riccati equation with periodically time-varying input matrix. Automatica, 78(4): 103–109. - [319] Y. Yang. 2018. Singularity-free spacecraft attitude control using variablespeed control Moment gyroscopes. IEEE Transactions on Aerospace and Electronic Systems, 54(3): 1511–1518. - [320] Y. Yang. 2018. An efficient LOR design for discrete-time linear periodic system based on a novel lifting method. Automatica, 87: 383–388. - [321] Y. Yang. 2019. Coupled orbital and attitude control in spacecraft rendezvous and soft docking. Proc. IMechE Part G: J. Aerospace Engineering. DOI: 10.1177/0954410018792991. - [322] Y. Yang. 2022. An efficient arc-search interior-point algorithm for convex quadratic programming with box constraints. Numerical Algorithms, 91: 711-748. - [323] Y. Yang. 2022. Robpole, Matlab file exchange, [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/53969-robpole. - [324] Y. Yang. 2023. Attitude model predictive control with actuator saturation using an arc-search interior-point method. Journal of Guidance, Control, and Dynamics, 46(4): 726–733. - [325] Y. Yang. 2020. Arc-Search Techniques for Interior-Point Methods. CRC Press, Boca Raton, FL. - [326] Y. Yang. 2025. Corrigendum to "an efficient LQR design for discrete-time linear periodic system based on a novel lifting method". Automatica, to appear. - [327] Y. Yang, W. Bentz and L. Lewis. 2024. A systematic methodology for modeling and attitude control of multi-body space systems. IEEE transactions on Aerospace and Electronic Systems, 60(4): 5359–5372. - [328] Y. Yang and A.L. Tits. 1993. On robust pole assignment by state feedback. Proceedings of the American Control Conference, San Francisco, pp. 2765-2766. - [329] Y. Yang and Z. Zhou. 2013. An analytic solution to Wahba's problem. Aerospace Science and Technology, 30: 46–49. - [330] Y. Yang and Z. Zhou. 2016. Spacecraft dynamics should be considered in Kalman filter based attitude estimation. 26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA, February 14–18. - [331] H. Yoon and P. Tsiotras. 2002. Spacecraft adaptive attitude and power tracking with variable speed control moment gyroscopes. Journal of Guidance, Control, and Dynamics, 25(6): 1081-1090. - [332] H. Yoon and P. Tsiotras. 2004. Singularity analysis of variable-speed control moment gyros. Journal of Guidance, Control, and Dynamics, 27(3): 374-386. - [333] H. Yoon and P. Tsiotras. 2006. Spacecraft line-of-sight control using a single variable-speed control moment gyros. Journal of Guidance, Control, and Dynamics, 29(6): 1295-1308. - [334] C. Zagaris and M. Romano. 2018. Reachability analysis of planar spacecraft docking with rotating body in close proximity. Journal of Guidance, Control, and Dynamics, 41: 1416–1422. - [335] A.M. Zanchttin and M. Lovera. 2011. H_{∞} attitude control of magnetically actuated satellites. Proceedings of 18th IFAC World Congress, Milano, Italy, August 28–September 2. - [336] R. Zanetti, M. Majji, R.H. Bishop and D. Mortari. 2009. Normconstrained Kalman filter. Journal of Guidance and Control, 32(5): 1458-1465. - [337] H. Zhang, L. Li, J. Xu and M. Fu. 2015. Linear quadratic regulation and stabilization of discrete-time systems with delay and multiplicative noise. IEEE trans. on Automatic Control, 60(10): 2599–2613. - [338] Y. Zhang. 1996. Solving large-scale linear programs by interior-point methods under the MATLAB environment. Technical Report, Department of Mathematics and Statistics, University of Maryland, Baltimore County, Maryland. - [339] F. Zhang and G. Duan. 2012. Integrated relative position and attitude control of spacecraft in proximity operation missions. International Journal of Automation and Computing, 9(4): 342–351. - [340] J. Zhang, K. Ma, G. Meng and S. Tian. 2015. Spacecraft maneuvers via singularity-avoidance of control moment gyros based on dual-mode model predictive control. IEEE Transactions on Aerospace and Electronic Systems, 51: 2546–2559. - [341] B. Zhou, Z. Lin and G. Duan. 2011. Lyapunov differential equation approach to elliptical orbital rendezvous with constrained controls. Journal of Guidance Control and Dynamics, 34(2): 892–902. - [342] B. Zhou, Q. Wang, Z. Lin and G. Duan. 2014. Gain scheduled control of linear systems subject to actuator saturation with application to spacecraft rendezvous. IEEE Transactions on Control Systems Technology, 22(5): 2031–2038. - [343] K. Zhou, J.C. Doyle and K. Glover. 1996. Robust and Optimal Control. Prentice Hall, Inc., New Jersey. - [344] Z. Zhou and R. Colgren. 2005. Nonlinear spacecraft attitude tracking controller for large non-constant rate commands. International Journal of Control, 78: 311–325. ## **Index** | actuator, 146 | angular rate, 303 | |--|-------------------------------------| | control moment gyro, 146, 147, | angular velocity, 303 | | 265 | apogee, 13 | | double gimbal CMG, 147 | arc-search, 227 | | magnetic coils, 154 | ellipse, 228 | | magnetic torque rods, 146, 149 | argument of perigee, 25, 37, 40, 70 | | momentum wheel, 146 | ascending node, 25, 37, 155 | | reaction wheel, 146 | attitude control system, 147 | | single gimbal CMG, 147 | auxiliary circle, 15 | | thruster, 146, 150 | | | algebraic Riccati matrix equation, 126 | Barycentric dynamical time, 98 | | algorithm, 2, 173, 204 | bases of the frame, 303 | | convex QP, 220 | Bayes' theorem, 103 | | CSS processing, 99 | body-fixed frame, 154 | | ESOQ, 84 | body frame, 50 | | feasible interior-point, 220, 242 | bore-sight, 99 | | feasible starting point, 220 | C 1 ' C 1 04 | | FOMA, 78 | Cardano's formula, 84 | | infeasible interior-point, 220 | Cayley-Hamilton theorem, 77 | | interior-point, 219, 226, 236 | celestial sphere, 95 | | KNV, 136 | celestial equator, 95 | | numerically stable, 122 | celestial poles, 95 | | QUEST, 77 | celestial time in Greenwich, 70 | | root square fitler, 123 | central path, 226 | | star identification, 96 | neighborhood, 227 | | step size, 243 | Charge Coupled Device, 95 | | angular acceleration, 303 | CCD, 95 | | angular momentum, 50, 147 | co-elevation, 67, 96 | | angular momentum vector, 148 | coefficient | | Gauss coefficients, 67 | convex quadratic problem, 225 | |--|--| | coil, 149 | box constrained, 225 | | composed rotation, 42 | convex quadratic programming, 223 | | conditional cumulative distribution, 103 | 232 | | conditional expectation, 105 | arc-search, 227 | | conditional probability, 101 | coordinate frame, 26, 27 | | conditional variance, 105 | desired frame, 26 | | conic section, 12 | coordinate system, 3, 9 | | constant, 8, 9 | ECEF frame, 28 | | geocentric gravitational constant, | ECI frame, 27 | | 59, 284 | LVLH frame, 28 | | universal constant of gravitation, | NED frame, 28 | | 8, 59, 180, 285 | PQW frame, 29 | | control, 4 | RSW frame, 29 | | \mathbf{H}_{∞} , 124 | SEZ frame, 28 | | constrained LQR, 219, 223 | cost function, 223, 224 | | Constrained MPC, 223 | covariance matrix, 105 | | desaturation, 176 | cross multiplication, 303 | | Euler angle maneuver, 207 | cross product, 7 | | gain scheduling, 271 | cumulative distribution function, 102 | | LQR, 193 | | | model predictive control, 5, 219, | date of J2000, 98 | | 273 | Davenport's formula, 74 | | momentum management, 177 | K-matrix, 74 | | MPC-based method, 281 | descending node, 25 | | quaternion based maneuver, 207 | design, 1 | | rendezvous and docking, 281 |
gain scheduling, 266 | | robust pole assignment, 281 | quaternion based, 124 | | control moment gyro, 265 | robust pole assignment, 266, 273 | | flywheel, 265 | dipole, 149 | | gimbal, 265 | dipole strength, 155 | | singular point, 265 | direction cosine matrix, 33 | | variable-speed, 265 | distance in space, 8 | | controllability, 48, 153 | docking, 280 | | controllability of LTV, 153 | duality measure, 227, 236, 246 | | controllable, 52, 57 | d'Alembert's principle, 301 | | controllable subspace, 49 | Earth centered inertial frame, 27 | | linear time-varying system, 157 | Earth-centered Earth-fixed frame, 28 | | rank condition of, 158 | east longitude, 67, 96 | | uncontrollable, 48 | = | | convergence, 232 | eccentric anomaly, 15, 288 eccentricity of the orbit, 12 | | super-linear, 239 | eccentricity of the orbit, 12 eccentricity vector, 19 | | convex programming, 219 | eclipse, 99 | | ecliptic longitude of the sun, 98 | FOV, 95 | |--|---| | ecliptic plane, 23 | flexible model, 323 | | ellipse, 228 | flywheel, 146, 147 | | center of, 228 | spin axes, 267 | | major axis of, 14 | focus, 13 | | semi-major axis, 155 | prime, 13 | | semimajor axis, 14 | force, 8 | | elliptic orbit | formula, 17 | | semiminor axis, 15 | Cardano's formula, 221 | | equation, 9 | Davenport, 77 | | Clohessy and Wiltshire equations, | frame | | 280 | body, 50, 74 | | differential Riccati, 164 | inertial, 49, 75, 177 | | discrete Riccati, 167, 169 | local vertical local horizontal, 49, | | discrete-time algebraic Riccati, 186 | 75 | | discrete-time periodic algebraic | LVLH, 177 | | Riccati, 194 | reference, 74, 95 | | Hill equations, 280 | function, 48 | | kinematics, 154 | Lagrangian, 138 | | matrix periodic Riccati, 178 | Lyapunov, 48, 124, 128, 177 | | periodic discrete Riccati, 165 | G : W 1 1 100 | | Riccati, 153, 170 | Gaussian-Markov random process, 108 | | time-invariant algebraic Riccati, | general angular acceleration vector, | | 198 | 304, 310 | | equator, 23 | general angular momentum vector, 304 | | Earth's equator, 23 | general angular rate vector, 304, 307 | | Earth's magnetic field, 157 | general force vector, 304, 314 | | equatorial radius, 67 | general inertia matrix, 304, 313 | | equinoxes | general linear acceleration vector, 304, | | precession of, 28 | 313 | | Euler angles, 33 | general mass matrix, 304, 313 | | Euler's equation, 304 | general torque vector, 304, 314 | | event, 101 | generalized coordinates, 301 | | mutually independent, 101 | geocentric gravitational constant, 11 | | 6.14 | geocentric inertial coodinate system, | | field Earth's magnetic, 154 | 23 | | Earth's magnetic, 134 Earth's magnetic field, 96 | geocentric magnetic flux density, 67 | | Earth's magnetic field intensity, | geocentric spherical polar coordinates,
96 | | 149 | spacecraft geocentric distance, 96 | | geomagnetic, 152 | gimbal, 147 | | magnetic field, 96 | gimbal singularity, 148 | | field of view, 95 | gimbal singularity, 146
gimbal vector, 148 | | ncia or view, 33 | giiiloai vectoi, 140 | | spin axes, 267 | Large UV Optical Infrared Surveyor, | |--|---| | Goldman-Tucker theorem, 239 | 300 | | | lifting method, 193 | | Hohmann transfer, 18 | linear acceleration, 8 | | Hohmann transfers, 209 | linear Kalman filter, 109 | | | linear momentum, 8 | | inclination, 24, 37, 70 | linear quadratic regulator, 124, 182, | | spacecraft orbit with respect to the | 300 | | magnetic equator, 155 | LQR, 140, 213, 334 | | inertia dyadic, 60 | linearized rigid dynamics model, 315 | | inertial coordinate system, 23 | local sidereal time, 70 | | inertial frame, 50 | local vertical and local horizontal, 154 | | inertial pointing spacecraft, 52 | local vertical local horizontal frame, 28 | | initial interior point, 225 | LQR, 300, 318 | | feasible initial interior-point, 225 | LUVOIR, 304 | | infeasible initial point, 226 | LUVOIR telescope, 302 | | International Geomagnetic Reference | Lyapunov stability, 153 | | Field, 67 | Zyupune i swemey, ree | | Y WILL G THE 200 | magnetic dipole, 149 | | James Webb Space Telescope, 300 | magnetometer | | joint cumulative distribution function, | flux-gate type, 97 | | 105 | Markov process, 107 | | joint density distribution function, 105 | mass, 8 | | joint probability, 101 | center of, 209 | | Jourdain principle, 301 | matrix, 3 | | Julian date, 98 | K -matrix, 74, 77, 78 | | W-1 614 100 | adjugate, 84 | | Kalman filter, 100 | asymmetric, 181 | | Chandrasekhar square root filter, | attitude, 75 | | 123 | covariance, 123 | | extended Kalman filter, 100, 116 | direction cosine, 44 | | Joseph-form stabilized, 123 | inertia, 50, 118, 142, 144, 179 | | root square filter, 123 | Jordan block, 170 | | unscented Kalman filter, 100 | Kalman gain, 123 | | Kane's equation, 304 | optimal feedback, 198 | | Kane's method, 300, 301 | orthogonal, 76, 168, 169, 172 | | Kepler's equation, 19 | real quasi-upper-triangular, 165 | | Kepler's second law, 16 | rotational, 43, 44, 46, 75 | | Kepler's third law, 16 | symplectic, 165 | | Kepler's time equation, 17 | transformation, 53 | | kinetic energy of the unit mass, 11 | maximum-angle rotation, 33 | | KKT conditions, 138, 139, 226, 239, | mean anomaly, 17, 19, 288 | | 330 | mean anomaly of the Sun, 98 | | Kronecker delta function, 107, 109 | mean anomary of the buil, 90 | | mean longitude <i>L</i> of the Sun, 98 mean motion, 17, 19 mean value theorem for integrals, 103 minimal linear covariance estimation, | orthogonal projection, 109 partial angular velocity dyad, 304, 307 partial velocity dyad, 304, 309 performance, 2 control system, 124 disturbance rejection, 66 percentage of overshoot, 2 rising time, 2 settling time, 2 | |--|--| | momentum wheel, 209 | Perifocal PQW frame, 29 | | multi-body, 300 | perigee, 13, 24 | | multi-body dynamical system, 301 | period, 16
sample, 212 | | multi-body model, 316 | sampling, 273 | | Newton's second low of motion, 304
Newton-Raphson iteration, 77
node line, 25
non-commutative, 41
north east nadir frame, 28 | pole assignment, 124
robust pole assignment, 125
polynomial
Schmidt semi-normalized Legen-
dre, 67 | | optimization, 2
convex, 220
interior-point, 2, 239
quadratic programming, 220
orbit, 9 | polynomial complexity, 220
position vector, 19
positivity, 236
potential energy of the unit mass, 11
primary focus, 24 | | probability, 101 | normal, 107 | |-------------------------------------|-------------------------------------| | conditional density function, 103 | random vector, 104 | | density function, 102 | rank, 158 | | disjoint, 101 | rate of the rotation, 34–36 | | expectation, 106 | angular velocity, 50, 147 | | proximity condition, 243 | body rate, 51 | | | orbit rate, 53 | | quadratic programming, 219 | Rayleigh quotient problem, 87 | | quaternion, 1, 41 | real positive root, 236 | | complex conjugate of, 42 | reliable, 152 | | derivative of, 47 | rendezvous, 280 | | error quaternion, 208 | close-range, 280 | | identity of, 42 | final approaching, 280 | | inverse of, 42, 288 | phasing, 280 | | inverse of the quaternion operator, | Riccati equation, 164 | | 46 | algebraic, 164 | | matrix form of quaternion produc- | algebraic periodic, 164 | | tion, 46 | differential, 164 | | minimum-angle rotation, 78 | differential periodic Riccati equa- | | multiplication of, 42 | tion, 164 | | multiplication of a quaternion and | discrete-time periodic, 164 | | a vector, 43 | periodic, 164 | | negative, 41 | right ascension, 25, 37, 70 | | norm of, 42 | rigid multi-body, 300 | | norm of the product, 43 | robust pole assignment, 300, 318 | | normalized, 41 | Rodriguez parameters, 77 | | operator, 45 | rotary joints, 304 | | reduced quaternion, 155 | rotational axis, 33 | | scalar part of, 41 | rotational joints, 301 | | sum of, 41 | rotational matrices, 31 | | vector part of, 41, 211 | , | | zero, 41 | scalar potential function, 67, 96 | | QUEST, 74 | semi-latus rectum, 12, 283 | | 1 107 106 | semi-major axis, 21, 283 | | random process, 105, 106 | semi-minor axis, 20 | | joint cumulative distribution, 106 | sensor, 95 | | joint density distribution, 106 | coarse sun sensors, 99 | | random variable, 101 | encoder, 271 | | continuous, 101 | magnetometer, 97 | | discrete, 101 | star tracker, 96 | | expectation, 104 | separation theorem, 126 | | Gaussian, 107 | set, 226 | | independent, 104 | feasible set, 226 | | mean, 104 | | | index set \mathcal{B} , 239 | equilibrium point, 266 | |---------------------------------------|--------------------------------------| | index set S , 239 | feedback control, 3 | | index set \mathcal{T} , 239 | linear periodic, 153, 193 | | strictly feasible, 226 | linear system, 2 | | singularity, 48, 49, 148 | linear time-invariant, 186, 196 | | gimbal singularity, 148 | linear time-invariant system, 168 | | singular point, 48, 265 | linear time-varying, 153, 266 | | singularity-free, 266 | linear time-varying system, 291 | | singularity-robust, 265 | momentum management, 153 | | six classical orbit parameters, 37 | nonlinear, 2 | | solar panels, 149 | nonlinear system, 1 | | south east zenith frame, 28 | spacecraft attitude control, 3 | | space telescopes, 301 | thrust control, 206 | | spacecraft, 1, 4 | | | attitude maneuver, 206 | three rigid bodies, 304 | | chaser, 282 | three-body, 304 | | low orbit, 49 | thruster, 146, 209, 293 | | model, 2 | thruster force directions, 210 | | nadir pointing spacecraft, 49, 154 | thruster
levels of, 210 | | orbit-raising, 247 | tilted angle, 99 | | rendezvous, 219, 280 | time-derivative, 303 | | target, 282 | torque, 9 | | spacecraft attitude determination, 74 | aerodynamic, 62 | | spacecraft coordinate (RSW) frame, 29 | amplification, 265 | | specific impulse, 151 | CMG torque vector, 148 | | stability, 126 | control, 210 | | global, 124 | control torque, 210 | | globally asymptotically stable, 127 | disturbance torque, 58 | | standard gravitational parameter, 11, | flywheel acceleration generated, | | 164 | 269 | | star catalog, 96 | gimbal acceleration generated, 269 | | state transition matrix, 157 | gravitational, 59 | | Stoneking's form, 304 | gravity gradient, 49, 60 | | Stoneking's implementation, 300 | gravity gradient disturbance torque, | | strictly complementary, 239 | 154 | | sun vector, 97 | magnet disturbance torque, 66 | | SVD method, 89 | magnet torque rods, 66 | | symbolic inverse, 316 | magnetic, 152 | | system, 1, 2 | magnetic field induced, 66 | | augmented linear time-invariant, | magnetic torque bars, 209 | | 195 | moment of the force, 9 | | computer control, 212 | solar pressure induced, 72 | | discrete linear time-invariant, 223 | solar radiation induced, 72 | | | | torques, 2 total energy per unit mass, 11 true anomaly, 15, 24, 37, 71, 283 unitary matrix, 31 universal time, 26 variance matrix, 104 velocity, 8 velocity vector, 19 vernal equinox, 23, 27 vernal points, 24 view angle, 99 virtual work, 301 Wahba's problem, 74, 89 analytic solution for, 74 white noise, 107